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Abstract: The main purpose of this paper is to find explicit expressions for two sequences and to
solve two related conjectures arising from the recent study of sums of finite products of Catalan
numbers by Zhang and Chen.
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1. Introduction

Let n be any non-negative integer. Then, Cn = 1
n+1 · (

2n
n ) (n = 0, 1, 2, 3, · · · ) are defined as the

Catalan numbers. For example, the first several values of the Catalan numbers are C0 = 1, C1 = 1,
C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132, C7 = 429, C8 = 1430, · · · . The generating function of the
sequence {Cn} is:

2
1 +
√

1− 4x
=

∞

∑
n=0

(2n
n )

n + 1
· xn =

∞

∑
n=0

Cn · xn. (1)

This sequence occupies a pivotal position in combinatorial mathematics, so lots of counting problems
are closely related to it. A great number of examples can be found in a study by Stanley [1]. Because of
these, plenty of scholars have researched the properties of Catalan numbers and obtained a large number
of vital and meaningful results. Interested readers can refer to the relevant references [2–26], which is not
an exhaustive list. Very recently, Zhang and Chen [27] researched the calculation problem of the following
convolution sums:

∑
a1+a2+···+ah=n

Ca1 · Ca2 · Ca3 · · ·Cah , (2)

where the summation has taken over all h-dimension non-negative integer coordinates (a1, a2, · · · , ah),
such that the equation a1 + a2 + · · ·+ ah = n.

They first introduced two new recursive sequences, C(h, i) and D(h, i), and after the elementary
and combinatorial methods, they proved the following two significant conclusions:

Theorem 1. For any positive integer h, one gets the identity:

∑a1+a2+···+a2h+1=n Ca1 · Ca2 · Ca3 · · ·Ca2h+1

= 1
(2h)! ∑h

i=0 C(h, i)∑
min(n,i)
j=0

(n−j+h+i)!·Cn−j+h+i
(n−j)! · (i

j) · (−4)j,
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where the sequence C(h, i) is defined as C(1, 0) = −2, C(h, h) = 1, C(h + 1, h) = C(h, h − 1) − (8h +

2) · C(h, h), C(h + 1, 0) = 8 · C(h, 1) − 2 · C(h, 0), and for all integers 1 ≤ i ≤ h − 1, we acquire the
recursive formula:

C(h + 1, i) = C(h, i− 1)− (8i + 2) · C(h, i) + (4i + 4)(4i + 2) · C(h, i + 1).

Theorem 2. For any positive integer h and non-negative n, one can obtain:

∑a1+a2+···+a2h=n Ca1 · Ca2 · Ca3 · · ·Ca2h

= 1
(2h−1)! ∑h−1

i=0 ∑n
j=0 D(h, i + 1) · (i+ 1

2
j ) · (−4)j · (n−j+h+i)!·Cn−j+h+i

(n−j)! ,

where (
n+ 1

2
i ) =

(
n + 1

2

)
·
(

n− 1 + 1
2

)
· · ·

(
n− i + 1 + 1

2

)
/i!, the sequence D(k, i) are defined as

D(k, 0) = 0, D(k, k) = 1, D(k + 1, k) = D(k, k − 1) − (8k − 2), D(k + 1, 1) = 24D(k, 2) − 6D(k, 1),
and for all integers 1 ≤ i ≤ k− 1,

D(k + 1, i) = D(k, i− 1)− (8i− 2) · D(k, i) + 4i(4i + 2) · D(k, i + 1).

Meanwhile, through numerical observation, Zhang and Chen [27] also proposed the following
two conjectures:

Conjecture 1. Let p be a prime. Then, for any integer 0 ≤ i < p+1
2 , we obtain the congruence:

C
(

p + 1
2

, i
)
≡ 0 mod p(p + 1).

Conjecture 2. Let p be a prime. Then, for any integer 0 ≤ i < p+1
2 , we obtain the congruence:

D
(

p + 1
2

, i
)
≡ 0 mod p(p− 1).

For easy comparison, here we list some of the values of C(h, i) and D(h, i) with 1 ≤ h ≤ 6 and
0 ≤ i ≤ h in the following Tables 1 and 2.

Table 1. Values of C(k, i).

C(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6

k=1 −2 1
k=2 12 −12 1
k=3 −120 180 −30 1
k=4 1680 −3360 840 −56 1
k=5 −30,240 75,600 −25,200 2520 −90 1
k=6 665,280 −1,995,840 831,600 −110,880 5940 −132 1

Table 2. Values of D(k, i).

D(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6

k=1 0 1
k=2 0 −6 1
k=3 0 60 −20 1
k=4 0 −840 420 −42 1
k=5 0 15,120 −10,080 1512 −72 1
k=6 0 −332640 277,200 −55,440 3960 −110 1
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Based on these two tables and a large number of numerical calculations, we found that these
conjectures are not only correct, but also have generalized conclusions. Actually, they provide a simpler
and clearer representation.

In this paper, by using some notes from Zhang and Chen’s work [27] as well as some basic and
combinatorial methods, we are going to prove the following:

Theorem 3. Let h be a positive integer. Then, for any integer i with 0 ≤ i ≤ h, we acquire the identity:

C(h, i) = (−1)h−i · (2h)!
(h− i)! · (2i)!

.

Theorem 4. Let h be a positive integer. Then, for any integer i with 1 ≤ i ≤ h, we acquire the identity:

D(h, i) = (−1)h−i · (2h− 1)!
(h− i)! · (2i− 1)!

.

Based on the above two theorems, we may instantly deduce the following two corollaries:

Corollary 1. Let h be any positive integer. Then, for any integer 0 ≤ i ≤ h− 1, we gain the congruence:

C (h, i) ≡ 0 mod 2h(2h− 1).

Corollary 2. Let h be any positive integer. Then, for any integer 0 ≤ i ≤ h− 1, we gain the congruence:

D (h, i) ≡ 0 mod (2h− 1)(2h− 2).

Suppose that we consider p an odd prime, and that when h = p+1
2 in Corollary 1 and Corollary 2,

combined with the identities 2h(2h− 1) = p(p + 1) and (2h− 1)(2h− 2) = p(p− 1), our Corollary 1
and Corollary 2 proves Conjecture 1 and Conjecture 2, respectively. Practically, they prove two more
general conclusions.

Taking n = 0 in Theorem 1 and Theorem 2 and applying our theorems, we may instantly deduce
the following two identities:

Corollary 3. Let h be any positive integer. Then, we get the identity:

h

∑
i=0

(−1)h−i
(

h + i
2i

)
· Ch+i = 1.

Corollary 4. Let h be any positive integer. Then, we get the identity:

h

∑
i=1

(−1)h−i
(

h + i− 1
2i− 1

)
· Ch+i−1 = 1.

Some notes: If we replace C(h, i) ( D(h, i)) in Theorem 1 (Theorem 2) with the formula for C(h, i)
(D(h, i)) in our Theorem 3 (Theorem 4), then we can get a more accurate representation for convolution
sums (2).

The proof of the results in this paper is uncomplicated, but guessing their specific forms is not easy.

2. Proofs of the Theorems

Actually, the recursive form of the sequence C(h, i) or D(h, i) is more complex, but as long as
we are able to guess its accurate representation, it is not difficult to prove. First of all, combining the
mathematical induction method, we are going to prove:



Symmetry 2019, 11, 371 4 of 5

C(h, i) = (−1)h−i · (2h)!
(h− i)! · (2i)!

. (3)

According to Table 1, we know that C(1, 0) = −2, C(1, 1) = 1, C(2, 0) = −12, C(2, 1) = 12,
C(2, 2) = 1, C(3, 0) = −120, C(3, 1) = 180, C(3, 2) = −30, C(3, 3) = 1. This means that (3) is correct
for h = 1, 2, 3, and 0 ≤ i ≤ h.

Assume that (3) is correct for integer h = k and all 0 ≤ i ≤ k. That is,

C(k, i) = (−1)k−i · (2k)!
(k− i)! · (2i)!

, 0 ≤ i ≤ k. (4)

Then, for h = k + 1, if i = h + 1, applying the definition of C(h, i), we acquire C(k + 1, k + 1) = 1.
If i = 0, combining the inductive hypothesis (4) and noting that C(k + 1, 0) = 8C(k, 1) − 2C(k, 0),
we obtain:

C(k + 1, 0) = 8 · (−1)k−1 · (2k)!
(k− 1)! · 2!

− (−1)k · 2 · (2k)!
k!

= (−1)k+1 (2k + 2)!
(k + 1)!

. (5)

Suppose that 1 ≤ i ≤ k. From (4) and the recursive properties of C(h, i), we gain:

C(k + 1, i) = C(k, i− 1)− (8i + 2) · C(k, i) + (4i + 4)(4i + 2) · C(k, i + 1)
= (−1)k−i+1 (2k)!

(k−i+1)!(2i−2)! − (−1)k−i(8i + 2) (2k)!
(k−i)!(2i)!

+(−1)k−i−1(4i + 4)(4i + 2) · (2k)!
(k−i−1)!(2i+2)!

= (−1)k+1−i · (2k+2)!
(k+1−i!)·(2i)! .

(6)

According to (5) and (6), we know that the Formula (3) is correct for h = k + 1 and all integers
0 ≤ i ≤ k + 1. Theorem 3 can then be proved by mathematical induction.

In a similar way, we can also prove Theorem 4 by mathematical induction. Since the proof process
is the same as the proof of Theorem 3, it is omitted.

3. Conclusions

The main purpose of this paper was to give two specific expressions for the sequences C(h, i) and
D(h, i). As for some applications of our results, we proved two conjectures proposed by Zhang and
Chen in [27].

As a matter of fact, our results are more general and not subject to prime conditions. Meanwhile,
using our formulae for C(h, i) and D(h, i) in the theorems, we can simplify the variety of results that
appear in Reference [27].

This paper not only enriches the research content of the Catalan numbers, but can also be regarded
as a supplement and further improvement to Zhang and Chen’s work in [27].
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