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I. SCHWINGER-BOSON-SLAVE-FERMION FORMULATION

The on-site-orbital energy cost U0 in the two-orbital t-J model, Eq. (1) in the Commu-

nication, tends to infinity. The U0-infinity limit is enforced by (i) replacing the operator

c†i,α,s that creates a spin s electron at iron site i in d± orbital α with the composite creation

operator

c̃†i,α,s =

⎧
⎪⎨

⎪⎩

b†i,α,sfi,α at hole doping,

bi,α,sf
†
i,α at electron doping.

(S1)

Likewise, the destruction operator ci,α,s that appears in Eq. (1) of the Communication must

be replaced with the composite destruction operator c̃i,α,s, which is simply the hermitian

conjugate of (S1). Above, bi,α,↑ and bi,α,↓ are the destruction operators for a pair of Schwinger

bosons, and fi,α is the destruction operator for a spinless slave fermion. They (ii) satisfy

the constraint

1 = b†i,α,↑bi,α,↑ + b†i,α,↓bi,α,↓ + f †
i,αfi,α (S2)

at each site and orbital[S1, S2]. Notice by (S1) that the composite creation operator c̃†i,α,s

destroys a spin-1/2 moment and replaces it with a spin singlet in the case of electron doping

about half filling, while it destroys an empty site-orbital and replaces it with a spin-1/2

moment in the case of hole doping about half filling.

At half filling, a spin-1/2 moment exists at each site-orbital, and no slave fermions exist

by the constraint (S2). Many-Schwinger-boson wavefunctions can be treated in occupation

space, in such case, which leads to spin-1/2 configurations on the square lattice of iron

atoms with d± orbitals[S3]. Figure S1 shows the exact spectrum of the resulting two-orbital

Heisenberg model over a 4 × 4 lattice of iron atoms at a putative quantum critical point.

The total spin along z is constrained to
∑

Sz = 0, while translation symmetry and orbital-

swap symmetry are exploited to block-diagonalize the Hamiltonian. Dashed lines in Fig.
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FIG. S1: Spectra for the two-orbital Heisenberg model over a periodic 4× 4 lattice, with exchange

coupling constants (a) J∥
1 = 0, J⊥

1 > 0, J∥
2 = 0.3J⊥

1 = J⊥
2 . Model parameters transform to (b)

J∥
1> 0, J⊥

1 = 0, J∥
2= 0.3J∥

1 = J⊥
2 . And Hund coupling is set to the critical value −J0= 1.35J (⊥ )∥

1 .

Black and red states are respectively even and odd under orbital swap.

S1 mark the degeneracy between the hidden-order spinwave and the spinwaves linked to

commensurate spin-density-wave (cSDW) order. Heisenberg exchange coupling constants

between Figs. S1a and S1b are related by the particle-hole transformation Eq. (5) in the

Communication. Notice that states in Figs. S1a and Fig. S1b are paired following the

previous particle-hole transformation, Eq. (3) in the Communication. In particular, states

with even parity under orbital swap Pd,d̄ have a twin in the adjacent spectrum. The twin

state differs in momentum by (π/a)(x̂+ŷ) for states with odd parity under Pd,d̄, however[S3].

One slave fermion corresponds to one electron less than half filling in the case of hole

doping and to one electron more than half filling in the case of electron doping by the pre-

vious Schwinger-boson-slave-fermion formulation, (S1) and (S2). Schwinger-boson degrees
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FIG. S2: Exact spectra of two-orbital t-J model, Eq. (1) in the Communication, over a periodic

4× 4 lattice, with hopping parameters (a) t∥1= −3J⊥
1 , t⊥1(x̂) = −2J⊥

1 , t⊥1(ŷ) = +2J⊥
1 , t∥2= − J⊥

1 ,

and td± ,d∓
2 = 0 in the mobile-hole case (31 electrons). Hopping parameters transform to (b)

t∥1= 2J∥
1, t

⊥
1(x̂) = +3J∥

1, t
⊥
1(ŷ) = −3J∥

1, t
∥
2= − J∥

1, and td± ,d∓
2 = 0 in the mobile-electron case

(33 electrons). Heisenberg exchange coupling constants are given in the caption to Fig. S1, while

Hund coupling is set to the critical value −J0= 2.04J (⊥ )∥
1 .

of freedom can again be treated in occupation space, while the lone slave fermion can be

treated in first quantization[S4, S5]. Figure S2 shows exact spectra for one mobile hole and

for one mobile electron roaming over a 4 × 4 lattice of iron atoms obtained by employing

such a description for the Hilbert space. Hund coupling −J0 is tuned to a critical point at

which the spin-1/2 ground states at zero 2D momentum and at cSDW momenta become

degenerate. The mean-field result for the one-particle spectrum, Fig. 4 in the Communica-

tion, suggests that this degeneracy coincides with the quantum critical point (QCP) defined

by the collapse of the spin gap at cSDW momenta [S3]: ∆cSDW → 0. Any state in Fig. S2a
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of parity eik0 = ±1 under orbital swap has a twin state of the same parity and at the same

energy in Fig. S2b, but shifted by momentum Qk0, where Q0= (π/a)ŷ and Qπ = (π/a)x̂.

Two slave fermions correspond to a mobile hole pair at hole doping, while they corre-

spond to a mobile electron pair at electron doping. Again, the Schwinger-boson degrees of

freedom can be treated in occupation space, while the pair of slave fermions can be treated

in first quantization. In particular, fermion exchange symmetry can be enforced in first

quantization[S6]. Figure 5 in the Communication shows the exact groundstate of a bound

pair of mobile holes/electrons that roam over a 4×4 lattice, where such a scheme is employed

to describe the Hilbert space.

II. ONE-ELECTRON SPECTRUM WITHIN MEAN FIELD APPROXIMATION

Consider the hole-doped case. At weak Hund coupling and in the presence of off-diagonal

magnetic frustration, J∥
1 < J⊥

1 and J∥
2, J

⊥
2 > 0, a hidden half metal with a background

spin texture ↖d− ↘d+ is expected at large electron spin s0 for purely intra-orbital near-

neighbor hopping of holes[S4, S5]. It results in degenerate Fermi surface hole pockets at the

Brillouin zone center. A mean field treatment of the previous Schwinger-boson-slave-fermion

formulation of the two-orbital t-J model at hole doping recovers this half metal groundstate

at large electron spin s0[S4, S5]. The constraint (S2) is enforced on average over the bulk in

such case.

The spin excitation spectrum predicted by the Schwinger-boson-slave-fermion mean field

theory for the hidden half metal coincides with that predicted by the linear spin-wave ap-

proximation at half filling[S3]. (Cf. Figs. 1a and 1b in the Communication.) In particular,

the Schwinger bosons disperse as ωb(k0,k) = [Ω2
∥(k)− Ω2

⊥ (k)]
1/2, where[S4, S5]

Ω∥(k) = s0
∑

n=0,1,2

znJ
′⊥
n − 4

∑

n=1,2

(s0J
′∥
n + t∥nx)[1 − γn(k)],

Ω⊥ (k) = s0
∑

n=0,1,2

znJ
′⊥
n γn(k).

Above, γ0(k) = 1, γ1(k) =
1
2(cos kxa+ cos kya) and γ2(k) =

1
2(cos k+a+ cos k− a), with k± =

kx ± ky, while z0= 1 and z1= 4 = z2 are coordination numbers, and while J ′ = (1− x)2J .

Here, x denotes the concentration of mobile holes per iron site, per orbital. Hidden spinwaves

(k0= π) disperse as ωb, and they exhibit a Goldstone mode at k = 0 with divergent spectral
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weight. True spin waves (k0 = 0) share the same dispersion, but with vanishing spectral

weight at the Goldstone mode. They however have strong spectral weight at cSDWmomenta

(π/a)x̂ and (π/a)x̂, at which ωb(0,k) shows a gap ∆cSDW ∝Re (J0− J0c)1/2. It collapses

to zero at a critical Hund coupling[S5]

−J0c = 2(J⊥
1 − J∥

1)− 4J∥
2− (1− x)− 2s− 1

0 2t∥x, (S3)

where t∥ = t∥1+2t∥2 is negative. Long-range cSDW order is expected at Hund coupling larger

than −J0c.

The one-particle propagator for the hidden half metal can also be computed within

mean field theory[S4]. It shows a pole in frequency that corresponds to coherent hole

propagation[S5], with a dispersion εe(k0,k) = −4
∑

n=1,2t
∥
nγn(k), and with a spectral weight

s0π. The imaginary part of the one-particle propagator also shows peaks that disperse in

energy as εe(k0, 0) + ωb(k0,k). They are intrinsically broad, but they become sharp near

half filling[S6]. Figure 4a in the Communication shows the former coherent hole bands in

addition to the latter (emergent) incoherent bands, which exhibit electron-type dispersion

at cSDW wave numbers (π/a)x̂ and (π/a)ŷ.

At electron doping, on the other hand, a hidden half metal with Néel order per d±

orbital is expected at weak Hund coupling for diagonal frustration J∥
1 > J⊥

1 and J∥
2, J

⊥
2 > 0,

with nearest neighbor inter-orbital electron hopping turned on: t∥1 = 0, t⊥1(x̂) > 0, and

t⊥1(ŷ) = −t⊥1(x̂). Circular electron Fermi surface pockets exist at cSDW wavenumbers with

orbital quantum numbers per Fig. 3b in the Communication. This hidden half metal of

mobile electrons is related to the prior half metal state of mobile holes by the particle-

hole transformation established in the Communication: Fig. 3 and Eqs. (3)-(5). Figure

4b in the Communication shows the coherent electron bands at cSDW wave numbers and

the (emergent) incoherent hole bands at the center of the two-iron Brillouin zone that are

obtained from a direct calculation of the one-electron propagator within the mean field

approximation[S7].
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