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Abstract: Construction site overhead costs are key components of cost estimation in construction
projects. The estimates are expected to be accurate, but there is a growing demand to shorten the
time necessary to deliver cost estimates. The balancing (symmetry) between time of calculation and
satisfaction of reliable estimation was the reason for developing a new model for cost estimation in
construction. This paper reports some results from the authors’ broad research on the modelling
processes in engineering related to estimation of construction costs using artificial intelligence tools.
The aim of this work was to develop a model capable of predicting a construction site cost index
that would benefit from combining several artificial neural networks into an ensemble. Combining
selected neural networks and forming the ensemble-based models compromised their strengths and
weaknesses. With the use of data including training patterns collected on the basis of studies of
completed construction projects, the authors investigated various types of neural networks in order to
select the members of the ensemble. Finally, three models that were assessed in terms of performance
and prediction quality were proposed. The results revealed that the developed models based on
ensemble averaging and stacked generalisation met the expectations of knowledge generalisation
and accuracy of prediction of site overhead cost index. The proposed models offer predictions of cost
in an accepted error range and prove to deliver better predictions than those based on single neural
networks. The developed tools can be used in the decision-making process regarding construction
cost estimation.

Keywords: cost decision making; construction site overhead costs; neural network ensembles;
ensemble averaging; stacked generalisation; cost estimation; construction cost management

1. Introduction

The success of a construction project is determined by obtaining three fundamental goals of a
project—completion within the budget, completion within planned time, and achieving the expected
quality of construction works. For the budget issue, cost estimation is a key process. On one hand,
the estimates are expected to be accurate; on the other hand, there is a growing demand to shorten
the time necessary to deliver cost estimates. These needs justify attempts to employ various tools
in fast cost analyses and modelling. The aim of this paper is to present the results of the research
on artificial neural networks (ANNs) ensembles as artificial intelligence tools for fast analysis and
prediction of site overhead costs. This research is a continuation and extension of previous studies,
including prediction of these costs with the use of multilayer perceptron neural networks [1]. It is
worth mentioning that mathematical tools—which are constantly being developed—are present in the
investigations of a broad variety of problems in the field of construction management and technology.
Some interesting examples are applications of fuzzy sets theory and fuzzy logic in construction
project risk [2–4], the evaluation of a construction safety management system [5], processes in a
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construction enterprise [6], the investigation of flow-shop scheduling problems [7], and using multiple
criteria decision-making methods for supporting the decision process in construction and building
technology [8–10]. There have also been a number of attempts to apply artificial neural networks in
the management of construction projects—predicting the completion period of building contracts [11],
analysing efficiency and productivity in construction projects [12,13], predicting the maintenance
cost of construction equipment [14], supporting bidding decisions [15,16], and facilitating decision
making [17–19]. Comprehensive discussion on innovative solutions in the construction industry can
be found in Reference [20].

The solutions and models that support cost estimates in construction are explored in many
scientific publications. The authors propose a variety of methods, for instance multivariate
regression [21], analysis of the selected cost-effectiveness factors [22], a case-based reasoning
method [23], fuzzy logic [24], and genetic algorithms [25]. In terms of ANNs, there have been attempts
to apply these tools in the field of construction cost management. Some examples are forecasting costs
of motorways in different aspects [26], predicting cost deviations in reconstruction, alteration, and
rebuilding projects [27], estimating the costs of construction projects [28,29], cost estimates of residential
buildings [30], prediction of overhead costs [31,32], cost estimates of buildings’ floor structural frames
as a higher level of aggregation elements of building information model [33], construction cost of
sports fields [34], and shovel capital cost estimation [35].

According to the research presented in Reference [36], the influence of an improper calculation of
the overhead costs can create a significant negative financial situation for the contracting company.
Generally, the building contractor’s overhead costs are divided into two categories—site (project)
overhead costs and company’s (general) overhead costs [37]. The site (project) overhead costs include
items that can be identified with a particular job, but not materials, labour, or production equipment.
The company’s overhead costs are items that represent the cost of doing business and are often
considered fixed expenses that must be paid by the contractor. On the other hand, an overhead
cost of a construction project can be defined as a cost that cannot be identified with or charged to a
construction project or to a unit of construction production [38]. A new classification of construction
companies into competitiveness classes according to the relative value of overhead costs was proposed
in Reference [39]. As far as accuracy is concerned, it is more advantageous to calculate both components
separately—as is done in Great Britain [40], the US, and Canada [41]. The unstable construction market
makes it difficult for construction companies to decide on the optimum level of overhead costs [42].

A number of empirical studies relate to the determination of the project overhead costs.
In Reference [43], it is indicated that the method of work is a critical factor affecting the amount
spent on project overheads. In Reference [44], the authors pointed that the location of the site could
affect a number of project overhead items. In References [31,45,46], research carried out in different
countries allowed for the identification of different factors that should be taken into account in site
(project) overhead costs.

Studies on construction project overheads and factors that influence their estimates report that it
is difficult to determine unambiguously which of the cost components are of the highest importance.
Most attention is paid to a detailed calculation of site overheads; however, it is a time-consuming task
to take into account all of the possible components of site overhead costs [36].

The aim of the authors’ work was to develop a regression model based on the ANNs ensembles,
capable of the prediction of site overhead cost index, and, thus, able to support the estimation of site
overhead costs in construction projects. An additional research objective was to explore the capabilities
of ANNs ensembles in this problem. In the application of ANNs, a very common approach is to
select one network to be the core of a developed model. The selection is preceded by a training and
performance assessment of numerous networks—compare, e.g., Reference [47]. As an alternative,
the employment of a combination of networks i.e., ANNs, offer significant capabilities. Despite their
advantages, the ANNs ensembles are rarely reported on for the prediction of widely understood
construction costs in research papers.
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Site overhead costs can be estimated with the use of preliminaries (compare References [40,41])
—such a method is accurate but time-consuming as all of the cost items must be assessed separately.
On the other hand, index methods (compare Reference [36]) allow for quick estimation of site overhead
costs, however the accuracy depends on the assumption of the index. The novelty of the approach
proposed in this paper relies on the use of knowledge and information from the completed construction
projects to train several neural networks, combine them into an ensemble, and assess the site overhead
costs on the basis of the predictions produced by the ensemble of neural networks.

The paper content includes an introduction and review of the literature in the above section.
Section 2 presents the theoretical background of the problem, and a discussion of the site overhead cost
index prediction as a regression problem is presented in Section 3. In Section 4, the authors propose a
methodology for the implementation of an ensemble of neural networks (with the use of ensemble
averaging and stacked generalisation approaches) for prediction of site overhead cost index, present
the results of the studies, and discuss the results. Section 5 includes a summary and conclusions.

2. Background of The Problem, Methods, and Main Assumptions

The development of the proposed model comes down to solving a regression problem and
approximation of the true regression function, which is the relationship between the site overhead costs
index (as the dependent variable of the model) and a set of selected predictors (as independent variables
of the model). The theory of ANNs is widely presented in the literature—for instance, References [47–49].
ANNs, as mathematical tools applied in regression problems, offer an approximation of the true
regression function g(xj) of multiple variables xj where j = 1, . . . ,n:

g(xj) = f (xj) + ε, (1)

In the equation (1), function f (xj), as an approximation of g(xj), is assumed to be implemented
implicitly by a trained single ANN, selected from a number of trained candidate networks, where
ε denotes an error of approximation. There are two disadvantages of an approach based on the
selection of a single ANN and discarding the rest of the candidate networks [47,48]—the effort
required for the training and assessment of the number of candidate networks is wasted. Moreover,
the generalisation performance of the chosen network is biased with respect to some part of the input
space due to the selection of learning, testing, and validating subsets from the overall number of
patterns available for the training process, structure of the network, its parameters, and conditions of
training process initialisation. An alternative approach is to combine a number of different ANNs that
share common input xj and form an ensemble (the ANNs may differ in their structures, parameters,
and way of training, and the ensemble may even include different kinds of networks). In this paper, the
authors consider two alternative approaches that are based on ensembles of neural networks—the first
approach is termed as ensemble averaging, and the second one stacked generalisation—compare, e.g.,
References [47,48]. In the next three subsections, the authors systematically present the background of
the research and the main assumptions of the model development process.

2.1. Ensemble Averaging

The main assumption for the ensemble averaging approach is that approximation of g(xj) is done
with the use of a linear combination of K-trained ANNs. The formal notation is given by Equation (2):

g
(

xj
)
=

1
K ∑K

i=1 fi(xj) + εi, (2)

where fi(xj) stands for the approximation and εi denotes an error of approximation by i-th neural
network for i = 1, . . . ,K. Such a mechanism (compare Reference [48]), which does not involve input
signals, where individual outputs of ANNs are combined to produce an overall output, belongs to a
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class of static structures. The following assumptions can be made [47]—the sum-of-squares error for
fi(xj) can be given as:

Esos
i = ∑

({
g
(

xj
)
− f

(
xj
)}2
)

, (3)

where Ei
sos corresponds to an integration over xj, weighted by unconditional density p(xj):

Esos
i ≡

∫
. . .
∫

. . .
∫

εi
2(xj

)
p
(

xj
)
dx1 . . . dxj . . . dxn, (4)

The average error by the networks acting individually can be written as

Esos
av =

1
K ∑K

i=1 Esos
i . (5)

Supposing that the output of the ensemble of networks is the average of outputs of K networks
that belong to the ensemble, we have the prediction of the ensemble fens(xj):

fens
(
xj
)
=

1
K ∑K

i=1 fi
(
xj
)
. (6)

Under the assumption that εi(xj) are uncorrelated and have zero mean, the relation of the ensemble
error to the average error of the networks working separately is:

Esos
ens =

1
K2 ∑K

i=1 Esos
i =

1
K

ESOS
av . (7)

In practice, εi(xj) are highly correlated and the reduction of the error is much smaller. Typically,
some useful reduction of the error is obtained, as the ensemble averaging cannot produce an increase
in the expected error:

Esos
ens ≤ ESOS

av . (8)

The expectation is that differently trained networks converge to different local minima on the
error surface, and the overall performance is improved by combining the outputs in some way [47].
The employment of neural networks ensembles may lead to satisfactory results, especially when the
number of training patterns is relatively low or the training data is noisy [47,50].

2.2. Stacked Generalisation

The stacked generalisation approach, (compare Reference [47]), is based on combining several
trained networks together into a two-level model. The general expectation of such an approach is to
improve the generalisation capabilities of the networks acting in isolation. The two-step procedure
includes a training set of K level-0 networks, whose outputs are then used to train a level-1 network.
One can say that the level-0 networks form an ensemble, and the level-1 network acts as a combiner of
the outputs of the networks belonging to the ensemble. The general idea of the approach is presented
in Figure 1.

A stacked generalisation-based model combines the outputs of level-0 networks trained with the
xj inputs; the outputs of level-0 networks can be written down as ŷi = fi(xj), with the use of the level-1
network to give the final output. Formally the model can be given as

g(xj)=h(fi(xj))+εsg. (9)

Consequently, predictions on new data is also a two-step procedure. They are made by presenting
new input data to the level-0 networks and computing their outputs, which are then presented to the
level-1 network which computes the final output. The general suggestion for the stacked generalisation
approach is that the ensemble of level-0 networks should consist of various networks that differ from
each other, whilst the level-1 network should have a relatively simple structure [47].
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3. Construction Site Overhead Cost Index Prediction as a Regression Analysis
Problem—Assumptions for Ensemble Averaging and Stacked Generalisation

The prediction of site overhead cost index by the neural networks ensemble and ensemble
averaging approach can be formally given with the following Equations (10) and (11):

y =
1
K ∑K

i=1 fi(xj) + εi, (10)

ŷens =
1
K ∑K

i=1 fi(xj), (11)

where y—real life values of site overhead cost index (dependent variable), ŷens—values of y predicted
by the ensemble of neural networks, fi—the i-th mapping function implemented implicitly by the i-th
neural network belonging to an ensemble, xj—dependent variables, input shared by all of the members
of the ensemble for j = 1, . . . ,m, εi—error of approximation by the i-th member of the ensemble for
i = 1, . . . , K.

On the other hand, the prediction by neural networks ensemble and stacked generalisation
approach is denoted with Equations (12) and (13):

y = h
(

fi
(
xj
))

+ εsg, (12)

ŷsg = h
(

fi
(

xj
))

, (13)

where y—as in (11), ŷsg—values of y predicted by the stacked generalisation-based two-level model,
h—the mapping function implemented implicitly by level-1 neural network, fi—the i-th mapping
function implemented implicitly by i-th level-0 neural network, xj—as in (11), and εsg—the error of
approximation by the model.

The relationship between the set of selected predictors and the site overhead cost index was
investigated by the authors. Eleven independent variables of the model were selected on the basis
of studies of literature [28,31,46] and investigations of the number of projects completed in Poland.
The training data included samples of real-life values of dependent variables, y, and corresponding
vectors of dependent variables, xj. The value of the dependent variable in the p-th sample (p = 1,
. . . ,143) was calculated as follows:

yp = SOCind
p =

SOCp

LCp + MCp + ECp + SCp · 100%, (14)
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where SOCind
p—site overhead costs index, SOCp—site overhead costs observed in reality, LCp—labour

costs observed in reality, MCp—material costs observed in reality, ECp—equipment costs observed
in reality, and SCp—subcontractors’ costs observed in reality for the p-th observation (sample).
Some exemplary data, including cost components present in the Equation (13), in thousands of
Euros, and corresponding site overhead cost indexes, are presented in Table 1.

Table 1. Exemplary values of site overhead costs index.

p SOCp LCp MCp ECp SCp SOCind
p

11 450.00 3828.60 4183.50 336.00 1818.40 4.4%
37 289.00 1693.00 1564.00 85.00 0.00 8.6%
72 812.54 3393.91 2893.45 564.30 5146.69 6.8%
99 217.60 382.36 514.23 48.52 547.43 14.6%

Independent variables of the model were selected on the basis of studies of the literature and
investigations of the number of projects completed in Poland. As a result, a set of selected independent
variables was proposed; these variables were denoted as xj, where j = 1, . . . ,11. Three variables brought
to the model information about the types of work that were executed in the project were:

• x1—types of work—general construction works,
• x2—types of work—installation works,
• x3—types of work—engineering works.

Another four variables brought to the model information about the construction site location
were:

• x4—construction site location—in the city centre,
• x5—construction site location—outside the city centre,
• x6—construction site location—non-urban spaces,
• x7—distance between the construction site and the company’s office.

One of the variables brought to the model information about the duration of construction works was:

• x8—overall duration of construction works.

Another two variables brought to the model information about the execution of works in winter
and about the subcontracted works were:

• x9—relationship between the amount of works performed in winter to the total amount of works,
• x10—relationship of the amount of works performed by subcontractors to the total amount

of works.

The last variable brought to the model information about the main contractor was:

• x11—size and necessary potential of the main contractor.

(When compared to the earlier authors’ studies on the problem [1,32], the set of ten independent
variables has been expanded. Thorough review of available data, which was collected in the earlier
phases of the research, allowed to select an additional variable which brings to the model information
about the capabilities of the contractor - namely its size and potential.)

Variables x1–x6 were of the nominal type. A binary method of coding was applied in the case of
x1, x2 and x3—their values range was 0 or 1. In the case of x4, x5 and x6—a “1 of n” method of coding
was applied—the range of values, considered for the three variables altogether, was 1, 0, 0 or 0, 1, 0 or
0, 0, 1.

Variables x7–x10 were of the quantitative type, whereas x11 was of the nominal type.
A pseudo-fuzzy scaling method of coding was applied for transformation of the original values



Symmetry 2019, 11, 411 7 of 18

or information into numerical values into the range 0.1–0.9 in the case of the variables presented in
Table 2, but for the variable x9 the values were scaled into the range 0.0–1.0. The transformation for
these variables is presented in Table 2. The rationale for the transformation was to provide a common
scale for all of the variables.

Table 2. Transformation of the descriptive values into the numerical values for variables x7–x11.

Variable Description Descriptive Values Numerical Values

x7 distance
up to 20 km 0.1

more than 20 km 0.9

x8 duration of construction works
up to 6 months 0.1

between 6 and 12 months 0.5
more than 12 months 0.9

x9
share of the amount of works

executed in winter

up to 10% 0
between 10% and 20% 0.1
between 20% and 40% 0.3
between 40% and 60% 0.5
between 60% and 80% 0.7
between 80% and 90% 0.9

more than 90% 1

x10
share of subcontractors in the total

amount of works

up to 20% 0.1
between 20% and 50% 0.5

between 50% and 100% 0.9

x11
size and potential of the main

contractor

low 0.1
average 0.5

high 0.9

The database that included 143 samples was built on the basis of a survey which was completed by
Polish contractors. The survey investigated the factors that influence site overhead costs and the scope
and complexity of construction works for completed building projects. The studies of the returned
surveys resulted in gathering and ordering data used in the process of ANNs training. Table 3 presents
some samples of the training data; exemplary records from the database are given.

Table 3. Exemplary samples of the training data.

p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y

7 1.00 0.00 0.00 0.00 1.00 0.00 0.90 0.50 0.00 0.10 0.50 8.2%
29 1.00 1.00 1.00 0.00 0.00 1.00 0.90 0.10 0.90 0.10 0.90 12.8%
53 1.00 1.00 1.00 0.00 1.00 0.00 0.10 0.50 0.30 0.90 0.50 4.9%
73 1.00 0.00 0.00 1.00 0.00 0.00 0.90 0.50 0.10 0.10 0.10 4.4%
82 1.00 1.00 1.00 0.00 1.00 0.00 0.10 0.10 0.10 0.10 0.10 6.1%

105 1.00 0.00 0.00 0.00 1.00 0.00 0.10 0.10 0.10 0.50 0.10 4.2%
117 0.00 0.00 1.00 0.00 1.00 0.00 0.10 0.10 0.50 0.50 0.50 9.7%

The strategy of the models’ development, as well as the assumptions about the training, testing,
and performance analysis, are explained in the next section.

4. Models’ Development, Results, and Discussion

4.1. Models’ Development Strategy

The strategy of the model development included conducting multiple training and testing of a
number of different types of single ANNs as candidates to become members of the ensemble, forming
the ensemble, and then investigating the two approaches discussed earlier. The strategy is presented
schematically in the chart in Figure 2 and then discussed in detail.
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The whole set of collected data was divided into two main subsets used for training and
testing purposes. The testing subset, later referred to as T, was selected carefully to be statistically
representative for the whole data collection and included 20% of the samples from the whole set of
collected data. The data belonging to this subset did not take part in the training of ANNs and was
used for the purposes of examination of single ANNs, as well as the ensemble models built upon the
ensemble averaging and stacked generalisation approaches. Samples belonging to the subset T play
the role of new cases in prediction performance analysis as well.

The remaining data was used for training i.e., for supervised learning and validating of single
ANNs candidates to become members of the ensemble. Later, these subsets are referred to as L and V,
respectively, whilst the whole training subset is referred to as L&V. The strategy involved division of
the remaining data in the relation L/V = 80%/20%, repeated five times, so the five folds of data were
available for training purposes. Moreover, each of the samples belonging to the L&V subset took part
in supervised learning in four folds and in validating in one fold, so the networks for each fold are
trained with data which varies in terms of falling different samples either to the L or V subsets.

Another key assumption was to select one ANN for each of the folds of L and V subsets to become
the member of the ensemble. The selection was made on the basis of two-step ANNs’ performance
analysis and assessment within the sets of networks trained with the use of each fold of L and V
subsets. The rationale for such assumption was not only to choose the best networks but also to
minimise the risk that the prediction of the model is biased due to the sampling of the L and V subsets.
The employed error function and criteria of the trained networks assessment are presented in Table 4.
For the purposes of performance assessment and analysis of single ANNs, Pearson’s correlation
coefficient (15) and error measures (16)–(20) were calculated for the L, V, L&V, and T subsets.
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Selection of the ensemble members was preceded by an investigation of a number of various
multilayer perceptron (MLP) ANNs with one hidden layer, whose structures included 11 neurons in
the input layer, h neurons in the hidden layer, and 1 neuron in the output layer. The choice of the MLP
networks relied on their applicability to regression problems (compare References [29,49]).

The networks varied in the number of neurons in the hidden layer (h ranged from 4 to 11), the
types of employed activation functions—both in the neurons of the hidden and output layer (sigmoid,
hyperbolic tangent, exponential, and linear function) and the initial weights of the neurons—at the
beginning of the training process. The Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) was used
for training individual networks—the details about the algorithm can be found in the literature, e.g.,
Reference [47]. The choice of the training algorithm was dictated by its availability in the software that
were used for neural simulations. As one of the three available algorithms, BFGS offered the fastest
performance and best convergence of training and testing processes for the investigated problem.
A variety of different combinations of employed activation functions and numbers of neurons in
hidden layers that made, altogether, over 100 networks were trained for each of the five folds of L and
V subsets.

The first step of selection included an assessment of correlation coefficient between the expected
and predicted output and root mean squared error (RMSE) values. From the set networks, which
fulfilled the conditions of RL > 0.90, RV > 0.90, RL&V > 0.90, and RT > 0.90, the authors initially
selected 20 networks for which the differences between RMSEL, RMSEV, RMSEL&V, and RMSET were
the smallest.

The second step of the selection relied on a thorough review of the initially selected networks for
each of the five folds of L and V subsets. The authors carried out a residual analysis, in terms of both
measures presented in Table 4, and distributions, dispersions, and values of errors for the samples
belonging to the training and testing subsets.

Table 4. Error function and models’ performance assessment criteria.

Description Equation Used As

sum-of-squares error function Esos =
1
2 ∑

p∈L
(yp − ŷp)2

(15) error function

Pearson’s correlation coefficient R =
cov(y,ŷ)

σyσŷ
(16)

criteria for general assessment of
trained ANN’s quality (calculated for L,

V, L&V, T subsets separately,
cov(y,ŷ)—covariance between y and ŷ,

σy—standard deviation for y,
σŷ—standard deviation for ŷ)

root mean squared error RMSE =
√

1
c ∑

p
(yp − ŷp)2

(17) criteria for assessment of quality and
performance of both trained ANNs and
developed models based on ensembles

(calculated for L, V, L&V, T subsets
separately, c stands for L, V, L&V, T

subsets cardinality, p stands for index of
a training pattern)

mean absolute percentage error MAPE = 100%
c ∑

p

∣∣∣ yp−ŷp

yp

∣∣∣ (18)

absolute percentage error APEp =
∣∣∣ yp−ŷp

yp

∣∣∣·100% (19)
maximum of absolute

percentage error APEmax = max
(∣∣∣ yp−ŷp

yp

∣∣∣·100%
)

(20)

4.2. Results and Discussion

A review and comparison of the network’s performance, based on the methodical analysis,
allowed for finally choosing five networks—one for each fold of L and V subsets. The five selected
networks—later referred to as ANN1, ANN2, ANN3, ANN4, and ANN5—are presented in Table 5.
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Table 5. Details of the five networks selected to be the members of the ensemble.

ANN Structure Number of Neurons
in the Hidden Layer

Hidden Layer
Activation Function

Output Layer
Activation Function Number of Training

Epochs

ANN1 MLP 11-10-1 10 hyperbolic tangent hyperbolic tangent 146
ANN2 MLP 11-10-1 10 hyperbolic tangent hyperbolic tangent 61
ANN3 MLP 11-6-1 6 exponential linear 109
ANN4 MLP 11-8-1 8 hyperbolic tangent exponential 67
ANN5 MLP 11-8-1 8 logistic hyperbolic tangent 73

Table 6 presents the results of training and testing of the five selected networks acting separately.
The results in the Table are given according to the criteria presented in Table 4. The results in Table 6
are satisfying, however one can easily see that there are some differences between the performances of
the five networks.

Figure 3 presents the scatterplot of the expected and predicted values of SOCind, points of
coordinates (yp, ŷp), for the training and testing subsets drawn for the five selected networks acting
individually. One can see that, in terms of the criteria shown in Table 4 and according to the results
presented in Table 5, the performance of the three networks acting individually was similar and the
errors were comparable. However, Figure 3a,b and the analysis of the location and the distribution of
the points in the graphs reveal that the predictions for will depended strongly on the choice of a single
network acting separately. Although most of the points were distributed along the line of a perfect fit,
some points (marked with the ellipses) were placed outside of the cone delimited by percentage errors
equal to +25% and −25%.

Table 6. Training results and performance of the selected networks.

ANN
R RMSE MAPE

Training Testing Training Testing Training Testing

L V L&V T L V L&V T L V L&V T

ANN1 0.9898 0.9662 0.9850 0.9731 0.0112 0.0206 0.01308 0.0181 6.0% 18.3% 8.4% 10.18%
ANN2 0.9861 0.9319 0.9761 0.9729 0.0131 0.0277 0.01643 0.0187 8.7% 14.5% 9.9% 10.19%
ANN3 0.9808 0.9645 0.9778 0.9804 0.0154 0.0198 0.01584 0.0159 10.4% 9.6% 11.3% 12.70%
ANN4 0.9868 0.9555 0.9737 0.9751 0.0128 0.0227 0.01482 0.0175 10.2% 13.1% 10.8% 13.69%
ANN5 0.9855 0.9278 0.9807 0.9881 0.0132 0.0296 0.01724 0.0123 11.1% 17.8% 12.5% 9.15%
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Table 7 presents the maximal values of absolute percentage errors (20) calculated for the five
selected ANNs. The values in Table 7 reveal significant errors of predictions, which also justify
employment of ensembles of neural networks in the problem.

Table 7. APEmax errors obtained for the five selected networks.

ANN
APEmax

Training Testing

L V L&V T

ANN1 65.9% 64.7% 65.9% 76.1%
ANN2 80.7% 45.2% 80.7% 33.4%
ANN3 73.2% 91.8% 91.8% 43.2%
ANN4 50.6% 64.4% 64.4% 70.1%
ANN5 53.3% 79.1% 79.1% 26.6%

The five chosen networks were combined to form the ensemble. The rules presented
earlier—Equations (10) and (11)—were employed for implementation of the ensemble averaging
approach and the outputs of the model were computed as well as the errors and error measures.
This model is later called ENS AV.

To complete the process of model development based on the stacked generalisation approach, the
authors investigated a number of artificial neural-network candidates to become the level-1 networks.
The investigated networks’ structures included five neurons in the input layer (as a consequence of the
selection of five ensemble member networks), h neurons in the hidden layer, and one neuron in the
output layer. The number of neurons in hidden layer h ranged from one to three, as the structure of the
level-1 network was supposed to be simple (compare Section 2.2). The types of employed activation
functions and training algorithm were the same as in the case of the training ensemble candidate
networks (as presented previously in Section 3). Training patterns that included outputs of the five
ensemble member networks as the inputs of level-1 networks, and the accompanying real-life values
of SOCind as the expected outputs, were divided randomly for each investigated network into the
learning and validating subset in the proportion L/V = 60%/40%. The investigated networks varied
also in the initial weights of the neurons at the beginning of the training process. Altogether, around
100 networks were trained and examined. For the purposes of testing, the authors used the T subset,
which was selected in the initial stage of the research (as presented previously in Section 3). The criteria
of two-step selection of the level-1 networks were similar as in the case of ensemble candidate networks
(as presented previously in Section 3). The final choice of two level-1 networks, namely MLP 5-2-1
and MLP 5-3-1, allowed for the introduction of two alternatively stacked generalisation-based models.
The final choice of the two above-mentioned level-1 networks, and further discussion of two alternative
models based on stacked generalisation, was due to the comparable quality of these models. These
models are later called ENS SG1 and ENS SG2, respectively. The details of the selected level-1 networks
are presented in Table 8.

Table 8. Details of the two level-1 networks selected for the stacked generalisation-based models.

Model Structure
Number of

Neurons in the
Hidden Layer

Hidden Layer
Activation
Function

Output Layer
Activation
Function

Number of
Training
Epochs

ENS SG1 MLP 5-2-1 2 exponential linear 40
ENS SG2 MLP 5-3-1 3 exponential exponential 51

All three proposed models based on the ensemble of networks, namely ENS AV, ENS SG1, and
ENS SG2, were assessed in terms of performance and prediction quality. The overall results appear
together in Table 9. For the purposes of performance assessment and analysis of ensemble averaging



Symmetry 2019, 11, 411 12 of 18

and stacked generalisation-based models, Pearson’s correlation coefficient (16) and error measures
(17), (18), (19), and (20) were calculated for L&V and T subsets.

Table 9. Performance measures for the three developed models based on the ensembles of networks.

Model
R RMSE MAPE APEmax

Training Testing Training Testing Training Testing Training Testing

L&V T L&V T L&V T L&V T

ENS AV 0.9869 0.9899 0.0126 0.0112 8.3% 7.1% 42.6% 23.4%
ENS SG1 0.9853 0.9878 0.0135 0.0127 9.6% 9.2% 40.7% 26.7%
ENS SG2 0.9914 0.9922 0.0103 0.0098 7.3% 6.3% 23.2% 18.5%

When the values in Table 9 are collated with values in Tables 5 and 6, the improvements in error
measures can be seen easily. The performance of all three models based on the ensembles of networks
is better when compared with the performance of the networks acting in isolation. The most evident
improvement is achieved for APEmax.

Figures 4–6 depict scatterplots of the expected and predicted values of SOCind for the ENS AV,
ENS SG1, and ENS SG2 models. Figures 4–6 present the points of coordinates (yp, ŷp

ens) for the training
and testing subsets separately. When compared to Figure 3, these graphs show that combining the five
selected ANNs allowed for the compensation of errors made by the ANNs acting in isolation in the
case of the ENS AV as well as the ENS SG1 and ENS SG2 models. Although an improvement has been
achieved in the case of all three introduced models, one can see that the best performance is provided
by ENS SG2, where all of the points are distributed within the cone of acceptable errors. In the case of
ENS AV and ENS SG1, there are single points located outside of the cone.
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Figures 7–9 depict frequencies and distributions of APEp errors computed for the training and
testing subsets for models based on ensembles of networks. The errors have been accumulated and
counted in five intervals, whose ranges equalled 5%; one interval accumulated errors greater than 25%:

• interval 1: 0% ≤ APEp < 5%,
• interval 2: 5% ≤ APEp < 10%,
• interval 3: 10% ≤ APEp < 15%,
• interval 4: 15% ≤ APEp < 20%,
• interval 5: 20% ≤ APEp < 25%,
• interval 6: APEp ≥ 25%.

The columns in the Figures 7–9 show the percentage frequencies of the errors that have fallen
into one of the intervals. The polylines show the distribution of the errors (cumulative frequencies
according to the accepted order of intervals). In Figures 7–9, one can see that, in the case of the ENS
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AV and ENS SG1, only a few APEp errors (19) are greater than 25%, and in the case of ENS SG2, none
of them fall into this range. On the contrary, for networks acting separately, the significant number of
errors is greater than 25%. These results can be explained through the analysis of the APEp errors for
the networks acting separately. For the networks acting separately (ANN1, ANN2, ANN3, ANN4,
ANN5), many of the errors APEp belonging to the interval 1 were relatively small and close to 0%.
On the other hand, these small errors were accompanied by a significant number of errors APEp ≥ 25%,
and high values of APEmax (compare Table 7). In the case of the ensemble-based models, these errors
have been compensated due to the ensemble averaging (ENS AV) or stacked generalisation (ENS SG1,
ENS SG2).Symmetry 2019, 11, x FOR PEER REVIEW  15 of 19 

 

 
Figure 7. Frequencies and distributions of absolute percentage errors for the ENS AV model 
computed for the training and testing subsets. 

 
Figure 8. Frequencies and distributions of absolute percentage errors for the ENS SG1 model 
computed for the training and testing subsets. 

Figure 7. Frequencies and distributions of absolute percentage errors for the ENS AV model computed
for the training and testing subsets.

Symmetry 2019, 11, x FOR PEER REVIEW  15 of 19 

 

 
Figure 7. Frequencies and distributions of absolute percentage errors for the ENS AV model 
computed for the training and testing subsets. 

 
Figure 8. Frequencies and distributions of absolute percentage errors for the ENS SG1 model 
computed for the training and testing subsets. 

Figure 8. Frequencies and distributions of absolute percentage errors for the ENS SG1 model computed
for the training and testing subsets.



Symmetry 2019, 11, 411 15 of 18

Symmetry 2019, 11, x FOR PEER REVIEW  16 of 19 

 

 
Figure 9. Frequencies and distributions of absolute percentage errors for the ENS SG2 model 
computed for the training and testing subsets. 

The compensation resulted in the collection of most of the prediction errors in the first five 
intervals. One cost of this compensation is the decrease of the number of small errors, close to 0, in 
the first interval. The benefit of the compensation, however, is the improvement of the overall 
prediction performance and better knowledge generalisation. As mentioned previously, one can 
easily see that the best performance is offered by the ENS SG2 model as there were no errors APEp ≥ 
25%. 

The analysis of the research results leads to the conclusion that the employment of only one of 
the five selected networks (as presented in Table 5) to support the prediction of SOCind would burden 
the predictions with the choice of a network—this is confirmed by the distribution of points that 
represent expected and predicted values (yp, ŷp) in Figure 3. 

On the other hand, combining these five networks to form an ensemble compromises the 
strengths and weaknesses of the five ANNs—for some data, certain single-acting networks offered 
good predictions, whilst for others, there were weak predictions. Combining these networks into an 
ensemble allows for synergy. The decrease in APEmax, as well as more stable predictions, are the most 
beneficial from employment of the ensembles in the models. Furthermore, a risk of errors exceeding 
the critical level of 25%, in terms of percentage errors is reduced. These benefits have been achieved 
at some cost, mainly due to compensation of very small and very high errors offered by certain 
networks acting separately for certain training and testing patterns. However, the compensation of 
the errors from the ensemble-based models reduces the unwanted oversensitivity of the networks 
acting separately to certain training patterns. 

5. Summary and Conclusions 

The authors developed three original models based on ensembles of neural networks aimed at 
the prediction of site overhead cost index for construction projects. One of the models employed 
ensemble averaging and two of the models employed stacked generalisation. The developed models 
are capable of predicting the site overhead cost index with a satisfactory accuracy and, thus, 
supporting estimates of site overhead costs. In the light of the presented research, the general 
conclusion is that the employment of the ensemble of neural networks to the models proved to be 
superior over the approach based on the employment of a single neural network. Moreover, the 
effort—which is unavoidable in the training, verifying, and selecting number of networks of similar 
quality—is not wasted. In practical terms, the prediction using the ensemble averaging is simple—it 
needs an averaging of the outputs of networks belonging to the ensemble. On the other hand, stacked 

Figure 9. Frequencies and distributions of absolute percentage errors for the ENS SG2 model computed
for the training and testing subsets.

The compensation resulted in the collection of most of the prediction errors in the first five
intervals. One cost of this compensation is the decrease of the number of small errors, close to 0, in the
first interval. The benefit of the compensation, however, is the improvement of the overall prediction
performance and better knowledge generalisation. As mentioned previously, one can easily see that
the best performance is offered by the ENS SG2 model as there were no errors APEp ≥ 25%.

The analysis of the research results leads to the conclusion that the employment of only one of the
five selected networks (as presented in Table 5) to support the prediction of SOCind would burden the
predictions with the choice of a network—this is confirmed by the distribution of points that represent
expected and predicted values (yp, ŷp) in Figure 3.

On the other hand, combining these five networks to form an ensemble compromises the strengths
and weaknesses of the five ANNs—for some data, certain single-acting networks offered good
predictions, whilst for others, there were weak predictions. Combining these networks into an
ensemble allows for synergy. The decrease in APEmax, as well as more stable predictions, are the most
beneficial from employment of the ensembles in the models. Furthermore, a risk of errors exceeding
the critical level of 25%, in terms of percentage errors is reduced. These benefits have been achieved
at some cost, mainly due to compensation of very small and very high errors offered by certain
networks acting separately for certain training and testing patterns. However, the compensation of the
errors from the ensemble-based models reduces the unwanted oversensitivity of the networks acting
separately to certain training patterns.

5. Summary and Conclusions

The authors developed three original models based on ensembles of neural networks aimed at
the prediction of site overhead cost index for construction projects. One of the models employed
ensemble averaging and two of the models employed stacked generalisation. The developed models
are capable of predicting the site overhead cost index with a satisfactory accuracy and, thus, supporting
estimates of site overhead costs. In the light of the presented research, the general conclusion is that the
employment of the ensemble of neural networks to the models proved to be superior over the approach
based on the employment of a single neural network. Moreover, the effort—which is unavoidable in
the training, verifying, and selecting number of networks of similar quality—is not wasted. In practical
terms, the prediction using the ensemble averaging is simple—it needs an averaging of the outputs of
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networks belonging to the ensemble. On the other hand, stacked generalisation needs some additional
computational effort that includes the training and selection of level-1 networks.

In the proposed approach, the authors employed an ensemble of neural networks to be the
core of all three models. All of the proposed models consist of five different MLP networks, chosen
from over 500 trained networks (over 100 networks were trained and investigated for each of five
folds of training data). The five networks vary in their structure, employed activation functions, and
initial conditions of training processes. The performance of the five chosen networks is comparable.
However, the predictions made by the networks acting separately are burdened with the conditions of
the training processes, sampling of learning and validating, and the specificity of each of the networks.
Combining the five networks together leads to improvements in predictions due to compromising
the strengths and weaknesses of the five networks. The prediction of the site overhead cost index
using the ensemble-based models allowed for compensation of the errors made by the single networks.
The predictions based on the three models for which the proposed ensemble is a core are more stable,
and the risk of exceeding a critical range of errors is minimised.

The ensembles of neural networks proved their superiority over single neural networks acting
in isolation. MAPE testing errors for the five networks acting in isolation ranged between 9.15% and
13.69%, whereas APEmax ranged between 26.6% and 76.1%. In the case of the proposed ensembles of
networks, both MAPE and APEmax errors for testing were lower; values of MAPE ranged between
6.3% and 9.2%, whereas values of APEmax ranged between 18.5% and 23.4%. The quality of the
ensemble-based model is also visible in the distribution of errors for each of them—more than 90% of
the APE testing errors were smaller than 25%.

The three developed models, namely ENS AV (based on the ensemble averaging approach) and
ENS SG1 and ENS SG2 (based on stacked generalisation approach), offer comparable prediction quality
and performance, however the best results were achieved for ENS SG2. ENS SG2 is a two-level model
that employs the five selected ANNs as the level-0 networks and simple ANN as a level-1 network.

The authors’ findings, justified by the analysis of the models’ performance, is that the developed
models are capable of supporting estimation of site overhead costs in building construction projects.
In the case of other types of constructions, e.g., bridges, roads, infrastructure, etc., the specificity of the
projects must be taken into account and separate models must be developed.

Further research will include studies on the development of models, supporting the cost
estimation process on different levels (for certain facilities, construction works, and cost components),
that are based on the concept of ensembles of neural networks.
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20. Kapliński, O. Innovative solutions in construction industry. Review of 2016–2018 events and trends.
Eng. Struct. Technol. 2018, 10, 27–33. [CrossRef]

21. Trost, S.M.; Oberlender, G.D. Predicting accuracy of early cost estimates using factor analysis and multivariate
regression. J. Constr. Eng. Manag. 2003, 129, 198–204. [CrossRef]
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