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Abstract: In this article, unidirectional flows of fractional viscous fluids in a rectangular channel
are studied. The flow is generated by the shear stress given on the bottom plate of the channel.
The authors have developed a generalized model on the basis of constitutive equations described by
the time-fractional Caputo–Fabrizio derivative. Many authors have published different results by
applying the time-fractional derivative to the local part of acceleration in the momentum equation.
This approach of the fractional models does not have sufficient physical background. By using
fractional generalized constitutive equations, we have developed a proper model to investigate exact
analytical solutions corresponding to the channel flow of a generalized viscous fluid. The exact
solutions for velocity field and shear stress are obtained by using Laplace transform and Fourier
integral transformation, for three different cases namely (i) constant shear, (ii) ramped type shear and
(iii) oscillating shear. The results are plotted and discussed.

Keywords: viscous fluid; Caputo–Fabrizio time-fractional derivative; Laplace and Fourier
transformations; side walls; oscillating shear stress

1. Introduction

The branch of mathematics that studies derivatives and integrals is called calculus, i.e., discussing
integer order derivatives and integrals. When the order of derivatives changes from integer order to real
(non-integer) order a new branch of calculus comes into being, called fractional calculus. Fractional
order derivatives occur in many physical problems for example, frequency-dependent damping
behavior of objects, velocity of infinite thin plate in a viscous fluid, creeping and relaxation functions
of viscoelastic materials, and the control of dynamical systems as mentioned in [1–4]. Fractional
calculus provides more generalized derivatives, and therefore it has more applications as compared
with the classical or integer order derivatives. Fractional differential equations also explain the
phenomena in electrochemistry, acoustics, electromagnetics, viscoelasticity, and material science [5–10].
For the last twenty years, a lot of work has been done on fractional calculus. Some authors [11–13]
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have used the formal definitions of fractional calculus like Riemann–Liouville and Caputo operators.
These definitions provide a strong basis for the modern approach of Caputo and Fabrizio who have
presented the definition without singular kernel [14].

The Caputo–Fabrizio differential operator is used by many authors to obtain exact solutions
concerning real life problems [15–17]. All the benefits of Reimann–Liouville and Caputo definitions
are also included in Caputo–Fabrizio, which is a worthy point of this definition. The Caputo–Fabrizio
definition has been used by different authors in the medical sciences for example, the cancer treatment
model and the flow of blood through veins under the effect of magnetic field [18,19]. Shah et al. [20]
investigated the exact solutions over an isothermal vertical plate of free convectional flow of viscous
fluids by using a definition of the Caputo–Fabrizio time-fractional derivative. Free convectional
time-fractional flow with Newtonian heating near a vertical plate including mass diffusion has been
investigated by Vieru et al. [21].

The effect of side walls over the velocity of a non-Newtonian fluid while the motion is produced
due to the oscillation of the lower plate has been investigated by Fetecau et al. [22]. In addition,
Haq et al. [23] have analyzed the exact solution of viscous fluid over an infinite plate using the
Caputo–Fabrizio fractional order derivatives. Most of the authors have discussed different fluids using
the fractional order differential operator defined by Caputo, Caputo–Fabrizio etc. and published many
interesting results by applying the fractional order definition only to the local part of acceleration.
Henry et al. [24] and Hristov [25,26] have suggested a generalized Fourier law for the thermal heat
flux. It is clear from their discussion that the fractional differential operator has been employed in
the constitutive relation of energy equation, rather than directly using it in the governing equation.
This approach is appealing to mathematical and physical aspects of fluid mechanics. Hameid et al. [27]
applied the definition of the fractional order derivative to the convective part of a constitutive
equation and explained their model in a very interesting way. Vieru et al. [28] have followed the
discussion presented by Hameid et al. [27] by applying the fractional derivative definition in a
constitutive equation.

Keeping in mind all the above discussions, we present this article exploring the effect of side
walls on the motion of an incompressible fluid using generalized fractional constitutive equations and
the Caputo–Fabrizio derivative through a rectangular channel.

2. Problem Formulation

Consider an incompressible fluid, which is viscous in nature, present over an infinite plate
between two parallel side walls that are at right angles to the horizontal plate as shown in Figure 1.
Initially both the plate and fluid are at rest for t = 0, after time t > 0, and the flow is generated by the
shear stress given by τ0 f (t) which engender the velocity as

V = v(y, z, t)i, (1)

where i stands for unit vector.
In the absence of the body forces and the pressure gradient in the flow direction, the linear

momentum equation in the x-direction is:

ρ
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
=

∂τxy

∂y
+

∂τxz

∂z
(2)

Therefore, in our case, the velocity field is the advection terms in Equation (2) that are zero with
initial and boundary conditions as follows:

v(y, z, 0) = 0, f or y > 0 and z ∈ [0, l] ,
v(y, 0, t) = v(y, l, t) = 0 f or y, t > 0 ,

τxy(0, z, t) = µ CFDα
t

∂v(y,z,t)
∂y

∣∣∣
y=0

= τ0 f (t) ,
(3)
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The above relation (Equation (3)), shows the shear stress which is non-trivial, where µ

is dynamic viscosity, υ = µ
ρ , where τ0 shows the constant parameter, and it is assumed

that f (·) is a dimensionless, piecewise, continuous function such that f (0) = 0, v(y, z, t) and
∂v(y,z,t)

∂y → 0 as y→ ∞, z ∈ [0, l] f or t > 0.
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We have the Caputo–Fabrizio derivative operator of order α given by Zafar et al. [29]

CFDα
t [h(t)] =

1
1− α

t∫
0

h′(s) exp
[
−α(t− s)

1− α

]
ds for 0 ≤ α < 1. (4)

In the present paper, we consider the generalized constitutive equations with the Caputo–Fabrizio
time-fractional derivative, namely:

τxy = µ CFDα
t

(
∂v
∂y

)
and τxz = µ CFDα

t

(
∂v
∂z

)
for α ∈ [0, 1). (5)

It is known that any constitutive equation must satisfy the principle of material objectivity,
and therefore it must be frame-invariant with respect to Euclidean transformations. Yang et al. ([30],
Equation (3.1)) have formulated a constitutive equation with fractional derivatives for generalized
upper-convected Maxwell fluids on the basis of the convected coordinate system. They have proven
that the proposed constitutive equation is frame-indifferent and have studied some particular cases of
the proposed equation.

By applying the Laplace transform, the constitutive Equation (5) for the shear stress τxy can be
written in the following equivalent form:

τxy =
1

1− α

∂v
∂y
− α

(1− α)2

t∫
0

exp
(
−α(t− τ)

1− α

)
∂v(y, τ)

∂y
dτ, 0 < α < 1. (6)

Equation (6) is equivalent to the equation studied by Yang et al. ([30], Equation (4.5)), therefore,
the proposed constitutive equations given by Equation (5) satisfy the principle of material objectivity.

3. Problem Solution

Using Equation (5) in Equation (2), applying Laplace transform to the obtained form and
simplifying the result we get:

v(y, z, q) =
υ

(1− α)q + α

[
∂2v(y, z, q)

∂y2 +
∂2v(y, z, q)

∂z2

]
, (7)
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where v(y, z, q) =
∞∫
0

v(y, z, t) exp(−qt)dt is the Laplace transform with respect to t.

Applying the Fourier cosine transform with respect to variable y namely v(ξ, z, q) =
∞∫
0

v(y, z, q) cos(yξ)dy and finite Fourier sine transform with respect to variable z v(ξ, n, q) =

l∫
0

v(ξ, z, q) sin
( nπz

l
)
dz, n = 1, 2, . . ., we obtain:

vsc(ξ, q) =
υ

(1− α)q + α + υ
(

ξ2 + λn
2
) τ0

µ

√
2
π

f (q)
(−1)n − 1

λn
, (8)

where λn = nπ
l and subscript “sc” represents finite Fourier sine and inifinite cosine transforms.

For simplification, Equation (8) can be written as:

vsc(ξ, q) = τ0
µ

1−(−1)n

λn

√
2
π

f (q)
(ξ2+λn

2)
− τ0

µ
1−(−1)n

λn

√
2
π f (q)

×
[

(1−α)q+α

(ξ2+λn
2)[(1−α)q+α+υ(ξ2+λn

2)]

] . (9)

Applying the inverse Laplace transformation, we get:

vsc(ξ, t) = τ0
µ

√
2
π

1−(−1)n

λn

f (t)
(ξ2+λn

2)
+ 1

(1−α)(ξ2+λn
2)

e−A(ξ)t

×
[

τ0
µ

√
2
π

1−(−1)n

λn
(1− α) f •(t) + τ0

µ

√
2
π

1−(−1)n

λn
α f (t)

] , (10)

where A(ξ) =
υ(ξ2+λn

2)+α

1−α .
Applying the inverse Fourier transformation, we find:

v(y, z, t) =
2
π

2
l

τ0

µ

∞

∑
n=1

(−1)n − 1
λn

sin(λnz)

 f (t)
∞∫
0

cos(yξ)

ξ2+λn
2 dξ+ [(1− α) f •(t) + α f (t)]

∞∫
0

cos(yξ)

(ξ2+λn
2)

e−A(ξ)tdξ

, (11)

where m = 2n− 1 and l = 2h. Changing the origin by using z = z* + h,

v(y, z, t) =
2τ0

µπh

∞

∑
n=1

(−1)n+1?cos(γmz∗)
γm

 f (t)
∞∫
0

cos(yξ)
ξ2+γm2 dξ+ [(1− α) f •(t) + α f (t)]

∞∫
0

cos(yξ)
(ξ2+γm2)

e−A(ξ)tdξ

 (12)

ignoring the * notation, keeping in view the following result:

∞∫
0

cos(ax)
b2 + x2 dx =

π

2b
e−ab, f or a > 0 Re(b) > 0,

and putting in Equation (11) we get:

v(y, z, t) = 2
h

∞
∑

n=1
(−1)n+1 τ0

µ
cos γmz

γm
f (t) e−yγm

γm
− 4

πh

∞
∑

n=1
(−1)n+1 τ0

µ
cos γmz

γm

×
[

∞∫
0

t∫
0

cos(yξ)
ξ2+γm2 f •(t− τ)e−A(ξ)τdτdξ + α

1−α

∞∫
0

t∫
0

cos(yξ)
ξ2+γm2 f •(t− τ)e−A(ξ)τdτdξ

]
where γm = (2n− 1) π

2h

. (13)
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4. Graphical Illustration and Discussions

After finding the general solution for the velocity of the fluid, we discuss three different cases
which are very useful in engineering. The obtained results are presented graphically for the three cases.
Figures 2–5 show different profiles of velocity by taking case I (constant shear) into consideration.
Figures 6–9 show the behavior of fluid velocity for case II (ramped type shear), and Figures 10–12
show the same discussion for Case III (oscillating shear).
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4.1. Case I (Constant Shear)

Taking f (t) = H(t), where H(t) is Heaviside unit step function we find the velocity profile as:

v(y, z, t) = 2
h

∞
∑

n=1
(−1)n+1 τ0

µ
cos γmz

γm

 e−y γm + (1− α)(t− α)

×e−yA Bn cos(yBn)+An sin(yBn)

cn

(√
bn

4+cn2
)


− 4

πh

∞
∑

n=1
(−1)n+1 τ0

µ
cos γmz

γm

[
∞∫
0

(
e−A(ξ)t−1
(A(ξ))2 − αe−A(ξ)t

(1−α)A(ξ)

)
cos(yξ)
ξ2+γm2 dξ

] , (14)

Taking the following identity into account:

∞∫
0

cos(yξ)(
ξ2 − bn

2
)2

+ cn2
=

π

2cn
e−yA Bn cos(yBn) + An sin(yBn)√

bn
4 + cn2

,

where 2An
2 =

√
bn

4 + cn2 + bn
2 and 2Bn

2 =

√
bn

4 + cn2 − bn
2 in which: bn =

υγm
2+ α

2
υ and cn =

υγm
4+αγm

2

υ − bn
2.

Figure 2 shows that as the value of α (0 < α < 1) is increasing, the fluid velocity is decreasing.
Figure 3 shows the velocity profiles for different times, which implies that as time passages the fluid
velocity increases in constant case. Figure 4 shows the profiles of velocity for different values of h,
if we increase the distance between side walls the fluid velocity will increase while keeping the other
parameters constant. Figure 5 shows the curve of Equation (14) is overlapping as that of [29] constant
case if we increase the distance between the side walls to h ≥ 1.5, which gives our result for constant
case more validity.

4.2. Case II (Ramped Type Shear)

Taking f (t) = tH(t), we find the velocity profile as:

v(y, z, t) = 2
d

∞
∑

n=1
(−1)n+1 τ0

µ
cos γmz

γm
e−y γm

γm
+ 2

h

∞
∑

n=1
(−1)n+1 τ0

µ
cos γmz

γm
e−y A

cn

× Bn cos(yBn)+An sin(yBn)(√
bn

4+cn2
) [

t(2− α)− t2(1− α)
]
− 4

πh

∞
∑

n=1
(−1)n+1

× τ0
µ

cos γmz
γm

[
∞∫
0

(
2 + α

(1−α)

)
e−A(ξ)t

A(ξ)
+ 1

(A(ξ))2

]
cos(yξ)
ξ2+γm2 dξ.

(15)

Figure 6 shows that by increasing the value of the differential parameter the velocity of the fluid
decreases. Figures 7 and 8 show similar behavior of t and h, as observed in Figures 3 and 4, whereas in
Figure 9, we calculated the value of h in order to validate our result in case of ramped type shear.

4.3. Case III (Oscillating Shear Stress)

Taking f (t) = sin(ωt)H(t), in Equation (13) we get the velocity profile as:

v(y, z, t) =
∞
∑

n=1
(−1)n+1 τ0

µ
cos γmz

γm

[
2
h sin(ωt) e−y γm

γm
− 4

πh

∞∫
0

{
1

(A(ξ))2+ω2

×
(
−A(ξ)e−A(ξ)t + A(ξ) cos(ωt) + ω sin(ωt) + α

1−α

×
(

ωe−A(ξ)t + ω cos(ωt) + A(ξ) sin(ωt)))} cos(yξ)
ξ2+γm2 dξ

]
.

(16)

Figures 10 and 11 show opposite behavior as compared to those of constant and ramped type
shear for α and time t parameters, and Figure 12 shows the same behavior as the previous two cases
for parameter h, i.e., distance between side walls.
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5. Conclusions

This article is presented to obtain the exact solution in general form for the velocity of the fluid
present over an infinite plate between two side walls using the definition of the Caputo–Fabrizio
of fractional order differential operator, while the motion is produced due to shear stress as τ0f (t).
The results are obtained by using Laplace and Fourier transformations for three different cases:

1. Constant shear;
2. Ramped type shear;
3. Oscillating shear.

After the above discussion we have concluded the following results.
Firstly, keeping the condition on shear the response of the fractional fluid velocity is very quick,

as compared with that of ordinary fluid velocity for all the cases. Secondly, in fractional fluid a
small change in time parameter shows a clear difference for the profiles in all the cases listed above.
Thirdly, for the above cases there are some values of h at which the motion of the fluid is unaffected by
side walls.
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