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Abstract: Four-fermion interaction models are often used as simplified models of interacting fermion
fields with the chiral symmetry. The chiral symmetry is dynamically broken for a larger four-fermion
coupling. It is expected that the broken symmetry is restored under extreme conditions. In this paper,
the finite size effect on the chiral symmetry breaking is investigated in the four-fermion interaction
model. We consider the model on a flat spacetime with a compactified spatial coordinate,MD−1⊗ S1

and obtain explicit expressions of the effective potential for arbitrary spacetime dimensions in the
leading order of the 1/N expansion. Evaluating the effective potential, we show the critical lines
which divide the symmetric and the broken phase and the sign-flip condition for the Casimir force.

Keywords: dynamical symmetry breaking; four-fermion interaction model; finite size effect;
Casimir effect

1. Introduction

Fundamental theories of particle physics are constructed based on several types of symmetry.
It is expected that a fundamental theory with a higher symmetry is realized at the early universe.
The symmetry of the theory is partly broken on the ground state. The remnant symmetry is observed
in our laboratories. Since the physical state depends on the environment, the broken symmetry can
be restored under extreme conditions, small size, high temperature, high density, strong curvature,
strong electromagnetic field, and so on. It is considered that there is a possibility to test the models of
particle physics through the critical phenomena induced by the symmetry transition with changing
the environment.

Y. Nambu and G. Jona-Lasinio proposed a simple model with interacting fermions in 1961 [1,2].
A four-fermion interaction model with a discrete Z2 chiral symmetry is introduced in two dimensions by
D. J. Gross and A. Neveu [3]. In the Nambu–Jona-Lasinio (NJL) and Gross–Neveu (GN) models four-fermion
interactions induce non-vanishing expectation value for the composite operator constructed by
a fermion and an anti-fermion and the chiral symmetry is spontaneously broken. Many works
have been done to study the symmetry transition in the four-fermion interaction models under
various environmental conditions, for a review, see [4–8] and references therein. One of the interesting
conditions to induce the symmetry transition is found in the size of the spacetime. All the materials may
be confined inside a small size space with a non-trivial topology at the early universe. The existence of
finite extra dimensions is predicted in string theory and M-theory.

The finite size effect on the chiral symmetry has been studied in four-fermion interaction models
with periodic or anti-periodic boundary conditions for the fermion fields. It is found that the chiral
symmetry tends to be broken due to the finite size effect for the periodic boundary condition and the
broken symmetry tends to be restored for the anti-periodic boundary condition [7,9,10]. The effective
potential of the four-fermion interaction model has been calculated in a more general U(1)-valued
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boundary condition along with a compact direction and the phase structure of the model is evaluated
with respect to the U(1) phase [11,12].

In an Abelian gauge theory such boundary conditions can be realized for charged fermions
through the Aharonov-Bohm effect [13]. Hence, the finite size effect with a U(1)-valued boundary
condition can be realized in the presence of a gauge field. It is well-known that a constant magnetic
field enhances the chiral symmetry breaking. It is shown that the enhanced symmetry breaking can
be counteracted by the finite size effect with the anti-periodic boundary condition [14]. A constant
magnetic flux crosses the transverse section of the cylinder has been studied in lower dimensional
cylindrical spacetime [15–19]. The possibility of an inhomogeneous condensation has been discussed
in a superconducting ring with an Aharonov-Bohm magnetic flux [20]. It has been pointed out that the
finite size phase transition may be observed as a non-trivial behavior in the Casimir force [21–34].

In the present paper, we study four-fermion interaction models onMD−1 ⊗ S1 and develop the
procedure to calculate the stable environment and the Casimir effect. The ground state is found by
observing the minimum of the effective potential. The phase boundary can be found by solving the
stationary condition of the effective potential for a fixed size and a topology. We need to evaluate the
zero-point energy to determine the stable size and the topology and to calculate the Casimir force.

The paper is organized as follows. In Section 2 we briefly review the chiral symmetry breaking in
four-fermion interaction models onMD. We employ the 1/N expansion and calculate the effective
potential for the fermion and anti-fermion composite field. In Section 3 we consider the model on
MD−1 ⊗ S1 with a non-trivial topology. Evaluating the effective potential with a zero-point energy,
we obtain the dynamically generated fermion mass and the critical length for a fixed boundary
condition. In Section 4 the Casimir force is calculated from the effective potential and the sign-flip
condition is derived. Section 5 is devoted to the concluding remarks.

2. The Basic Model: Four-Fermion Interaction Model onMD

In this section, we consider the Dirac fermion on a flat D-dimensional Minkowski spacetimeMD

and follow the discussions in [35]. The Dirac fermion is decomposed into left- and right-handed chiral
states. In relativistic quantum field theories left- and right-handed chiral state, ψL and ψR, for the
four-components Dirac fermion ψ can be described as

ψL =
1− γ5

2
ψ, ψR =

1 + γ5

2
ψ, (1)

with the fifth Dirac gamma matrix, γ5. The chiral symmetry which preserves the chirality of the system
gives fundamental and important concepts in particle physics. It is defined by the invariance under
the chiral transformation,

ψ −→ eiγ5θψ. (2)

It transforms the left-handed and right-handed fermions with an opposite sign phase. The chiral
symmetry prohibits the fermion field from having a mass term. The simplest fermion and anti-fermion
interaction which maintains the chiral symmetry is four-fermion interactions.

Throughout this paper we employ a simple four-fermion interaction model with N-flavor of
Dirac fermions which are introduced by Y. Nambu and G. Jona-Lasinio [1,2]. The model is defined by
the action,

S =
∫

dDx

 N

∑
a=1

ψ̄aiγµ∂µψa +
λ0

2N

( N

∑
a=1

ψ̄aψa

)2

+

(
N

∑
a=1

ψ̄aiγ5ψa

)2
 , (3)

where the index a denotes the flavors of the fermion field ψ and λ0 is the bare coupling constant for
the four-fermion interactions. The action (3) is invariant under the chiral transformation (2). If the
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four-fermion interaction induces a non-vanishing expectation value for the composite operator ψ̄aψa,
a fermion mass term is generated, and the chiral symmetry is spontaneously broken.

For practical calculations it is more convenient to introduce the auxiliary field, σ and π, and rewrite
the action as,

S =
∫

dDx

[
N

∑
a=1

ψ̄a

(
iγµ∂µ − σ− iπγ5

)
ψa −

N
2λ0

(
σ2 + π2

)]
. (4)

This action describes the same theory with the action (3). The original action (3) is reproduced by
substituting the solutions of the classical equation of motions

σ = −λ0

N

N

∑
a=1

ψ̄aψa, π = −λ0

N

N

∑
a=1

ψ̄aiγ5ψa. (5)

Performing the path integral for the Dirac fermion and assuming homogeneous expectation
values for σ and π, we obtain the effective potential at the leading order of the 1/N expansion,

V0(σ, π) =
1

2λ0
(σ2 + π2) + i

∫ dDk
(2π)D tr ln

γµkµ − σ− iγ5π

−ω
, (6)

where the trace, tr, stands for the sum over the Dirac indices and ω is an arbitrary mass scale. Due to
the chiral symmetry of the action, we set π = 0 without loss of generality. Then the expectation value
of σ under the ground state is determined by observing the minimum of the effective potential,

V0(σ) =
1

2λ0
σ2 + i

∫ dDk
(2π)D tr ln

γµkµ − σ

−ω
. (7)

If the auxiliary field, σ, develops a non-vanishing expectation value, the fermion acquires
a non-vanishing mass and the chiral symmetry is broken. Thus, we regard the auxiliary field,
σ, as an order parameter for the chiral symmetry breaking. It is noted that the effective potential (7)
coincides with the one in the GN model [3]. The GN model has the discrete Z2 chiral symmetry under
the transformation ψ → γ5ψ. Since a continuous symmetry cannot be broken in two dimensions,
we employ the GN model and evaluate the discrete chiral symmetry breaking in two dimensions.

We usually shift the origin of the effective potential to zero and remove the divergent
zero-point energy,

Ṽ0(σ) ≡ V0(σ)−V0(σ = 0)

=
1

2λ0
σ2 + i

∫ dDk
(2π)D tr ln

(
γµkµ − σ

γµkµ

)
. (8)

The mass scale, ω, dependence is eliminated by this subtraction. Integrating over the momentum
space, the effective potential reads,

Ṽ0(σ) =
1

2λ0
σ2 − trI

(4π)D/2D
Γ
(

1− D
2

)
(σ2)

D
2 . (9)

We set trI = 2D/2 for numerical calculations. The bare four-fermion coupling λ0 is replaced with
the renormalized one, λr, by imposing the renormalization condition

∂2Ṽ0(σ)

∂σ2

∣∣∣∣
σ=µ

=
1

λ0
− trI(D− 1)

(4π)D/2 Γ
(

1− D
2

)
µD−2 ≡ 1

λr
µD−2, (10)
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where µ denotes the renormalization scale. Therefore, the renormalized effective potential is given by

Ṽ0(σ)

µD =
1
2

(
1
λr
− 1

λc

)(
σ

µ

)2
− trI

(4π)D/2D
Γ
(

1− D
2

)(
σ2

µ2

) D
2

, (11)

with

1
λc

= − trI(D− 1)
(4π)D/2 Γ

(
1− D

2

)
. (12)

Since the four-fermion interaction is not renormalizable in four dimensions, the renormalized
effective potential is still divergent for D = 4. We regard the model at 4− ε dimensions as a regularized
model in four dimensions.

The expectation value of the auxiliary field, σ is obtained as the non-trivial solution of the gap
equation, a necessary condition for the minimum of the effective potential,

∂Ṽ0(σ)

∂σ

∣∣∣∣
σ=m0

= 0. (13)

Solving the gap equation, we obtain the expression for the dynamically generated fermion mass,

m0 = µ

 (4π)D/2

trI · Γ
(

1− D
2

) ( 1
λr
− 1

λc

) 1
D−2

. (14)

If this expression has a real and non-vanishing value, the fermion mass is dynamically generated.
To find the critical value of the coupling constant we take the massless limit m0 → 0 of Equation (14).
Then we get

λcr = λc. (15)

When the four-fermion coupling, λr, is larger than the critical one, λcr, non-vanishing fermion
mass is generated, and the chiral symmetry is broken. In Figure 1 the critical coupling, λcr, is plotted
as a function of the spacetime dimension, D. Above the line the four-fermion coupling is strong
enough to break the chiral symmetry. As is observed in the figure, only the broken phase is realized in
two dimensions.

Symmetric phase

Broken phase

2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

D

λ
c
r

Figure 1. Critical point as the function of the dimension onMD.
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In Figure 2 we draw the behavior of the dynamically generated fermion mass, m0, as a function of
the renormalized coupling, λr. For λr < λcr the mass scale, m1, is defined by the absolute value of the
right-hand side of (14). The scale, m1, is also plotted in the figure. Using the dynamically generated
mass, m0, and the mass scale, m1, the expression of the effective potential (11) is simplifies to

Ṽ0(σ)

m0D =
trI

(4π)D/2 Γ
(

1− D
2

)1
2

(
σ

m0

)2
− 1

D

(
σ2

m2
0

) D
2
 , for λr > λcr, (16)

and

Ṽ0(σ)

m1
D =

trI
(4π)D/2 Γ

(
1− D

2

)−1
2

(
σ

m1

)2
− 1

D

(
σ2

m2
1

) D
2
 , for λr < λcr, (17)

respectively. Since the renormalization scale, µ, and the renormalized coupling, λr, are not independent
at the leading order of the 1/N expansion, the parameters, µ, and, λr, are rewritten by m0, and m1.
We discuss the phase structure of the four-fermion interaction model, starting from the effective
potential (16) and (17). Since the critical coupling is vanishing, λcr = 0, in two dimensions, only the
expression (16) is adopted for D = 2.

D = 2

D = 2.5

D = 3

D = 3.5

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

λr

m
α
/μ

Figure 2. Dynamically generated mass, m0, (solid lines) and the mass scale, m1, (dashed lines).

3. Four-Fermion Interaction Model onMD−1⊗ S1

To study the finite size effect on the dynamical chiral symmetry breaking we consider the
four-fermion interaction model (3) on a flat spacetime,MD−1 ⊗ S1, with one spatial compact direction.
The Dirac field on the space is constrained by the size of the compactified space and the boundary
condition. We assign the following boundary condition in the compactified direction, xD−1,

ψ(x0, . . . , xD−1 + L) = eiπδψ(x0, . . . , xD−1), (18)

where L is the length of the compactified space and δ is the phase factor. For the spatial compact
direction, the phase factor, δ, is a parameter which is fixed by an environment outside of the system or
a non-trivial topology of the very early universe. According to the standard procedure on a compact
spacetime, Green functions onMD−1 ⊗ S1 are given from the one onMD by the replacements

∫ dkD−1

2π
→ 1

L

∞

∑
n=−∞

,

kD−1 → ωn =
2π

L

(
n +

δ

2

)
.

(19)

The boundary condition (18) is satisfied by introducing the discrete variable, ωn.



Symmetry 2019, 11, 451 6 of 20

Applying these replacements on (7), we obtain the effective potential onMD at the leading order
of the 1/N expansion,

V(σ) =
1

2λ0
σ2 +

i
L

∞

∑
n=−∞

∫ dD−1K
(2π)D−1 tr ln

γµKµ −ωnγD−1 − σ

−ω
, (20)

where Kµ denotes {k0, . . . , kD−2}, the momentum on MD−1. The divergent zero-point energy is
removed by the shift of the effective potential,

Ṽ(σ) ≡ V(σ)−V0(σ = 0). (21)

To compare the potential energy between the different size, L, and phase, δ we choose the
subtracted V0(σ = 0) independent of the parameters L, δ and σ. As is shown in Appendix A,
the effective potential, Ṽ(σ), is represented in several forms. Since the expression which contains
no divergent function, C(L), is more convenient for the numerical analysis, we adopt the expression
(A13). Thus, the normalized effective potential reads,

Ṽ(σ)

µD =
Ṽ0(σ)

µD

− trI(
2
√

π
)D−1 Γ

(
D−1

2

) 1
Lµ

∫ ∞

0

dK
µ

(
K
µ

)D−2
ln

2
cosh

(
L
√

K2 + σ2
)
− cos (πδ)

exp
(

L
√

K2 + σ2
)

 . (22)

The second term in the right-hand side describes the finite size corrections with the boundary
condition. The term is finite and vanishes at the L→ ∞ limit.

The effective potential (22) depends on the coupling constant, λr, and the renormalization scale,
µ. Substituting Equations (16) and (17) into (22), the parameters λr and µ are described by m0 and m1.
Thus, the effective potential normalized reads

Ṽ(σ)

mD
α

=
Ṽ0(σ)

mD
α

− trI

(2
√

π)D−1Γ
(

D−1
2

) 1
Lmα

∫ ∞

0

dK
mα

(
K

mα

)D−2
ln

2
cosh

(
L
√

K2 + σ2
)
− cos (πδ)

exp
(

L
√

K2 + σ2
)

 , (23)

where we set α = 0 and 1 for λr > λcr and λr < λcr, respectively. The reason for this replacement is
to reduce the number of parameters. We split the expression with respect to the critical value of the
coupling constant, λcr, which is defined onMD. Though the model onMD is different from the one
onMD−1 ⊗ S1 as long as the length L is finite, the normalization by m0(m1) gives one criterion in
considering the compactified model.

Here we focus on the δ dependence and numerically evaluate the effective potential. It is
known that the broken chiral symmetry is restored by the finite size effect for the anti-periodic
boundary condition, δ = 1 and the finite size effect enhances the chiral symmetry breaking for the
periodic boundary condition, δ = 0 [7,9,10]. Typical behavior of the effective potential is shown in
Figures 3 and 4 for fixed lengths, Lm0 = 2.5 and Lm1 = 2.5. Because of the periodicity of the effective
potential, Ṽ(σ)|δ = Ṽ(σ)|±δ+2lπ for an arbitrary integer l, it is enough to study the effective potential
within the interval, 0 ≤ δ ≤ 1.

In Figure 3 it is observed that the effective potential has a non-trivial minimum for any dimensions.
The non-trivial minimum shows the existence of the ground state which breaks the chiral symmetry.
In Figure 4 the broken phase is observed at (D, δ) = (2.5, 0.05), (3, 0.05) around the periodic boundary
condition. As is shown in Figures 3 and 4, the value of the effective potential at the minimum, Vmin,
decreases with the phase, δ, approaching the anti-periodic boundary condition, δ = 1. We plot the
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minimum value, Vmin, as a function of the U(1) phase δ in Figure 5. If the U(1) phase δ is a dynamical
valuable, the stable state is found at the anti-periodic boundary condition, δ = 1.
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0
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(a) D = 2
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(b) D = 2.5
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-0.02

0.00
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0.04
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V
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0
D

(c) D = 3

δ = 0

δ = 0.2
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δ = 0.6

δ = 0.8

δ = 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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-0.04

-0.03

-0.02

-0.01

0.00
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0.02

σ/m0

V
/m

0
D

(d) D = 3.5

Figure 3. Behavior of the effective potential onMD−1 ⊗ S1 at Lm0 = 2.5 for λr > λcr.
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Figure 4. Behavior of the effective potential onMD−1 ⊗ S1 at Lm1 = 2.5 for λr < λcr.
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(a) λr > λcr, Lm0 = 2.5
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(b) λr < λcr, Lm1 = 2.5

Figure 5. Value of the effective potential at the minimum.

In Figure 6 the minimum value, Vmin, is plotted as a function of the length of the compactified
space, L. In the figure we show the typical behavior of the minimum for D = 3. It monotonically
increases and decreases for a small and large δ, respectively. For a specific phase (δ = 0.46 . . . for D = 3)
the minimum value vanishes for L < Lcr in which the chiral symmetry is restored. The L-dependence
of Vmin induces the Casimir force as is discussed in Section 4.

δ = 0.4

δ = 0.5

δ = 0.4616 ...

D = 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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(a) λr > λcr
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V
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1
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(b) λr < λcr

Figure 6. Value of the effective potential at the minimum for D = 3.

The dynamically generated fermion mass, m, is given by the field value, σ, at the minimum of the
effective potential. It is obtained as a non-vanishing solution of the gap equation,

∂Ṽ(σ)

∂σ

∣∣∣∣
σ=m

= 0. (24)

Substituting Equation (23) into (24), we derive

1
2
√

π
Γ
(

1− D
2

)
Γ
(

D− 1
2

)(−1)α −
(

m2

m2
α

) D
2 −1


= −

∫ ∞

0

dK√
K2 + m2

(
K

mα

)D−2 exp
(
−L
√

K2 + m2
)
− cos (πδ)

cosh
(

L
√

K2 + m2
)
− cos (πδ)

. (25)

We numerically solve Equation (25) and draw the behavior of the dynamically generated mass as
a function of δ for fixed lengths in Figure 7. It is clearly seen that the generated mass, m, monotonically
decreasing as the phase, δ, approaches the unity, δ → 1. In the weak coupling case, λr < λcr, with
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Lm1 = 2.5 it is observed that the fermion mass disappears above a critical value of δ and the second
order phase transition takes place for D = 2.5 and 3. Only the symmetric phase, m = 0, is observed for
D = 3.5. In Figure 8 the generated mass is plotted as a function of the length, L, for typical δ at D = 3.
The finite size effect restores the broken chiral symmetry for δ = 1 and enhances the chiral symmetry
breaking for δ = 0. For intermediate δ combined behavior is observed. We checked that the finite size
phase transition is always of the second order.
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0.85
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(a) λr > λcr, Lm0 = 2.5
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(b) λr < λcr, Lm1 = 2.5

Figure 7. Dynamically generated fermion mass.
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(a) λr > λcr

D = 3

δ = 0

δ = 0.2

δ = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

Lm1

m
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(b) λr < λcr

Figure 8. Dynamically generated fermion mass for D = 3.

Since the phase transition is of the second order, the phase boundary is found at the massless
limit, m→ 0, of the gap equation. We adopt the expression (A17) and derive the explicit expression for
the critical length, Lcr, as a function of the phase, δ. Differentiating Equation (A17) with respect to σ,
the divergent function, C(L), is dropped and the gap equation reads

Lmα = 2
√

π
(−1)α

mD−3
α

Γ
(

3−D
2

)
Γ
(

1− D
2

) ∞

∑
n=−∞

(
ω2

n + m2
) D−3

2 . (26)

The critical length, Lcr, which divides the symmetric and broken phases is obtained by taking the
massless limit, m → 0, of (26), At the limit, the summation in (26) is described by the Hurwitz zeta
function, ζ(z, a), which is defined in (A23) and the critical length, Lcr, is given by
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Lcrmα =



2π

 (−1)α

√
π

Γ
(

3−D
2

)
Γ
(

1− D
2

) [ζ

(
3− D, 1− δ

2

)
+ ζ

(
3− D,

δ

2

)]
1

D−2

, 0 < δ < 2,

2π

2(−1)α

√
π

Γ
(

3−D
2

)
Γ
(

1− D
2

) ζ (3− D)


1

D−2

, δ = 0.

(27)

In the case of the anti-periodic condition, δ = 1, this formula coincides with the one for the critical
temperature onMD which is derived in [35].

We numerically calculate the critical length and draw the phase diagram in Figure 9. For λr > λcr

the symmetric phase is observed around δ = 1 where the broken chiral symmetry is restored by
the finite size effect. Only the broken phase is observed for the periodic boundary condition, δ = 0.
In the weak coupling case λr < λcr the chiral symmetry is broken around δ = 0. The critical length
is divergent at δ = 0 for D = 3. If the length is finite L < ∞, the chiral symmetry is always broken
in the periodic boundary condition, δ = 0, for 2 < D ≤ 3. Since the finite effect vanishes at the limit
L→ ∞, the symmetric phase appears at the L→ ∞ limit for δ = 0. The situation is also observed in
the behavior of the fermion mass for the lines at δ = 0 in Figure 8.

D = 2

D = 2.5

D = 3

D = 3.5

Broken

Symmetric

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

δ

L
c
rm

0

(a) λr > λcr

D = 2.5

D = 3

D = 3.5

Symmetric

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

δ

L
c
rm

1

(b) λr < λcr

Figure 9. Phase structure on δ− L plane. The chiral symmetry is broken above the lines for λr > λcr

and below the lines for λr < λcr.

The D-dependences of the chiral symmetry breaking are useful to understand the phase structure.
As is shown in Figure 10a, the chiral symmetry breaking is enhanced as the phase approaches from
δ = 1 to 0. It is clearly seen in Figure 10b that the broken phase appears around the periodic boundary
condition, δ = 0, even in the weak coupling case λr < λcr. It is denoted that Equation (27) at δ = 0
is defined only for 3 ≤ D < 4. In the case of the periodic boundary condition in lower dimensions
2 ≤ D < 3 the symmetric phase only realizes at the L→ ∞ limit.
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(a) λr > λcr
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(b) λr < λcr

Figure 10. Phase structure on D− L plane. The chiral symmetry is broken above the lines for λr > λcr

and below the lines for λr < λcr.

4. Casimir Effect

In the previous section the effective potential on the ground state is described as a function of the
size of the compactified spatial direction L and the U(1) phase δ at the boundary. As is known as the
Casimir effect [21–34], the L dependence of the total zero-point energy induces a pressure between
parallel plates, a distance L apart. At first the Casimir force was introduced as an attractive force
between metallic plates. T. H. Boyer has found a repulsive force between the perfectly conducting and
perfectly permeable plates [36]. The connection of the attractive and repulsive forces has been studied
for a perfect electromagnetic conductor in [37]. Some useful formulae to calculate the Casimir force
has been developed in arbitrary dimensions in [38]. In a four-fermion interaction model the sign-flip
phenomenon has been found in [19,39].

In the four-fermion interaction model on MD−1 ⊗ S1 the Casimir force, F(L, δ), is given as
a function of L and δ. It is derived as the first derivative of the effective potential with respect to L at
the minimum, σ = m,

F(L, δ) =− ∂Ṽ(σ)

∂L

∣∣∣∣
σ=m

. (28)

As is observed in Figure 6, the slope is negative (positive) for a small (large) δ and the repulsive
(attractive) force induces.

Substituting Equation (23) into (28), we obtain the Casimir force at the leading order of the
1/N expansion.

F(L, δ)

mD+1
α

=− trI

(2
√

π)D−1Γ
(

D−1
2

) 1
(Lmα)2

∫ ∞

0

dK
mα

(
K

mα

)D−2

×

ln

2
cosh

(
L
√

K2 + m2
)
− cos (πδ)

exp
(

L
√

K2 + m2
)


+L
√

K2 + m2
exp

(
−L
√

K2 + m2
)
− cos (πδ)

cosh
(

L
√

K2 + m2
)
− cos (πδ)

 , (29)

where we set α = 0 and 1 for λr > λcr and λr < λcr, respectively. The fermion mass, m, is derived by
solving the gap Equation (25).
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In Figure 11 we plot the behavior of the Casimir force as a function of the phase δ for fixed lengths.
As typical lengths, we choose Lmα = 1 and 1.5. The sharp bends on the lines, it is clearly observed in
two dimensions, D = 2, for λ > λcr, correspond to the critical value for the chiral symmetry breaking.
It is shown that the Casimir force is repulsive near the periodic boundary condition, δ = 0, and the
force decreases monotonically as approaching the anti-periodic boundary condition, δ = 1. The sign
of F(L, δ) changes around δ ∼ 0.5 for D = 2, 2.5, 3, and 3.5. The attractive force realizes near the
anti-periodic boundary condition.

In Figure 12 the behavior of the Casimir force is plotted as a function of L around the sign-flip
value, δ ∼ 0.5. We observe that the force is divergent and disappears at the limit L→ 0 and L→ ∞,
respectively. The sign flips in two cases D = 2, 2.5 at δ = 0.45 for a strong coupling, λ > λcr. In these
cases, the Casimir force changes from attractive to repulsive as the length increases. Thus, the length
where the sign flips is unstable. No stable length is realized for the four-fermion interaction model.
In the other cases the sign-flip is not observed.

D = 2
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D = 3

D = 3.5

0.0 0.2 0.4 0.6 0.8 1.0
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(a) λr > λcr, Lm0 = 1
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+
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(b) λr > λcr, Lm0 = 1.5
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(c) λr < λcr, Lm1 = 1
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0.3
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D
+
1

(d) λr < λcr, Lm1 = 1.5

Figure 11. Casimir force as the function of δ.

The sign-flip points for the Casimir force are found by solving F(L, δ) = 0. In the symmetric
phase, m = 0, the momentum integral in (29) is described by the polylogarithm, Lis(z), which is
defined in (A24). Then Equation (29) reduces to

F(L, δ)sym

mD+1
α

=
trI · Γ (D + 1)

(2
√

π)D−1Γ
(

D+1
2

) 1
(Lmα)D+1 Re LiD

(
eiπδ

)
. (30)

Thus, the sign-flip points in the symmetric phase are found to be

Re LiD(eiπδ) = 0. (31)
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(b) λr > λcr, δ = 0.45
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(d) λr < λcr, δ = 0.44
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(e) λr < λcr, δ = 0.46
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(f) λr < λcr, δ = 0.48

Figure 12. Casimir force as a function of L.

Since this equation is independent of the length, L, the U(1) phase, δ, fixes the sign-flip points.
We give the phase δ at the sign-flip points for D = 2, 2.5, 3, and 3.5 in Table 1. In the broken phase we
numerically evaluate Equation (29) with the gap Equation (25) and find the solution for F(L, δ) = 0.

Table 1. Phase δ at the sign-flip points in the symmetric phase.

D 2 2.5 3 3.5

δ 0.42265 0.44575 0.46166 0.47280

In Figure 13 we draw the boundary lines dividing the repulsive force and attractive force on the
L− δ plane. In the symmetric phase the boundary is fixed by the phase, δ, and described by vertical
lines. As is shown in Figure 9, the chiral symmetry is restored when the length, L, is smaller than the
critical one for λr > λcr. In Figure 13a, we observe that the boundary is represented by a vertical line
in the symmetric phase. Above the critical length, the length at the boundary increases as δ approaches
0.5. The dynamically generated fermion mass extends the domain where the repulsive force is induced.
In Figure 13b, the sign-flip points are found on the symmetric phase and the boundary is represented
by vertical lines.
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Figure 13. Boundary between the repulsive (left side of the lines) and attractive (right side of the
lines) force.

5. Conclusions

We have studied dynamical chiral symmetry breaking in four-fermion interaction models on
MD−1 ⊗ S1 with the U(1)-valued boundary condition. The models are often considered associated
with a superconducting ring, non-trivial topology at the early universe and compact extra dimensions.
Assuming the homogeneous condensation and using the zeta function regularization, we have obtained
the explicit expression of the effective potential for the fermion and anti-fermion composite field in the
leading order of the 1/N expansion.

The system is classified into two cases based on the chiral symmetry on MD. In the strong
coupling case, λr > λcr, the composite field develops a non-vanishing expectation value and the chiral
symmetry is dynamically broken, while the expectation value for the composite field vanishes and the
ground state maintains chiral symmetry in the weak coupling case, λr > λcr, onMD. In the specific
expressions these cases are distinguished by the mass scale, m0 and m1. No constraints are theoretically
defined for the mass scale and it is fixed for each phenomenon.

In this paper, we focus on the topological effect stemming from the boundary condition.
The effective potential was numerically evaluated on MD−1 ⊗ S1 as the U(1) phase, δ, varies.
By observing the effective potential at the minimum, the stable state with respect to the U(1) phase
is found at the anti-periodic boundary condition, δ = 1. We calculated the dynamically generated
fermion mass as a function of δ and checked that only the second order phase transition takes place.
The phase diagram was shown on the δ− L and D− L planes for λr > λcr and λr < λcr in Figure 9.

To find a phenomenological consequence the Casimir force has been investigated in the models
onMD−1 ⊗ S1. As is pointed out in [39], the sign of the force flips as δ varies from 0 to 1. We found
the explicit expression for the sign-flip points in the symmetric phase and the boundary lines dividing
the repulsive force and attractive force on the L− δ plane. In Figure 13a the critical points for chiral
symmetry breaking are clearly observed as sharp bends on the lines.

The derived expressions for the effective potential reduce to the known results in the previous
works at the periodic (δ = 0) and anti-periodic (δ = 1) boundary conditions [7,9,10]. It should be noted
that the imaginary chemical potential introduces similar expressions [40].

In the present work we assume the homogeneous expectation value for the composite field and
study the ground state by calculating the effective potential. In finite size space-times, inhomogeneous
states may be realized. The inhomogeneous states are found by observing the effective action on
MD−1 ⊗ S1 or extending the analysis developed in two dimensions [20]. Four-fermion interaction
models in a curved geometry with a non-trivial topology are also interesting to find some
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phenomenological consequences at the early universe [41–43]. We hope to report on the inhomogeneous
condensation in four-fermion interaction models onMD−1 ⊗ S1 and a curved geometry in future.
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Appendix A. Effective Potential onMD−1⊗ S1

Here we present details of the calculation of the effective potential (20) and show two types of
expressions. The integrand in the second term of the effective potential is calculated as

tr ln γµKµ−ωnγD−1−σ
−ω = tr ln σ

ω + tr ln
(

1− γµKµ−ωnγD−1

σ

)
= tr ln σ

ω − tr ∑∞
k=1

1
k

(
γµKµ−ωnγD−1

σ

)k

= trI ln σ
ω − trI ∑∞

k=1
1
2k

(
K2−ω2

n
σ2

)k

= trI
2 ln −K2+ω2

n+σ2

ω2 .

(A1)

In going from the second to third line, we trace over the Dirac indices. After the Wick rotation,
K0 → iK0, the second term of (20) reads

I2nd =
i
L

∞

∑
n=−∞

∫ dD−1K
(2π)D−1 tr ln

γµKµ −ωnγD−1 − σ

−ω
= − trI

2L

∞

∑
n=−∞

∫ dD−1K
(2π)D−1 ln

K2 + ω2
n + σ2

ω2 . (A2)

Using the following formula which comes from the zeta function regularization,

tr lnO = − lim
s→0

d
ds

1
Γ (s)

∫ ∞

0
dt ts−1tre−tO , (A3)

and employing the formula,

∞

∑
n=−∞

e−
iπ
τ (n+z)2

=

√
τ

i
ϑ3 (z|τ) , (A4)

with the definition for the Jacobi theta function, ϑ3(z|τ),

ϑ3 (z|τ) =
∞

∑
n=−∞

eπiτn2+2πizn = 1 + 2
∞

∑
n=1

(
eπiτ

)n2

cos(2nπz), (A5)
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then Equation (A2) reads

I2nd = lim
s→0

trI
2L

∫ dD−1K
(2π)D−1

d
ds

1
Γ(s)

∫ ∞

0
dt ts−1e−t K2+σ2

ω2
∞

∑
−∞

e−
4π2t
L2ω2 (n+ δ

2 )
2

= lim
s→0

trIω

4
√

π

∫ dD−1K
(2π)D−1

d
ds

1
Γ(s)

(∫ ∞

0
dt ts− 3

2 e−t K2+σ2

ω2

+2
∞

∑
n=1

cos(nπδ)
∫ ∞

0
dt ts− 3

2 e−
L2ω2n2

4t −t K2+σ2

ω2

)
. (A6)

The t-integrations in (A6) are represented by the gamma function and the modified Bessel function
of the second kind,

∫ ∞

0
dt ts− 3

2 e−t K2+σ2

ω2 =

(
K2 + σ2

ω2

)−s+ 1
2

Γ
(

s− 1
2

)
, (A7)

∫ ∞

0
dt ts− 3

2 e−
L2ω2n2

4t −t K2+σ2

ω2 = 2
3
2−s

(
K2 + σ2

L2ω4n2

) 1
4−

s
2

K 1
2−s

(
Ln
√

K2 + σ2
)

. (A8)

Substituting the Equations (A7), (A8) into (A6) and taking the s→ 0 limit, we obtain

I2nd = − trI
2

∫ dD−1K
(2π)D−1

[(
K2 + σ2

) 1
2 − 2

√
2√

πL

(
K2 + σ2

) 1
4

∞

∑
n=1

n−
1
2 K 1

2

(
Ln
√

K2 + σ2
)

cos(nπδ)

]
. (A9)

Thus, the effective potential (20) reads

V(σ) =
1

2λ0
σ2 − trI

2

∫ dD−1K
(2π)D−1

[(
K2 + σ2

) 1
2

− 2
√

2√
πL

(
K2 + σ2

) 1
4

∞

∑
n=1

n−
1
2 K 1

2

(
Ln
√

K2 + σ2
)

cos(nπδ)

]
. (A10)

The effective potential (8) is also calculated along the same procedure. It is easy to find by taking
the L→ ∞ limit of (A10),

V0(σ) = lim
L→∞

V(σ) =
1

2λ0
σ2 − trI

2

∫ dD−1K
(2π)D−1

(
K2 + σ2

) 1
2 . (A11)

The summation in (A10) is performed by using the formula,

∞

∑
n=1

n−
1
2 K 1

2

(
L
√

K2 + σ2n
)

cos (nπδ) = − 1

2
√

L (K2 + σ2)
1
4

√
π

2
ln

2
cosh

(
L
√

K2 + σ2
)
− cos (πδ)

exp
(

L
√

K2 + σ2
)

 . (A12)

After the angular integration we obtain

V(σ) = V0(σ)−
trI(

2
√

π
)D−1 Γ

(
D−1

2

) 1
L

∫ ∞

0
dK KD−2 ln

2
cosh

(
L
√

K2 + σ2
)
− cos (πδ)

exp
(

L
√

K2 + σ2
)

 . (A13)

Since the second term of the right-hand side in (A13) is finite, the divergent zero-point energy is
removed by subtracting V0(σ = 0). Therefore, the expression of the effective potential (22) is derived.
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Next we rewrite Equation (A2) as

I2nd = − trI
2L

∞

∑
n=−∞

∫ dD−1K
(2π)D−1 ln

K2 + ω2
n + σ2

K2 + C(L), (A14)

with the σ independent function, C(L), comes from the zero-point energy,

C(L) = − trI
2L

∞

∑
n=−∞

∫ dD−1K
(2π)D−1 ln

K2

ω2 . (A15)

Following the procedure developed in [35], we perform the momentum integral of the first term
in the right-hand side of (A14) and get

I2nd =
trI

2L(2
√

π)D−1 Γ
(

1− D
2

) ∞

∑
n=−∞

(ω2
n + σ2)

D−1
2 + C(L). (A16)

Then we obtain

V(σ) =
1

2λ0
σ2 +

trI
2L(2
√

π)D−1 Γ
(

1− D
2

) ∞

∑
n=−∞

(ω2
n + σ2)

D−1
2 + C(L). (A17)

The summation on the right-hand side of (A17) is divergent. The divergence is regularized by
using the following formula [44,45],

∞

∑
n=−∞

[
a(n + c)2 + q

]−s
=

√
π

a
1
2

Γ
(

s− 1
2

)
Γ (s)

q
1
2−s +

4πs

Γ (s)
(aq)

1−2s
4

a
1
2

∞

∑
n=1

cos (2πcn)

n
1
2−s

K 1
2−s

(
2πn

( q
a

) 1
2
)

. (A18)

Thus, the effective potential reads

V(σ) =
1

2λ0
σ2 +

trI
2(4π)D/2 Γ

(
−D

2

)
(σ2)

D
2 + 2trI

( σ

2πL

) D
2

∞

∑
n=1

cos (nπδ)

n
D
2

K D
2
(Lσn) + C(L). (A19)

The second term on the right-hand side of (A19) is divergent in even dimensions. The divergent
term is equivalent to the one in (A11). After the momentum integral Equation (A11) reduces to

V0(σ) =
1

2λ0
σ2 − trI

(4π)D/2D
Γ
(

1− D
2

)
(σ2)

D
2 + C(L→ ∞). (A20)

Substituting Equation (A20) into (A19), the regularized expression for the effective potential is
derived as

V(σ) = V0(σ) + 2trI
( σ

2πL

) D
2

∞

∑
n=1

cos (nπδ)

n
D
2

K D
2
(Lσn) + C(L)− C(L→ ∞). (A21)

For σ = 0 the effective potential (A17) is simplified to

V(0) =
trI

2L(2
√

π)D−1 Γ
(

1− D
2

) ∞

∑
n=−∞

ω
2· D−1

2
n + C(L)

=
trI(
√

π)D−1

2LD Γ
(

1− D
2

) [
ζ

(
1− D,

δ

2

)
+ ζ

(
1− D, 1− δ

2

)]
+ C(L), (A22)
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where ζ(z, a) is the Hurwitz zeta function,

ζ(z, a) =
∞

∑
n=0

1
(n + a)z . (A23)

The summation of the zeta functions is described by the polylogarithm, Lis(z),

Lis(z) =
∞

∑
n=1

zn

ns , (A24)

through the Hurwitz’s formula [46],

ζ

(
1− D,

δ

2

)
+ ζ

(
1− D, 1− δ

2

)
=

4π

(2π)D
Γ (D)

Γ
(

1−D
2

)
Γ
(

D+1
2

)Re LiD

(
eiπδ

)
, (D > 1, 0 ≤ δ ≤ 2). (A25)

Therefore, the effective potential V(0) reduces to

V(0) =
trI

LD(2
√

π)D−1
Γ (D)

Γ
(

D+1
2

)Re LiD

(
eiπδ

)
+ C(L). (A26)

This expression shows that the finite size effect modifies the effective potential at σ = 0.
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