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Abstract: Chirality is a natural attribute nature of living matter and plays an important role in
maintaining the metabolism, evolution and functional activities of living organisms. Asymmetric
conformation represents the chiral structure of biomacromolecules in living organisms on earth,
such as the L-amino acids of proteins and enzymes, and the D-sugars of DNA or RNA, which exist
preferentially as one enantiomer. Circularly polarized light (CPL), observed in the formation regions
of the Orion constellation, has long been proposed as one of the origins of single chirality. Herein,
the CPL triggered asymmetric polymerization, photo-modulation of chirality based on polymers are
described. The mechanisms between CPL and polymers (including polydiacetylene, azobenzene
polymers, chiral coordination polymers, and polyfluorene) are described in detail. This minireview
provides a promising flexible asymmetric synthesis method for the fabrication of chiral polymer via
CPL irradiation, with the hope of obtaining a better understanding of the origin of homochirality
on earth.
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1. Introduction

Homochirality is one of the most valuable aspects of science and is an essential molecular
characteristic of terrestrial life [1–4]. Asymmetric conformation represents the chiral structure of
biomacromolecules in living organisms on earth. Homochirality in biomolecular building blocks
almost exclusively results in the use of only one enantiomer for the molecular architecture, such
as the D-sugars of nucleic acids and L-amino acids of proteins [5–11]. In the achiral environment,
the chemical and physical properties of D- and L-enantiomers were not different except for tiny
energy differences which can be attributed to the parity violation of the weak interactions. However,
these small energy differences have been theoretically proposed, but they are hard to be detected
by conventional experiments [12]. During the process of building up biopolymers such as proteins,
enzymes and nucleic acids, an important requirement is the selection of one enantiomer. Therefore,
the origin of homochirality in nature has been widely often exploited, and the homochirality of life
remains an important subject to be researched.

The asymmetric structure of polymers plays an important role in the maintenance of life processes,
metabolism and evolution, and chiral polymers have been widely used in asymmetric synthesis, chiral
recognition, and enantiomeric separation [13–23]. Moreover, chiral polymers also hold potential
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for application in chiral catalysts, liquid crystals, nonlinear optical materials, and the biomedical
industry [24–33]. In recent years, scientists have reported several methods to synthesize chiral materials,
such as the use of chiral solvents or templates, polymerization with chiral monomers, substituted
achiral polymers with a chiral center, supramolecular self-assembly and circularly polarized light
(CPL) irradiation. Compared with these methods, circularly polarized light (CPL), proposed to be
one of the origins of homochirality in nature, is regarded as an important tool to prepare photo-active
chiral materials [34].

As shown in Figure 1, CPL is one kind of electromagnetic waves with a spiral arrangement
of the electric field vector along the propagation direction [35]. Right and left-handed CPL are
considered to be plausible candidates to introduce the initial chiral asymmetry into biomolecular
building blocks. In 1929, Kuhn conducted an experiment by irradiating a racemic organic molecule
solution with CPL for the first time, and the results demonstrated that CPL could successfully induce
the asymmetric photolysis of organic molecules [36]. Moreover, Kagan also prepared the helical
structure of an olefin molecule with a redox reaction between diarylethene and iodine accompanied by
the CPL irradiation. Interestingly, the results showed that the final obtained products behaved with
chiral signals opposite to that of the external circularly polarized light [37]. In recent years, with the
development of CPL technology, CPL has been widely utilized in areas such as asymmetric photolysis,
asymmetric polymerization, and deracemization reaction [38–42]. Meinert and co-workers reported
that the enantiomeric excess (ee) value of molecules was not only dependent on the polarization state of
the CPL but also deeply affected by the wavelength of the CPL [43–45]. Although the CPL irradiation
method is considered to be an important tool to synthesize helical biomolecules, the enantiomeric
excess is quite a small (<4%). Therefore, how to improve the ee value based on CPL technology remains
a question to be answered. In 2009, Vlieg et al. reported that with CPL irradiation, a racemic solution
of amino acid derivatives could induce a small amount of chiral bias that was then amplified to give a
pure chiral solid phase. The solution of racemic amino acids could be converted to single-handedness
through an abrasive grinding process, and the final chirality of the solid phase could be totally
controlled by the external handedness of the CPL [38]. Meanwhile, Kotov et al. demonstrated that
left- (right-) handed CPL illumination of racemic CdTe nanoparticles in a dispersion state could
induce the same direction twisted nanoribbons. Moreover, the chiral nanoribbons were generated
in an enantiomeric excess exceeding approximately 30%, and this ee value was substantially higher
than that obtained from traditional CPL-induced reactions [46]. Their results opened a pathway for
the preparation of helical photonic structures and provided a scenario for the plausible origin of
homochirality in biomolecules during the evolution of early earth. Kim et al prepared helical structure
based on triphenylamine derivatives, and the helicity of the aggregation was totally controlled by the
handedness of the CPL [47]. Therefore, the utilization of CPL irradiation technology in areas including
the chirality induction, transference and amplification of liquid crystal or polymers would be of great
value especially in asymmetric reaction.
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In this review, the recent advances in the preparation and modulation of chiral polymers based
on CPL irradiation technology are outlined, and the asymmetric mechanism and influence factors
are also discussed. Our main purpose is to offer a comprehensive understanding of helical structure
construction based on CPL technology which mainly focuses on polydiacetylene, polyfluorene,
azobenzene, chiral coordination polymers and so on. This review provides a promising flexible
asymmetric synthesis method for the preparation of chiral polymers based on CPL technology, hoping
to help us obtain a deeper understanding of the plausible origin of homochirality on earth.

2. The Asymmetric Synthesis of Chiral Polymers Based on Circularly Polarized Light

2.1. The Asymmetric Polymerization of Diacetylene

Polydiacetylene (PDA) is a novel photosensitive material, which possesses conjugated backbone
chains, and can be easily formed in different structures by self-assembled systems. Diacetylene (DA)
monomers can be polymerized with the irradiation of UV light or γ-rays. With external stimuli (ions,
pH, temperature, etc.), PDA exhibits an apparent color and fluorescence change, thereby making it an
ideal material for sensing in different forms such as liposomes, vesicles, films or microtubes [48–56].
In 2006, Iwamoto et al. demonstrated the enantioselective synthesis of chiral PDA triggered by
ultraviolet circularly polarized light (Figure 2). The DA monomer without any chiral centers was
used to prepare the monomer film and ultra-violet CPL was the only chiral source. Interestingly,
the formed films irradiated with different-handed (left or right) CPL distinguishably induced the
opposite handedness of PDA films [57].
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Figure 2. The preparation of chiral polydiacetylene films upon irradiation with left- or right-handed
circularly polarized light (reprinted with permission from Reference [57]. Copyright 2006 the Chemical
Society of Japan).

Owing to the C-C bond being able to rotate along with the direction of the CPL, a disturbance
could be generated in the PDA backbone chains. Thus, the formed PDA, which was irradiated with L-
or R-CPL, definitely yielded the opposite chiral polymer. However, upon irradiation with unpolarized
ultraviolet light alone, no CD signals could be noticed at the corresponding absorption band for the
PDA film. It was reported that visible light could also maintain the polymerization of DA monomers
when the number of repeat units of PDA oligomer was more than five. In this case, the enantio-selective
polymerization of diacetylene monomers triggered by circularly polarized visible light (CPVL) was
realized for the first time (Figure 3). The 532 nm CPVL could effectively offer the chiral information
and controlled the handedness of the final PDA chains. This work offered a new method for the
synthesis of chiral optical polymers by the visible light region [58].
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Figure 3. The mechanism of Enantio-selective polymerization of diacetylene (DA) films triggered
by circularly polarized visible light (reprinted with permission from Reference [58]. Copyright 2014
The Royal Society of Chemistry).

CPL is one kind of electromagnetic waves and is considered to be a chiral form of light, which
exhibits a helical trajectory propagation of the electric field vector [59–61]. However, natural CPL
emitted from star formation is usually located in the long-wavelength light such as the IR region,
while most chiroptical reactions were induced by ultraviolet light or visible light. Therefore, it was
reasonable to extend the chirality induction to the IR region (Figure 4). It was demonstrated that by
incorporating NaYF4 up conversion particles, the enantioselective photoinduced polymerization of
achiral benzaldehyde-functionalized DA monomers could be realized with the irradiation of 980 nm
CPL, which based on the multiphoton up conversion mechanism. The 980 nm CPL acted as the only
chiral source and the screw direction of the chiral polymer chain followed the handedness of 980 nm
near CPL. This work paved the way for a deeper understanding of the possible origins of homochirality
in living systems [62].
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polarized light by doping NaYF4 nanoparticles (reprinted with permission from Reference [62].
Copyright 2017 Wiley).

Moreover, according to the novel method for the synthesis of helical conjugated polymers
in a nematic liquid crystal phase reported by Akagi et al., helical PDA structures in the liquid
crystal (LC) phase could also be synthesized successfully. In 2014, Xu et al. synthesized the
1,3,5-tris(1-alkyl-1H-1,2,3-triazol-4-yl) benzene (TTB) molecule, and the HB complex was obtained by
mixing DA with TTB in a 3:1 molar ratio through the self-assembly method (Figure 5). Interestingly,
The DA units in the crystal phase could not form helical chains due to the restriction of the crystal
lattice, while in the lamellar columnar mesophase, the molecular motion of the hydrogen-bonded
complex was relatively free, and the external CPL could effectively direct the screw orientation of the
final PDA chains [63]. This work offered a new method for the fabrication of helical polymers in the
liquid crystal phase.
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Figure 5. The mechanism of formation helical PDA films in the Lcol liquid crystal state (reprinted with
permission from Reference [63]. Copyright 2014 The Royal Society of Chemistry).

In 2018, Zou and co-workers synthesized benzaldehyde-functionalized diacetylene (BSDA)
monomers and demonstrated that these DA monomers could be polymerized by the visible light
region. Interestingly, super-chiral light (SCL) was introduced to achieve an enhancement in the
dissymmetry of BSDA molecules in this work (Figure 6). The super-chiral light was generated by the
interference of two circularly polarized lights with the same wavelength, yielding opposite handedness
but with a different intensity. It should be noted here that the SCL could generate a greater chiral
transfer and amplification than that of the traditional circularly polarized light during the asymmetric
photo-polymerization reaction of BSDA monomers. Moreover, the formed helical PDA films irradiated
with SCL exhibited an excellent chiral recognition ability and could be utilized to construct a visual
sensor for the discrimination of several specific enantiomers. This work offered a new method and
might open a pathway for other asymmetric photochemical systems [64].
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Figure 6. Experimental set-up, molecular structure and CD spectra. (a) Experimental set-up for SCL
generated by two counter-propagating CPL waves with the same frequency and opposite handedness.
The coherent length of the laser is 30 cm and the optical path difference of the two counter-propagating
CPL waves is less than 2 cm; (b) The molecular structure of BSDA monomer; (c) CD spectra of
thus-formed PDA films by application of (i) left-handed or (ii) right-handed SCL; (iii) left-handed or
(iv) right-handed CPL; (v) LPL, respectively. The wavelength of SCL, CPL and LPL were all 325 nm.
The irradiation time was 40 min (reprinted with permission from Reference [64]. Copyright 2018
Springer Nature).
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2.2. Enantioselective Synthesis of Chiral Coordination Polymers with CPL

Helical coordination polymers have been widely used in asymmetric catalysis, ferroelectrics,
nonlinear optical effects, and chiral resolution [65–67]. Scientists have developed a series of chiral
coordination polymers (CCPs) from achiral materials without the doping of any chiral agents. However,
it is impossible to predict the absolute configuration of CCPs and the asymmetric synthesis of CCPs
remains challenging. With the inspiration of a CPL-triggered solid-liquid mixture of a racemic
amino-acid derivative reported by Vlieg et al., Wu and co-workers synthesized the chiral copper
(II) CCP [{P or M-Cu(succinate)(4,4′-bipyridine)}n]·(4H2O)n, which adopts a three-dimensional helical
configuration (Figure 7), and the enantioselective synthesis of chiral coordination polymers by the
visible-light region was successfully obtained (Figure 8). To discovered the influence of CPL, final
products were separated into two zones, bath in the CPL zone (Light-R, L) or bath in dark zone
(Dark-R, L). Moreover, nearly 92 samples were selected during the experiments. In the CPL light
zone, the fragment [Cu(succinate)]x acted as the chiral center, which could exist in one preferential
configuration and directed the helical assembly direction upon irradiating with CPL. The value of
enantioselectivity was at most 80% and the helical structure of the crystalline product was the same
as that obtained by the irradiation of circularly polarized light. In the visible-light region, circular
dichroism effect was relatively weak, and the size of light spot was small than the cuvette, this size
mismatch could not effectively offer enough light bath area, all that lead the enantioselectivity could
not reach 100%. Interestingly, a similar CD signals were also discovered in the dark zone, but CD
spectra demonstrated dissonance, this was attribute to the sharing of one cuvette compared with
Light-zone. This work provided a good avenue to control the enantioselective synthesis of coordination
polymers [66].
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Figure 7. ORTEP plots with thermal ellipsoids set at the 30% probability level showing
(a) the right-handed helix of polymeric [{Cu(succinate)}n]; (b) the left-handed helix of polymeric
[{Cu(succinate)}n], and (c) the overall structure of [{Cu(succinate)(4,4′-bipyridine)}n]·(4H2O)n viewed
along the c axis (reprinted with permission from Reference [65]. Copyright 2007 Wiley).
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2.3. Enantioselective Thiol-ene Polymerization Reaction Triggered by CPL

The thiol-ene reaction, which given its high yield, rapid rate, and mild reaction conditions,
has been widely used in the synthesis of novel organic compounds and smart functional polymers,
especially in surface modification, drug-controlled release and advanced optical materials synthesis.
However, how to realize the asymmetric click reaction from a racemic mixture remains a question to be
solved. In 2017, the allyl-(1-((3-(dimethylamino)propyl)amino)-4-mercapto-1-oxobutan-2-yl)carbamate
(DPAMOC) enantiomers were synthesized, and circularly polarized light was utilized to trigger an
asymmetric polymerization reaction by our group. The results demonstrated that without any chiral
dopant or catalyst, the chiral optically active polymer could also be obtained from racemic monomers
with the irradiation of CPL (Figure 9). Via the CPL-triggered enantioselective polymerization click
reaction, chiral linear and hyperbranched polymers were easily synthesized with the CPL acting as the
only chiral source. Interestingly, the inducible chiral signals of the final polymers could be flexibly
controlled by the handedness of the external CPL as well as the irradiation time. This work paved the
way for expanding to other common asymmetric click reactions for the preparation of chiral polymers
with controllable enantioselectivity [68].
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Figure 9. (a) Schematic illustration of preparing chiral polymer from racemic monomers through the
asymmetric click polymerization process irradiated by 313 nm CPL irradiation. (b) CD signals and
(c) Time-resolved development of the specific rotation values of the final polymer triggered by (i) L-CPL,
(ii) R-CPL or (iii) normal UV light, respectively (reprinted with permission from Reference [68].
Copyright 2017 The Royal Society of Chemistry).

3. The Asymmetric Photo-Modulation of Chirality Polymers Based on Circularly Polarized Light

The photo-modulation of chiroptical properties based on functional materials has gained research
interest, and the approach could lead to the rapid development of smart materials or devices for
reversible information storage. It is believed that chiroptical polymers originate from the properties
of natural polymers, which have a specific one-handed helical structure in living matters. However,
the single-helical configuration (right- or left-handed) of chiroptical polymers was not stable. With
an external physical or chemical stimuli such as light, heating, ions, pH or solvents, the helical
configuration could be changed and may be reversed to opposite handedness. Recently, the circularly
polarized light-triggered photo-modulation of chiroptical properties has been widely researched in
many kinds of photochromophores [69–72]. Herein, the photo-modulation of the chiroptical properties
of polymers based on CPL is described.

3.1. Enantioselective Photo-Modulations of Azobenzene Polymers

Polymers that contain azobenzene chromophores have been widely investigated due to their
fortunate optical storage properties. Nikolova et al. first reported that with the illumination of
circularly polarized light, side-chain azobenzene liquid crystalline polyesters could exhibit a very large
circular anisotropy, and the CPL was the only chiral center [73]. An amorphous achiral azobenzene
(Azo) liquid crystalline polymer (p4MAN) was synthesized by Iftime et al. With the irradiation of
514 nm CPL, the opposite handedness of CPL produced enantiomeric structures (Figure 10). However,
upon switching the handedness of the external CPL, a reversible chiral signal switching between
two enantiomeric superstructures of the azobenzene liquid crystalline polymer could be achieved
successfully. While after several cycles of switching the handedness of the external CPL, the circular
dichroism (CD) signals of the polymers tended to decrease, and this phenomenon was attributed to
the orientation of the several azobenzene units which were perpendicular to the Azo film plane. After
the photoisomerization, the azobenzene chromophores would exhibit a cis-to-trans transfer, whereby
the Azo film plane underwent an angular reorientation. However, several Azo chromophores were
also out of the polymer film’s plane, and the final numbers of Azo units in the polymer film plane
would decrease so that the Azo liquid crystalline polymers exhibited some fatigue, leading to the CD
signal decrease [74].
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Ivanov et al. demonstrated that not only the liquid crystalline phase but also the amorphous
phase of achiral Azo polymers could form a helical structure upon illumination with CPL (Figure 11).
The liquid crystalline orientation represented one of the important factors in the fabrication of chiral
superstructure, as the circular momentum could transfer from the CPL to the azobenzene moiety in
the polymers [75].
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Kim et al. reported the CPL-driven chiral formation based on amorphous azobenzene polymer
films, and achiral epoxy-substituted azobenzene polymer PDO3 was synthesized in this work [76].
The amorphous azo polymer chains in the film were in a state of several layers, upon irradiation with
left circularly polarized Ar+ laser light, the linear polarized beam of the incident light would lead
to the azobenzene chromophores orienting in one way, which was perpendicular to the main axis
of the incident light (Figure 12). After passing across the first layer, the major axis of the incident
light could rotate following the counterclockwise direction. Therefore, the major axis of incident light
could rotate the same angle in the same direction after passing through the successive layers and the
final optical rotation of the polymer would be extended, thus generating the same handedness helical
structure in the amorphous azopolymer. This work not only broadened the asymmetric modulation of
Azo containing materials but is of great value to the deep understanding of the mechanisms behind
chirality photoinduction.
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2000 American Chemical Society).

To further study the influences of the azobenzene chromophores structure and the spacer
length during the CPL-triggered helical structure formation, several chiral azobenzene-containing
homopolymers were synthesized by Zheng et al (Figure 13). The results indicated that the above
samples with a short spacer length (0 or 2) did not generate any CD signals, while those with a
longer spacer length (6 or 11) produced clear CD signals. Interestingly, all the films irradiated with
442 nm linearly polarized light displayed a CD signal enhancement in the azobenzene moieties
absorbance region between 260 nm and 360 nm. However, the homopolymers with six methylene
units demonstrated the largest level of enhancement. During the modulation of the chirality process,
the cooperative dipolar interaction with the chiral side chains acted as a key factor in the arrangement
of the main chains of the polymers. With longer spacers (chiral side chains), the aggregation level of
chiral side chains was higher, which was convenient for the chirality transference and formation of
the helical backbones. This work will be of benefit to the design of more sensitive chiral polymers for
information storage and chiroptical switching [77].

The chiroptical properties of the azobenzene-substituted diacetylene (NADA) were also
researched by Zou et al (Figure 14). With the irradiation of 313 nm circularly polarized ultraviolet
light (CPUL), the LB films displayed supramolecular chirality, and evident CD signals were measured
by the CD spectra. Consequently, the handedness of the obtained LB films was consistent with
that of the CPUL. In this system, the chirality could transfer from the azobenzene units in the side
chains to the PDA backbone and could determine the helical direction of the PDA chains. During
the chirality transfer process, the stereoregular packing of the azobenzenes was believed to play an
important role in the determination of the enantiomeric helical PDA chains. Moreover, the above
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chiral LB film (irradiated with right-handed CPUL) was also irradiated with left-handed 442 nm CPL.
The azobenzene chromophores first changed their stereoregular packing to the opposite helical manner
(L-handed), then lead the PDA chains to form the opposite helical structure. Therefore, the modulation
of poly-azobenzene-substituted diacetylene (PNADA) LB film chirality could be achieved easily by
the CPL treatment. However, another finding should be noted, by changing the stereoregular packing
manner of the azobenzene chromophores, a partial inhomogeneous perturbation force was generated
against the chiral arrangement of the Azo chromophores, which was accompanied by generating
variations in the weakness of CD signals. In this way, the CD signals would decrease after a few cycles.
This research offered a novel model system for the deep understanding of the chirality transfer and
modulation based on azobenzene polymers [78].
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3.2. Enantioselective Photo-Modulations of Ketone-Containing Polymers

To further study the influence of CPL during the modulation chirality process, ketone-containing
polymers have also been researched by several groups. In 1999, Schuster and co-workers synthesized
a racemic acrylic-substituted bicyclic ketone, and the cholesteric phase of liquid crystals based on a
mixture of 4-cyano-4′-n-alkylbicyclohexanes could be obtained upon irradiation with CPL (Figure 15).
Owing to the different absorption properties of the isomers in the presence of left- or right-handed
CPL, the photoisomerization reaction of racemic acrylic-substituted bicyclic ketones could be triggered
and lead to an enantiomeric excess. The chirality could be transferred through the polymer chains
and induced the polymer to form the same helical structure. The enantiomeric excess (ee) value of the
bicyclic ketone could be easily modulated by controlling the handedness of the CPL and the irradiation
time, which could control the screw pitch and the switch from nematic to cholesteric forms of the
liquid crystalline materials [79].
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(reprinted with permission from Reference [79]. Copyright 1999 American Chemical Society).

With the same idea, Selinger et Al. switched the photoresolvable polymers between mirror
images with the tool of CPL in 2000 (Figure 16). The racemic mixture of the ketone-containing
group was induced to the polyisocyanate matrix. The polymers first produced no CD signals due
to the equal amount of isomers, however, after irradiation with CPL, the polymers could generate a
small enantiomeric excess, and noticeable CD signals could be measured in the region of the ketone
chromophore. This result demonstrated that circularly polarized light could enforce a disproportionate
excess to form a fixed helical structure in the polymers, even with the influence of large proportions of
other achiral pendants. Therefore, the helicity of the obtained polymers could be switched reversibly
with the alternation of the handedness of the CPL and could also easily return to the original states
without a CD signal upon irradiation by plane polarized light [80].
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3.3. Enantioselective Photo-Modulations of Fluorene-Based Polymers

The preparation of optical helical polymers and asymmetric synthesis based on CPL as the only
chiral source have been contributing great value and have been gaining increasing attention from
researchers. Herein, the CPL-triggered optical chirality induction and asymmetric synthesis of chiral
fluorene-based polymers (PDOF) have been outlined.

Similar to diacetylene, the structure of PDOF polymers also has no chiral center, due to the single
bonds of the fluorene units could be rotated. Therefore, the exchange between the two conformations
(P- and M-twists) can be achieved, and the enrichment of enantiomeric excess can also be obtained
by external stimuli, such as CPL. In 2012, Nakano et Al. prepared an achiral polymer film based on
the poly(9,9-di-n-octylfluoren-2,7-diyl). After irradiating with R-CPL for 6min, the optically active
PODF film displayed intense negative CD signals (CD-1, π–π* transition, approximately 400 nm)
(Figure 17). Interestingly, upon irradiating with L-CPL for 6 min, the CD signal of the PDOF film
(CD-2) disappeared completely. After additional irradiation with L-CPL for 6 min, an intense positive
CD signal could be noted at the same CD bond (CD-3), the spectra of CD-1 and CD-3 were almost
symmetrical. Therefore, the helical structure could be reversibly modulated with CPL [81].

In order to obtain a better understanding the mechanism during chirality induction and the
switching process of PDOF when irradiated by CPL, simulations of the chirality-switching free-energies
based on poly(9,9-dioctylfluoren-2,7-diyl) (PDOF) were calculated not only on an amorphous silica
surface but also in the vacuum phase by Nakano and co-workers (Figure 18). Based on the free-energy
landscape analysis, the achiral-to-chiral switching of PDOF occurred easily only on the matrix of
amorphous silica, where the activation free-energy was calculated to be 35 kcal mol−1. The interactions
between PDOF and amorphous silica played an important role during the chirality switching.
Compared with PDOF in the solution state or in a suspension, the fluorene-fluorene dihedral of
a PDOF film which was deposited on quartz glass could be twisted in a stepwise manner with the
irradiation of external CPL [82].

In 2013, for the first time, Fujiki et al. achieved the mirror symmetry breaking of achiral
azobenzene-alt-fluorene copolymer particles under the condition of optofluidic organic solvents as
well as with CPL irradiation (Figure 19). It was demonstrated that the medium of optofluidic organic
solvent, the wavelength, irradiation time and the ellipticity of the external CPL played important roles
in the chirality generation, switching, racemization and retention of the copolymer particles. The CPL
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could trigger the two conformations (P- and M-twists) with asymmetric broken, and the enrichment of
one enantiomeric excess could be finally obtained. With continual switching of the CPL handedness,
the reversible modulation of chirality in the fluorene-alt-azobenzene copolymer particles could be
achieved successfully [83]. This research would be helpful for the design of smart memory devices
with the use of the nanosized supramolecular assembly.Symmetry 2019, 11, x FOR PEER REVIEW 14 of 20 
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4. Conclusions

Homochirality is one of the universal geometric properties and has garnered remarkable
interest in recent years. The circularly polarized light-triggered asymmetric polymerization and
photo-modulation of chirality in polymers have gained considerable attention owing to the hypothesis
that CPL could transfer single chirality signals to polymers. Moreover, the asymmetric chemical
reaction based on CPL displayed several advantages including the purity of products without any
chiral dopants or catalysts, and the facile adjustment of CPL parameters such as intensity, wavelength,
polarization and interference. Outstanding examples of the asymmetric synthesis of homochirality
in polymers, which are based on the effective CPL irradiation technique for control of the molecular
asymmetry would help us acquire a better understanding of the mechanisms during single chirality
formation, transfer, amplification and modulation. Although significant progress on single chirality
induced by CPL has been made in recent years, the abundance of room for growth in this area also
needs further research attention, including (1) the fabrication of monomers with a more efficient
response to CPL with a large enantiomeric excess. (2) The utilization of CPL in the long-wavelength
region to expand the number of chiral materials for potential applications, owing to the fact that
CPL emitted from the universe is located in the infrared region. We hope this mini-review allows
researchers to find new ways to fabricate chiral materials with more efficiency for applications of
photolysis and photosynthesis as well as chiral recognition and to greater understand the probable
origin of homochirality in living matter.
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