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Abstract: The aim of the present analysis is to provide local similarity solutions of Casson fluid over
a non-isothermal cylinder subject to suction/blowing. The cylinder is placed inside a porous medium
and stretched in a nonlinear way. Further, the impact of chemical reaction, viscous dissipation,
and heat generation/absorption on flow fields is also investigated. Similarity transformations are
employed to convert the nonlinear governing equations to nonlinear ordinary differential equations,
and then solved via the Keller box method. Findings demonstrate that the magnitude of the friction
factor and mass transfer rate are suppressed with increment in Casson parameter, whereas heat
transfer rate is found to be intensified. Increase in the curvature parameter enhanced the flow field
distributions. The magnitude of wall shear stress is noticed to be higher with an increase in porosity
and suction/blowing parameters.

Keywords: Casson fluid; chemical reaction; cylinder; heat generation; magnetohydrodynamic
(MHD); slip

1. Introduction

Boundary layer flow on linear or nonlinear stretching surfaces has a wide range of engineering
and industrial applications, and has been used in many manufacturing processes, such as extrusion of
plastic sheets, glass fiber production, crystal growing, hot rolling, wire drawing, metal and polymer
extrusion, and metal spinning. The viscous flow past a stretching surface was first developed by
Crane [1]. Later on, this pioneering work was extended by Gupta and Gupta [2] and Chen and Char [3],
and the suction/blowing effects on heat transfer flow over a stretching surface were investigated.
Gorla and Sidawi [4] analyzed three-dimensional free convection flow over permeable stretching
surfaces. Motivated by this, the two-dimensional heat transfer flow of viscous fluid due to a nonlinear
stretching sheet was investigated by Vajravelu [5]. The similarity solutions for viscous flow over
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a nonlinear stretching sheet was obtained by Vajravelu and Cannon [6]. On the other hand, Bachok and
Ishak [7] studied the prescribed surface heat flux characteristics on boundary layer flow generated by
a stretching cylinder. Hayat et al. [8] analyzed the heat and mass transfer features on two-dimensional
flow due to a stretching cylinder placed through a porous media in the presence of convective boundary
conditions. The heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet
was discussed by Majeed et al. [9].

The study of magnetohydrodynamic (MHD) boundary layer flow towards stretching surface has
gained considerable attention due to its important practical and engineering applications, such as
MHD power generators, cooling or drying of papers, geothermal energy extraction, solar power
technology, cooling of nuclear reactors, and boundary layer flow control in aerodynamics. Vyas and
Ranjan [10] investigated two-dimensional flow over a nonlinear stretching sheet in the presence of
thermal radiation and viscous dissipation. They predicted that stronger radiation boosts the fluid
temperature field. The effect of magnetic field on incompressible viscous flow generated due to
stretching cylinder was analyzed by Mukhopadhyay [11], and it was observed that a larger curvature
parameter allowed more fluid to flow. Fathizadeh et al. [12] studied the MHD effect on viscous fluid
due to a sheet stretched in a nonlinear way. Akbar et al. [13] developed laminar boundary layer flow
induced by a stretching surface in the presence of a magnetic field. They noticed that the intensity of
the magnetic field offered resistance to the fluid flow, because of which, skin friction was enhanced.
In another study, Ellahi [14] demonstrated the effects of magnetic field on non-Newtonian nanofluid
through a pipe.

The momentum slip at a stretching surface plays an important role in the manufacturing processes
of several products, including emulsion, foams, suspensions, and polymer solutions. In recent years,
researchers have avoided no-slip conditions and take velocity slip at the wall. The reason is that it
has been proven through experiments that momentum slip at the boundary can enhance the heat
transfer. Fang et al. [15] obtained the exact solution for two-dimensional slip flow due to stretching
surface. The slip effects on stagnation point flow past a stretching sheet were numerically analyzed by
Bhattacharyya et al. [16]. The slip effect on viscous flow generated due to a nonlinear stretching surface
in the presence of first order chemical reaction and magnetic field was developed by Yazdi et al. [17].
They concluded that velocity slip at the wall reduced the friction factor. Hayat et al. [18] investigated
the impact of hydrodynamic slip on incompressible viscous flow over a porous stretching surface under
the influence of a magnetic field and thermal radiation. They predicted that suction and slip parameters
have the same effect on fluid velocity. Seini and Makinde [19] analyzed the hydromagnetic boundary
layer flow of a viscous fluid under the influence of velocity slip at the wall. They noticed that wall shear
stress enhanced with the growth of the magnetic parameter. Motivated by this, Rahman et al. [20]
discussed the slip mechanisms in boundary layer flow of Jeffery nanofluid through an artery, and the
solutions were achieved by the homotopy perturbation method.

In the recent years, the analysis of non-Newtonian fluid past stretching surfaces has gained the
attention of investigators due to its wide range practical applications in several industries, for instance,
food processes, ground water pollution, crude oil extraction, production of plastic materials, cooling of
nuclear reactors, manufacturing of electronic chips, etc. Due to the complex nature of these fluids,
different models have been proposed. Among other non-Newtonian model, the Casson fluid model is
one of them. The Casson fluid model was originally developed by Casson [21] for the preparation of
printing inks and silicon suspensions. Casson fluid has important applications in polymer industries
and biomechanics [22]. The Casson fluid model is also suggested as the best rheological model
for blood and chocolate [23,24]. For this reason, many authors have considered Casson fluid for
different geometries. Shawky [25] analyzed the heat and mass transfer mechanisms in MHD flow of
Casson fluid over a linear stretching sheet saturated in a porous medium. Mukhopadhyay [26] and
Medikare et al. [27] investigated heat transfer effects on Casson fluid over a nonlinear stretching sheet
in the absence and presence of viscous dissipation, respectively. Mythili and Sivaraj [28] considered
the geometry of cone and flat plate and studied the impact of chemical reaction on Casson fluid flow
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with thermal radiation. The impact of magnetic field and heat generation/absorption on heat transfer
flow of Casson fluid through a porous medium was presented by Ullah et al. [29]. Imtiaz et al. [30]
developed the mixed convection flow of Casson fluid due to a linear stretching cylinder filled with
nanofluid with convective boundary conditions.

The above discussion and its engineering applications is the source of motivation to investigate
the electrically conductive flow of Casson fluid due to a porous cylinder being stretched in a nonlinear
way. It is also clear from the published articles that the mixed convection slip flow of Casson fluid
for the geometry of a nonlinear stretching cylinder saturated in a porous medium in the presence
of thermal radiation, viscous dissipation, joule heating, and heat generation/absorption has not yet
been analyzed. It is worth mentioning that the current problem can be reduced to the flow over a flat
plate (n = 0 and γ = 0), linear stretching sheet (n = 1 and γ = 0), nonlinear stretching sheet (γ = 0),
and linear stretching cylinder (n = 1). Local similarity transformations are applied to transform the
governing equations. The obtained system of equations are then computed numerically using the
Keller box method [31] via MATLAB. The variations of flow fields for various pertinent parameters are
discussed and displayed graphically. Comparison of the friction factor is made with previous literature
results and close agreement is noted. The accuracy achieved has developed our confidence that the
present MATLAB code is correct and numerical results are accurate.

2. Mathematical Formulation

Consider a steady, two-dimensional, incompressible mixed convection slip flow of Casson fluid
generated due to a nonlinear stretching cylinder in a porous medium in the presence of chemical
reaction, slip, and convective boundary conditions. The cylinder is stretched with the velocity of
uw(x) = cxn, where c, n (n = 1 represents linear stretching and n , 1 corresponds to nonlinear
stretching) are constants. The x-axis is taken along the axis of the cylinder and the r-axis is measured in
the radial direction (see Figure 1). It is worth mentioning here that the momentum boundary layer
develops when there is fluid flow over a surface; a thermal boundary layer must develop if the bulk
temperature differs from the surface temperature and a concentration boundary layer develops above
the surfaces of species in the flow regime.
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A transverse magnetic field B(x) = B0x(n−1)/2 is applied in the radial direction with constant B0.
Further, it is also assumed that surface of cylinder is heated by temperature T f (x) = T∞ + Ax2n−1,
in which A is a reference temperature. Concentration is Cs(x) = C∞+ B∗x2n−1, where B∗ is the reference
concentration. The temperature and concentration at free stream are T∞ and C∞, respectively.

The rheological equation of state for an isotropic and incompressible flow of a Casson fluid is

τi j =

 2
(
µB + py/

√
2π1

)
ei j, π1 > πc,

2
(
µB + py/

√
2πc

)
ei j, π1 < πc,

Here, π1 = ei jei j and ei j is the (i, j) − th component of the deformation rate, π1 is the product
of the component of deformation rate with itself, πc is a critical value of this product based on the
non-Newtonian model, µB is the plastic dynamic viscosity of the non-Newtonian fluid, and py is the
yield stress of the fluid.

Under the above assumption, the governing equations for Casson fluid along with the continuity
equation are given as

∂(ru)
∂x

+
∂(rυ)
∂r

= 0 (1)

u
∂u
∂x

+ υ
∂u
∂r

= ν

(
1 +

1
β

)
1
r
∂
∂r

(
r
∂u
∂r

)
−

(
σB2(x)
ρ

+

(
1 +

1
β

)
νφ

k1

)
u + gβT(T − T∞) + gβC(C−C∞) (2)

u
∂T
∂x

+ υ
∂T
∂r

= α
(
1 +

4
3

Rd

)1
r
∂
∂r

(
r
∂T
∂r

)
−
ν
cp

(
1 +

1
β

)(
∂u
∂r

)2

+
σB2(x)
ρcp

u2 +
Q
ρcp

(T − T∞) (3)

u
∂C
∂x

+ υ
∂C
∂r

= D
1
r
∂
∂r

(
r
∂C
∂r

)
− kc(C−C∞) (4)

In the above expressions u and υ denote the velocity components in x and r direction, respectively,
ν is kinematic viscosity, σ is the electrically conductivity, β is the Casson parameter, ρ is the fluid
density, φ is the porosity, k1(x) = k0/x(n−1) is the variable permeability of porous medium, g is the
gravitational force due to acceleration, βT is the volumetric coefficient of thermal expansion, βC the

coefficient of concentration expansion, α =
k
ρcp

is the thermal diffusivity of the Casson fluid, k is

the thermal conductivity of fluid, cp is the heat capacity of the fluid, Rd =
4σ∗T3

∞

kk1
∗

is the radiation

parameter, Q(x) = Q0xn−1 is heat generation/absorption coefficient, D is the coefficient of mass
diffusivity, kc(x) = ak2xn−1 is the variable rate of chemical reaction, k2 is a constant reaction rate and a
is the reference length along the flow.

The corresponding boundary conditions are written as follows

u = uw(x) + N1ν

(
1 +

1
β

)
∂u
∂r

, k
∂T
∂r

= −h f
(
T f − T

)
, D

∂C
∂r

= −hs(Cs −C) at r = d (5)

u→ 0, T→ T∞ , C→ C∞ as r→∞. (6)

Here N1(x) = N0x−(
n−1

2 ) represents velocity slip with constant N0, h f (x) = h0x
n−1

2 and hs(x) =

h1x
n−1

2 represents the convective heat and mass transfer with h0, h1 being constants,
Now introduce the stream function ψ, a similar variable η and the following

similarity transformations;

ψ =

√
2νc

(n + 1)
x

n+1
2 d f (η), η =

r2
− d2

2d

√
(n + 1)c

2ν
x

n−1
2 , θ(η) =

T − T∞
T f − T∞

,ϕ(η) =
C−C∞
Cs −C∞

(7)
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Equation (1) is identically satisfied by the introduction of the equation

u =
1
r
∂ψ

∂r
, υ = −

1
r
∂ψ

∂x
(8)

The system of Equations (2)–(4) will take the form

(
1 + 1

β

) [(
1 + 2

√
2

n+1γη
)

f ′′′ + 2
√

2
n+1γ f ′′

]
+ f f ′′ − 2n

n+1 f ′2 − 2
(n+1)

(
M +

(
1 + 1

β

)
K
)

f ′ + 2
(n+1) (Grθ+ Gmϕ) = 0 (9)

(
1 + 4

3 Rd
) [(

1 + 2
√

2
n+1γη

)
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√
2

n+1γθ
′

]
+ Pr fθ′ − 2
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2n−1
n+1
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Pr f ′θ + MEc f ′2

(
1 + 1

β

)(
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√
2

n+1γη
)
PrEc f ′′ 2 +

(
2

n+1

)
εθ = 0 (10)

1
Sc

[(
1 + 2

√
2

n+1γη
)
ϕ′′ + 2

√
2

n+1γϕ
′

]
+ fϕ′ − 2

(
2n−1
n+1

)
f ′ϕ− 2

(n+1)Rϕ = 0 (11)

The associated boundary conditions in Equations (5) and (6) are transformed as

f (0) =
√

2
n+1 S, f ′(0) = 1 + δ

√
n+1

2

(
1 + 1

β

)
f ′′ (0), θ′(0) = −

(√
2

n+1

)
Bi1[1− θ(0)]

ϕ′(0) = −
(√

2
n+1

)
Bi2[1−ϕ(0)]

, (12)

f ′(∞) = 0, θ(∞) = 0, ϕ(∞) = 0. (13)

In the above expressions, γ, M, K, Gr, Gm, S (S > 0 corresponds to suction and S < 0 indicates
blowing), δ, Pr, Ec, ε (ε > 0 is for heat generation and ε < 0 denotes heat absorption), Sc, Bi1, Bi2,
and R (R > 0 corresponds to destructive chemical reaction and R = 0 represents no chemical reaction)
are the curvature parameter, magnetic parameter, porosity parameter, thermal Grashof number,
mass Grashof number, suction/blowing parameter, slip parameter, Prandtl number, Eckert number,
heat generation/absorption parameter, Schmidt number, Biot numbers and chemical reaction parameter,
and are defined as

γ =

√
νx1−n

cd2 , M =
σB2

0

ρc
, K =

νφ

k0c
, Gr =

gβTA
c2 , Gm =

gβCB∗

c2 ,

S = −V0

√
1
cν

, δ = N0
√
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ν
α

, Ec =
uw

2

cp
(
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) , ε =
Q0
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,

Sc =
ν
D
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h0

k

[
ν
c

]1/2

, Bi2 =
h1

D

[
ν
c

]1/2

, R =
ak2

c

The wall skin friction, wall heat flux, and wall mass flux, respectively, are defined by

τw = µB

(
1 +

1
β

) [
∂u
∂r

]
r=d

, qw = −

((
α+

16σ∗T3
∞

3ρcpk1
∗

)
∂T
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)
r=d

and qs = −D
(
∂C
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)
r=d

The dimensionless skin friction coefficient C fx =
τw

ρu2
w

, the local Nusselt number Nux =
xqw

α(T f − T∞)

and local Sherwood number Shx =
xqs

DB(Cw −C∞)
on the surface along x—direction, local Nusselt

number Nux and Sherwood number Shx are given by

(Rex)
1/2C fx =

√
n+1

2

(
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β

)
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−1/2Nux = −
√
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(
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(√
n+1

2

)
ϕ′(0)

where Rex =
cxn+1

ν
is the local Reynold number.
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3. Results and Discussion

The system of Equations (9)–(11) are solved numerically by using the Keller-box method [31]
and numerical computations are carried out for different values of physical parameters including
curvature parameter γ, Casson fluid parameter β, nonlinear stretching cylinder parameter n, magnetic
parameter M, porosity parameter K, Grashof number Gr, mass Grashof number Gm, Prandtl number
Pr, radiation parameter Rd, Eckert number Ec, heat generation/absorption parameter ε, Schmidt
number Sc, chemical reaction parameter R, slip parameter δ, and Biot numbers Bi1, Bi2. In order to
validate the algorithm developed in MATLAB software for the present method, the numerical results
for skin friction coefficient are compared with the results of Akbar et al. [13], Fathizadeh et al. [12],
Fang et al. [15], and Imtiaz et al. [30], and presented in Table 1. Comparison revealed a close agreement
with them.

Table 1. Comparison of skin friction coefficient f ′′(0) for different values of M with β→∞ , Bi1 →∞ ,
Bi2 →∞ , n = 1 and γ = M = K = Gr = Gm = S = δ = Rd = Ec = ε = R = 0.(

1 + 1
β

)
f ′′(0)

M Akbar et al.
[13]

Fathizadeh et al.
[12]

Fang et al.
[15]

Imtiaz et al.
[30]

Present
Results

0 −1 −1 −1 −1 −1

1 −1.4142 −1.4142 −1.4142 −1.4142 −1.4142

5 −2.4495 −2.4494 −2.4494 −2.4494 −2.4495

10 −3.3166 - - - −3.3166

Figures 2–10 are depicted to see the physical behavior of γ, β, n, M, K, Gr, Gm, δ, and S on
velocity profile. Figure 2 exhibits the variation of γ on fluid velocity for n = 1 (linear stretching)
and n , 1 (nonlinear stretching). It is noticed that fluid velocity is higher for increasing values of γ.
Since the increase in γ leads to reduction in the radius of curvature, it also reduces cylinder area. Thus,
the cylinder experiences less resistance from the fluid particles and fluid velocity is enhanced. It can
also be seen that the momentum boundary layer is thicker with increased γ when n , 1. The influence
of β on velocity profile for different values of S is depicted in Figure 3. In all cases, the fluid velocity is
a decreasing function of β. The reason is that the fluid becomes more viscous with the growth of β.
Therefore, more resistance is offered which reduces the momentum boundary layer thickness. Figure 4
elucidates the effect of n on velocity profile for M = 0 and M , 0. It is evident that increasing values of
n enhance the fluid velocity. Also, this enhancement is more pronounced when M , 0. The momentum
boundary layer is thicker when n , 1.

The variation of M for K = 0 and K , 0 on the velocity profile is presented in Figure 5. As expected,
the strength of the magnetic field lowers the fluid flow. It is an agreement with the fact that increase in
M produces Lorentz force that provides resistance to the flow, and apparently thins the momentum
boundary layer across the boundary. It can also be seen that the fluid velocity is more influenced
with M when K = 0. A similar kind of variation is observed on velocity profile for different values
of K, as displayed in Figure 6. Since the porosity of porous medium provides resistance to the
flow, fluid motion slows down and produces larger friction between the fluid particles and the
cylinder surface. The impact of Gr for M = 0 and M , 0 on velocity profile is depicted in Figure 7.
The convection inside the fluid rises as the temperature difference

(
T f − T∞

)
enhances due to the growth

of Gr. In addition, increase in Gr leads to stronger buoyancy force, in which case, the momentum
boundary layer becomes thicker. The same kind of physical explanation can be given for the effect of
Gm on velocity profile (see Figure 8). The variation of S on velocity profile for both n = 1 and n , 1 is
portrayed in Figure 9. Clearly, the fluid velocity declines when S > 0, whereas a reverse trend is noted
when S < 0. Physically, stronger blowing forces the hot fluid away from the surface, in which case the
viscosity reduces and the fluid gets accelerated. On the other hand, wall suction (S > 0) exerts a drag
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force at the surface and hence thinning of the momentum boundary layer. Figure 10 demonstrates
the effect of δ on velocity profile for K = 0 and K , 0. It can be easily seen that fluid velocity falls
with increase in δ. Since the resistance between the cylinder surface and the fluid particles rises with
increase in δ, the momentum boundary layer become thinner.
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magnetic parameter M.

Symmetry 2019, 11, 531 9 of 28 

 

 

Figure 4. Effect of nonlinear stretching parameter n  on velocity profile in the presence and absence 
of magnetic parameter M . 

 
Figure 5. Effect of magnetic parameter M  on velocity profile in the presence and absence of 
porosity parameter K . 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

f '
 ( η

)

η

M = 0
M = 1

n = 1, 2.5, 5, 10

γ = 0.2, β = 0.6, K = 0.5, Gr = 0.4, Gm = 0.8,
S = 0.2, δ = 0.2, Rd = 0.4, Pr = 2, Ec = 0.2
ε = 0.4, Sc = 0.62, Bi1 = 0.2, Bi2 = 0.4, R = 0.5

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

f '
 ( η

)

η

K = 0
K = 2

M = 0, 1, 2.5, 3.5

γ = 0.2, β = 0.6, n = 5, Gr = 0.4, Gm = 0.8,
S = 0.2, δ = 0.2, Rd = 0.4, Pr = 2, Ec = 0.2
ε = 0.4, Sc = 0.62, Bi1 = 0.2, Bi2 = 0.4, R = 0.5

Figure 5. Effect of magnetic parameter M on velocity profile in the presence and absence of porosity
parameter K.
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Figure 6. Effect of porosity parameter K on velocity profile for different values of suction/blowing
parameter S.
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Figure 7. Effect of Grashof number Gr on velocity profile in the presence and absence of magnetic
parameter M.
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Figure 8. Effect of mass Grashof number Gm on velocity profile in the presence and absence of magnetic
parameter M.
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Figure 9. Effect of suction/blowing parameter S on velocity profile for nonlinear stretching parameter n.
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Figure 10. Effect of slip parameter δ on velocity profile in the presence and absence of porosity
parameter K.

Figures 11–21 are plotted to get insight on the variation of γ, β, n, M, K, S, Pr, Rd, Ec, ε, and Bi1 on
the temperature profile. Figure 11 illustrates the variation of γ on dimensionless temperature profile
for β→∞ (Newtonian fluid) and β = 0.6 (Casson fluid). It is noticed that temperature rises with
increment in γ. A thermal boundary layer thickness is also noted. Figure 12 displays the influence
of β on temperature profile for various values of S. It is noticeable that fluid temperature declines
with the increase in β for all the three cases of S. The reason is that increase in β implies a reduction
in yield stress, and consequently the thickness of the thermal boundary layer reduces. The effect of
n on temperature profile for M = 0 and M , 0 is examined in Figure 13. It is clear from this figure
that temperature is a decreasing function of n. It is also noticed that the fluid temperature thermal
boundary layer is thicker for a linear stretching cylinder (n = 1) as compared to nonlinear stretching of
the cylinder (n , 1). Figure 14 shows the variation of M on temperature profile for different values of
S. It is noticeable that stronger magnetic field rises the fluid temperature in the vicinity of stretching
cylinder. Because increasing M enhances the Lorentz force, this force makes the thermal boundary
layer thicker. The same kind of behavior is noticed for the effect of K on dimensionless temperature
profile for δ = 0 and δ , 0, as presented in Figure 15.

Figure 16 reveals the influence of S on temperature profile for n = 1 (linear stretching) and
n , 1 (nonlinear stretching). Clearly, fluid temperature falls when S > 0, whereas it rises when S < 0.
Since the wall suction offers resistance to fluid flow, the thermal boundary layer becomes thinner,
and the opposite occurs when S < 0. The variation of Pr on dimensionless temperature profile for
Ec = 0 and Ec = 0.2 is depicted in Figure 17. The Prandtl number is defined as the ratio of momentum
diffusivity to thermal diffusivity. As expected, fluid temperature drops with the growth of Pr. It is
a well-known fact that higher thermal conductivities are associated with lower Prandtl fluids, therefore
heat diffuses quickly from the surface as compared to higher Prandtl fluids. Thus, Pr can be utilized to
control the rate of cooling in conducting flows. Figure 18 exhibits the effect of Rd on the temperature
profile for different values of S. It is noticeable that the strength of Rd boosts the temperature. The larger
surface heat flux corresponds to larger values of Rd, causing the fluid to be warmer.
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Figure 19 illustrates the influence of Ec on the temperature profile for K = 0 and K , 0. It is noted
that the temperature is higher for higher values of Ec. Physically this is true, because viscous dissipation
generates heat energy due to friction between fluid particles and thereby thickens the thermal boundary
layer structure. It is also observed from this figure that in the presence of porous medium, the strength
of Ec effectively enhances the fluid temperature. The influence of ε on temperature profile for M = 0
and M , 0 is displayed in Figure 20. It is clear from this graph that the temperature is enhanced when
ε > 0 (heat generation), whereas the opposite trend is observed when ε < 0 (heat absorption). Internal
heat generation causes the heat energy to be enhanced. Consequently, the heat transfer rate rises and
thickens the thermal boundary layer. Besides, the heat absorption causes a reverse effect, i.e. the heat
transfer rate and the thermal boundary layer thickness are reduced. Figure 21 reveals the variation
of Bi1 on the dimensionless temperature profile for K = 0 and K , 0. The Biot number is the ratio
of the internal thermal resistance of a solid to the boundary layer thermal resistance. It is noticed
that fluid temperature is higher for larger values of Bi1. The reason is that increment in Bi1 keeps the
convection heat transfer higher and the cylinder thermal resistance lower. It is worth mentioning
here that when Bi1 < 0.1, the internal resistance to heat transfer is negligible, representing that the
value of k is much larger than h0, and the internal thermal resistance is noticeably lower than the
surface resistance. On the other hand, when Bi1 →∞ the higher Biot number intends that the external
resistance to heat transfer reduces, indicating that the surface and the surroundings temperature
difference is minor and a noteworthy contribution of temperature to the center comes from the surface
of the stretching cylinder.
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Figure 11. Effect of curvature parameter γ on temperature profile for Newtonian fluid β = ∞ and
Casson fluid β = 0.6.
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Figure 12. Effect of Casson fluid parameter β on temperature profile for different values of
suction/blowing parameter S.
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Figure 13. Effect of nonlinear stretching parameter n on temperature profile in the presence and absence
of magnetic parameter M.
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Figure 14. Effect of magnetic parameter M on temperature profile for different values of suction/blowing
parameter S.
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Figure 15. Effect of porosity parameter K on temperature profile in the presence and absence of slip
parameter δ.
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Figure 16. Effect of suction/blowing parameter S on temperature profile for different values of nonlinear
stretching parameter n.
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Figure 17. Effect of Prandtl number Pr on temperature profile in the presence and absence of Eckert
number Ec.
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Figure 18. Effect of radiation parameter Rd on temperature profile for different values of suction/blowing
parameter S.
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Figure 19. Effect of Eckert number Ec on temperature profile in the presence and absence of porosity
parameter K.
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Figure 20. Effect of heat generation/absorption parameter ε on temperature profile in the presence and
absence of magnetic parameter M.
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Figure 21. Effect of Biot number Bi1 on temperature profile in the presence and absence of porosity
parameter K.

Figures 22–31 display the variation of γ, β, n, M, K, δ, S, Sc, R, and Bi1 on concentration profile,
respectively. Figure 22 elucidates the effect of γ on concentration profile for β→∞ (Newtonian fluid)
and β = 0.6 (Casson fluid). It is found that increasing values of γ enhances the fluid concentration
and associated boundary layer thickness. Figure 23 demonstrates the influence of β on concentration
profile for M = 0 and M , 0. It is noted that fluid concentration is higher as β grows. The viscosity
of the fluid increases with increasing β, in which case the concentration rises and the concentration
boundary layer becomes thicker. The opposite behavior is noticed for the effect of n on concentration
profile for various values of S (see Figure 24). It is also observed that thickness of concentration
boundary layer shortens for large n. Figure 25 determines the variation of M on the dimensionless
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concentration profile for K = 0 and K , 0. It is seen that fluid concentration is higher for higher
values of M. As mentioned earlier for velocity and temperature profiles, fluid motion reduces due to
magnetic field and results in an enhancement in thermal and concentration boundary layer thicknesses.
A similar trend is observed for the effect of K and δ on the concentration profile, as plotted in Figures 26
and 27, respectively. The growth of both parameters offers resistance to the fluid particles and the
concentration boundary layer becomes thicker. Figure 28 shows that fluid concentration reduces when
S > 0, while it is enhanced when S < 0. Indeed, when mass suction occurs, some of the fluid is sucked
through the wall which thins the boundary layer; on the contrary, blowing thickens the concentration
boundary layer structure.

Figure 29 examines the variation of Sc (Sc = 0.30, 0.62, 0.78, 0.94, 2.57 corresponds to hydrogen,
helium, water vapor, hydrogen sulphide, and propyl Benzene) on the dimensionless concentration
profile when β→∞ (Newtonian fluid) and β = 0.6 (Casson fluid). For both fluids, an increase in Sc
reduces the fluid concentration. Since higher values of Sc lead to higher mass transfer rate, the thickness
of the concentration boundary layer declines. The effect of R on the concentration distribution for
different values of S is depicted in Figure 30. It is clear that fluid concentration drops with the growth
of R. Physically this makes sense, because the decomposition rate of reactant species enhances in the
destructive chemical reaction (R > 0). Consequently, the mass transfer rate grows and thickens the
concentration boundary layer. Figure 31 exhibits the variation of Bi2 on concentration distribution for
M = 0 and M , 0. It is noticeable that fluid concentration rises with increasing Bi2. As increase in Biot
number enhances the temperature field, the concentration field excites, making the solutal boundary
layer thicker.
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Figure 22. Effect of curvature parameter γ on concentration profile for Newtonian fluid β = ∞ and
Casson fluid β = 0.6.
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Figure 23. Effect of Casson parameter β on concentration profile in the presence and absence of magnetic
parameter M.
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Figure 24. Effect of nonlinear stretching parameter n on concentration profile for different values of
suction/blowing parameter S.
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Figure 25. Effect of magnetic parameter M on concentration profile in the presence and absence of
porosity parameter K.
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Figure 26. Effect of porosity parameter K on concentration profile for different values of suction/blowing
parameter S.
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Figure 27. Effect of slip parameter δ on concentration profile in the presence and absence of porosity
parameter K.
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Figure 28. Effect of suction/blowing parameter S on concentration profile in the presence and absence
of magnetic parameter M.



Symmetry 2019, 11, 531 22 of 27Symmetry 2019, 11, 531 23 of 28 

 

 

Figure 29. Effect of Schmidt number Sc  on concentration profile for Newtonian fluid β = ∞  and 
Casson fluid 0.6β = . 

. 

Figure 30. Effect of chemical reaction parameter R  on concentration profile for different values of 
suction/blowing parameter S . 

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 

 

φ 
( η

)

η

β = ∞
β = 0.6

Sc = 0.30, 0.62, 0.78, 0.94, 2.57

γ = 0.2, n = 5, M = 0.4, K = 0.2, Gr = 0.5,    
Gm = 0.4, S = 0.2, δ = 0.2, Pr = 2, Rd = 0.4, 
Ec = 0.2, ε = 0.4, Bi1 = 0.2, Bi2 = 0.4, R = 0.5

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 

 

φ 
( η

)

η

S = -0.5
S = 0
S = 0.5

R = 0, 0.5, 1, 2

γ = 0.2, β = 0.6, n = 5, M = 0.4, K = 0.2,     
Gr = 0.5, Gm = 0.4, δ = 0.2, Pr = 2, Rd = 0.4, 
Ec = 0.2, ε = 0.4, Sc = 0.62, Bi1 = 0.2, Bi2 = 0.4

Figure 29. Effect of Schmidt number Sc on concentration profile for Newtonian fluid β = ∞ and Casson
fluid β = 0.6.
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Figure 30. Effect of chemical reaction parameter R on concentration profile for different values of
suction/blowing parameter S.
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Figure 31. Effect of Biot number Bi1 on concentration profile in the presence and absence of magnetic
parameter M.

Figures 32–35 depict the effect of the skin friction coefficient, Nusselt number, and Sherwood
number for different values of γ, β, M, K, n, S, Ec, and R, respectively. Figure 32 reveals the variation of
wall shear stress for various values of γ, β, and M. It is noted that the absolute values of wall shear
stress increase as γ and M increase, whereas the opposite is observed for the effect of β. It is also
noticeable that the values of friction factor are negative, which shows that the stretching cylinder
experiences a drag force from the fluid particles. Moreover, the effect of γ on wall shear stress is more
pronounced for Casson fluid. The effect of K, n, and S on dimensionless skin friction coefficient is
examined in Figure 33. This figure shows that friction factor absolute values decline as K, n, and S
increase. Figure 34 portrays the variation of Nusselt number for various values of γ, β, and Ec. It is
shown that heat transfer rate drops as γ and Ec increase, whereas they increase for larger values of β.
However, the heat transfer rate is more influenced for Casson fluid. It is also noted that heat transfer
rate is negative for higher values of Ec. These negative values show that heat is transferred from the
working fluid to the stretching surface. Finally, the effect of Sherwood number for various γ, β, and R
is illustrated in Figure 35. It is found that the mass transfer rate is an increasing function of γ and R
and a decreasing function of β.
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Figure 32. Variation of skin friction coefficient for various values of Casson fluid parameter β, curvature
parameter γ, and magnetic parameter M.
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Figure 33. Variation of skin friction coefficient for various values of nonlinear stretching parameter n,
porosity parameter K, and suction/blowing parameter S.
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Figure 34. Variation of Nusselt number for various values of Casson parameter β, curvature parameter
γ, and Eckert number Ec.
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4. Conclusions

In the present study, the influence of chemical reaction on MHD slip flow of Casson fluid
due to nonlinear cylinder stretching was investigated numerically. Similarity solutions for velocity,
temperature, and concentration distributions are achieved via the Keller box method. The numerical
results of wall shear stress and heat transfer rate are also compared as a limiting case. The effect of
physical parameters, namely, unsteadiness parameter γ, Casson parameter β, nonlinear stretching
parameter n, magnetic parameter M, porosity parameter K, thermal Grashof number Gr, mass Grashof
number Gm, Prandtl number Pr, radiation parameter Rd, Eckert number Ec, heat generation/absorption
parameter ε, Schmidt number Sc, chemical reaction parameter R, suction/blowing parameter S,
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slip parameter δ, and Biot numbers Bi1, Bi2 are discussed and displayed graphically. Some interesting
observations from the present analysis are as follow:

1. The fluid velocity, temperature, and concentration are found to increase with γ.
2. The magnitude of wall shear stress and mass transfer rate increase with the growth of β, whereas

the heat transfer rate is enhanced.
3. The effect of M on fluid velocity is more pronounced when K = 0 (nonporous medium).
4. The temperature field is more influenced with increasing Ec when K , 0.
5. The velocity, temperature, and concentration distributions decrease when S > 0, while the reverse

trend is seen when S < 0.
6. The concentration boundary layer is observed to be thinner during destructive chemical reaction.
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