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Abstract: This article investigates the two-dimensional creeping flow of a non-Newtonian micropolar
fluid in a small width permeable channel. Fluid is absorbed through permeable walls at a variable rate.
This situation arises in filtration and mass transfer phenomena in industrial and engineering processes.
The exact solution of the equations of motion is obtained. Graphs of the velocity profiles and pressure
drop reveal the significant impact of the non-Newtonian nature of the micropolar fluid on the
flow. The obtained solutions are used to discuss the hydrodynamical aspects of the physiological
phenomenon of blood filtration in an artificial kidney, the flat plate dialyzer (FPD). Expressions for
finding the ultrafiltration rate and mean pressure drop in an FPD are derived. Ultrafiltration rate
and the mean pressure difference in an FPD are computed using derived expressions. A comparison
of these with the existing empirical and experimental results shows a good agreement. For certain
values of parameters, the derived form of the flow rate reveals that the axial flow rate in an FPD
decays exponentially along the membrane length. This is a well-established and admitted result used
by several researchers for studying the hydrodynamics of blood flow in renal tubules of kidneys. It is
concluded that the presented model can be used to study the hydrodynamical aspects of blood flow
in an FPD.

Keywords: micropolar fluid; permeable channel; flat plate dialyzer; filtration rate

1. Introduction

Ultrafiltration and reverse osmosis are encountered in many industrial and biological processes.
Reverse osmotic desalination, glomerular tubular ultrafiltration, transpiration cooling, proximal
tubular reabsorption, and the process of blood filtration in an artificial kidney are some examples of
these processes [1–7]. In these processes, the filtering fluid is normally pumped at an elevated pressure
through porous-walled channels and tubes. For example, in the human body, the renal tubules of
kidneys can be approximated by long narrow permeable tubes [2,3,5]. In the blood purification process
in extra-corporeal circuits, the fluid commonly flows between flat parallel membranes [5,8].

In order to study fluid flows in the filtration process, one must characterize both the normal and
tangential components of velocity to the porous wall since the usual Poiseuille law fails to describe
such flow situations [9]. In the literature, Berman’s work is highly cited in the study of laminar flow
in porous channels and tubes [10,11]. In his studies, Berman obtained perturbation solutions for the
velocity components and the pressure distribution in a porous-walled channel and annulus whose wall
reabsorbs fluid at a constant rate. Steady motion of an incompressible Newtonian fluid was considered
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in porous-walled ducts with constant suction/injection velocity at the walls. A two-dimensional
steady-state and laminar flow of Newtonian fluid in a porous tube was studied by Yuan et al. [12].
They investigated the effect of injection and suction velocity on the flow in detail by solving the
Navier–Stokes equations using the perturbation method.

A mathematical model for the hydrodynamics of the blood filtration in the renal tubule of human
kidneys was studied in a couple of articles by Macey [2,3]. In his studies, Macey assumed the blood
to be an incompressible Newtonian fluid and the renal tubule as a finite length porous-walled tube
in which the flow rate decays linearly and exponentially, respectively. Low Reynolds number flow
was assumed, and the exact solution for the velocity field and pressure distribution were obtained.
Kozinski et al. [8] extended the work of Macey for porous-walled channels and tubes whose walls
reabsorb fluid at an exponential rate. In recent years, Haroon et al. [13] proposed a mathematical model
for fluid flow in renal tubules of kidneys. A two-dimensional model of creeping flow of Newtonian
fluid in a permeable channel was proposed, where the fluid is absorbed through channel walls at a
uniform rate. Siddiqui et al. [14] presented the creeping flow of an incompressible Newtonian fluid in
a permeable channel with linear seepage velocity at the wall. An application to renal tubular flow was
also furnished.

However, in all articles enlisted in this literature review,

• the fluid flowing in the channel was assumed to be Newtonian in nature,
• the no-slip condition was assumed to be held at the permeable wall,
• a seepage velocity of a constant, linear, or exponential type at the porous wall was assumed

in advance.

Most of the industrial and biological fluids are admitted to be non-Newtonian [15], and the
classical Newton’s law of viscosity fails to describe the complex rheological properties of these
fluids. Among many existing constitutive models representing non-Newtonian fluids, the micropolar
fluid model is admitted to be a better and frequently-used model for physiological and biological
fluids [16,17]. The no-slip condition is frequently used in the study of fluid mechanics problems.
It states that the tangential velocity of the fluid layer in the region adjacent to boundaries has the same
velocity as that of the boundary [9]. However, in many practical situations, this condition may fail to
be valid, particularly when there are naturally permeable boundaries of the flow geometry [9,18,19].
A very thin layer of the fluid in the region adjacent to the permeable boundary slips, due to which a
difference in the velocities of fluid layer and boundaries is encountered. Boundary conditions for a
naturally-permeable wall, proposed by Beavers and Joseph [18] and slightly modified by Saffman [19],
provide a mathematical form of the fluid slip phenomenon. In practical situations, seepage rates are
normally determined by membrane characteristics and concentration polarization at the membrane
surface and are not necessarily constant or known in advance.

Having the importance of physical aspects described in the previous paragraph, this article is
aimed at studying the hydrodynamical aspects of a non-Newtonian fluid, the micropolar fluid, in
a porous-walled channel whose walls absorb the fluid at a variable rate in accordance with Darcy’s
law [20] and considering the wall slip effects. Thus, fluid seepage at the permeable wall of the channel
is taken as a function of the difference of transmural pressure across the wall. The approach presented
in this article is better than that of [2,3,8,13,14] because of the following reasons.

• The constitutive equation of the micropolar fluid model can be reduced to the Newtonian fluid
model as a special case when certain parameters in this model are set to zero. Thus, a variety of
industrial and biological non-Newtonian fluids along with the previously-studied Newtonian
fluid can be investigated by the current results.

• Results for the no-slip flow can be recovered from our obtained solutions when the slip parameter
approaches zero.

• The obtained solution also reveals that for particular values of parameters, a uniform, linear, and
exponentially-decaying flow rate can be deduced from the results of the current article, which
were assumed in advance in the previous studies.
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2. Basic Equations

Basic equations that govern the flow of an isotropic and incompressible micropolar fluid without
any body forces and body couple are [16]:

∇ ·U = 0, (1)

ρ
DU
Dt

= −∇p− (µ + µm)∇×∇×U + µm∇× R, (2)

ρjm
DR
Dt

= µm∇×U− 2µmR + (αm + βm + γm)∇ (∇ · R)− γm (∇×∇× R) . (3)

In these equations,∇ is the gradient operator, D/Dt = ∂
∂t + (U · ∇), U denotes the velocity vector, R is

the the micro-rotation vector, jm is the micro-inertia coefficient, µ is the coefficient of viscosity, and µm

represents the micro-rotation viscosity. Constants αm, βm, and γm are called the viscosity coefficients of
the angular velocity. These coefficients satisfy the following constraints [16,17]:

µm ≥ 0, µ ≥ 0, 3αm + βm + γm ≥ 0, |βm| ≤ γm. (4)

3. Problem Statement

The schematic diagram of the considered system in this paper is described in Figure 1.
A two-dimensional flow of an incompressible micropolar fluid between small width parallel plates
is considered. We assume that the Reynolds numbers of the flow are small (of the order 10−2) and
all flow variables are independent of time, that is the motion is creeping. Both of these effects are
of less importance in the flow situations arising in the mammalian body and also in the presently
investigated FPD. The unimportance of these effects can be seen in the work presented by several
authors in [5,8,10,14] for a porous-walled channel and in the work in [2,4,21,22] for a porous walled
tube in the study of flow in renal tubules of kidneys. The unimportance of the time dependency and
Reynolds number can also be seen in [23] for the study of blood flow in capillary with permeable walls.
Therefore, it is stated that the analysis of this paper can be used to study reverse osmotic flows and
ultrafiltration processes. Using the velocity and micro-rotation profiles given by:

U = (ū(x̄, ȳ), v̄(x̄, ȳ)) ,

W = (0, 0, ω̄(x̄, ȳ)) ,

and the assumption of steady and creeping motion, Equations (1)–(3) take the following form:

0 =
∂ū
∂x̄

+
∂v̄
∂ȳ

, (5)

∂ p̄
∂ȳ

= (µ + µm)

(
∂2v̄
∂x̄2 +

∂2v̄
∂ȳ2

)
+ µm

∂ω̄

∂x̄
, (6)

∂ p̄
∂x̄

= (µ + µm)

(
∂2ū
∂x̄2 +

∂2ū
∂ȳ2

)
+ µm

∂ω̄

∂ȳ
, (7)

0 = −2µmw̄ + µm

(
∂v̄
∂x̄
− ∂ū

∂ȳ

)
+ γm

(
∂2ω̄

∂x̄2 +
∂2ω̄

∂ȳ2

)
. (8)
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Due to the symmetry of the geometry, we have considered the upper half of the channel.
The corresponding boundary conditions are:

v̄(x̄, 0) = 0, (9)

∂ū(x̄, 0)/∂ȳ = 0, (10)

v̄(x̄, a) =
Lp

µt
[ p̄(x̄, a)− PT ], (11)

ū(x̄, a) = − φ̄ ∂ū(x̄, a)/∂ȳ, (12)

ω̄(x̄, 0) = 0, (13)

ω̄(x̄, a) = 0, (14)
1
a

∫ a

0
p̄(0, ȳ)dȳ = p̄i, (15)

2w
∫ a

0
ū(0, ȳ)dȳ = Q̄0. (16)

Equations (9) and (10) are the symmetry conditions at the center line of the channel. Equation (11)
is the consequence of Darcy’s law at the permeable wall of the channel, where Lp is the mechanical
filtration coefficient of the channel wall, which is usually measured in units of cm2 (Lp/µt is called
the hydraulic permeability of the channel wall), t is the wall thickness, and PT can be visualized as
the back pressure that opposes the fluid leakage and is equal to the difference of hydrostatic and the
osmotic pressures outside the channel wall. Equation (12) is the well-known Beavers and Joseph slip
condition [18] at a permeable wall, modified by Saffmann et al. [19], where φ̄ is the slip coefficient of
the permeable wall. Equations (13) and (14) show the vanishing of microrotation at the center line
and boundary [16,22] whereas, Equations (15) and (16) are the inlet conditions. In these equations, p̄i
is the mean pressure and Q̄0 is the flow rate at the inlet of the channel at x̄ = 0.

Figure 1. Geometry of the problem.

4. Dimensionless Formulation and Solution

The following parameters are used to transform equations into dimensionless form:

x =
x̄
L

; y =
ȳ
a

; u(x, y) =
a2ū
Q̄i

; v(x, y) =
aLv̄
Q̄i

; ω(x, y) =
a3ω̄

Q̄i
. (17)
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After substitution of dimensionless parameters, Equations (5)–(8) reduce to the following form:

0 =
∂u
∂x

+
∂v
∂y

, (18)

∂p
∂y

=
λ2

1− N2

[
λ2 ∂2v

∂x2 +
∂2v
∂y2 + N2 ∂ω

∂x

]
, (19)

∂p
∂x

=
1

1− N2

[
λ2 ∂2u

∂x2 +
∂2u
∂y2 + N2 ∂ω

∂y

]
(20)

0 = −2ω +

(
λ2 ∂v

∂x
− ∂u

∂y

)
+

2− N2

M2

(
∂2ω

∂x2 +
∂2ω

∂y2

)
. (21)

where λ = a/L is a small number describing the ratio of the channel width to its length, p(x, y) =
[ p̄(x̄, ȳ)− PT ] a4/µLQ̄i is the dimensionless pressure, N2 = µm/(µ + µm), (0 ≤ N < 1) is called the
coupling number, and M2 = a2µm(2µ + µm)/γm(µ + µm) is called the micropolar parameter [17].
In the limiting case, when µm → 0, implying N → 0, Equations (19) and (20) are uncoupled with
Equation (21), and they reduce to classical Navier–Stokes equations for creeping flow of a Newtonian
fluid in a channel.

Boundary conditions (9) and (16) take the following dimensionless form:

v(x, 0) = 0, (22)

∂u(x, 0)/∂y = 0, (23)

v(x, 1) = K p(x, 1), (24)

u(x, 1) = − φ ∂u(x, 1)/∂y, (25)

ω(x, 0) = 0, (26)

ω(x, 1) = 0, (27)∫ 1

0
p(0, y) dy = pi, (28)

2W
∫ 1

0
u(0, y) dy = 1. (29)

where K =
LpL2

a3t
is the dimensionless wall filtration parameter, φ =

φ̄

a
is the dimensionless wall slip

coefficient, W =
w
a

is the ratio of channel width to height, and Q(x) =
Q̄(x̄)

Q̄i
.

In order to find exact solution of Equations (18)–(21), we use the fact that since the parameter
λ is very small as compared to unity, therefore terms of the order λ2 can be ignored in these
equations [14,22–24]. Note that this fact will be justified for the FPD in a later section. The exact
solution of the reduced system subject to the boundary conditions (22)–(29) is then readily obtained
as follows:

p(x) = pi cosh η x− η

2 W K
sinh η x (30)

u(x, y) =
1
2

(
1− N2

) [
y2 − 1− 2φ (31)

− N2

2− N2

{
2

cosh My− cosh M
M sinh M

− y2 + 1
}]

dp
dx

,

v(x, y) = −1
6

(
1− N2

) [
y3 − 3y− 6φy (32)

− N2

2− N2

{
6

sinh My−M y cosh M
M2 sinh M

− y3 + 3y
}]

d2 p
dx2 ,
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w(x, y) =
1− N2

2− N2

(
sinh My
sinh M

− y
)

, (33)

where:

η2 =
3K
ξ

, (34)

ξ =
(

1− N2
) [

1 + 3φ +
N2

2− N2

{
3

sinh M−M cosh M
M2 sinh M

+ 1
}]

. (35)

In the limiting case, when N and φ approach zero (and also m approaches zero), the presented
solutions reduce to the solution for Newtonian fluid flow in a permeable channel [23].

The dimensionless mean pressure P(x) taken over any cross-section of the channel is defined as:

P(x) =
1
2

∫ 1

−1
p(x, y)dy (36)

= p(x)

Hence, the difference of mean pressure4p(x) can be obtained as:

4P(x) = P(0)− P(x),

= pi (1− cosh η x)− η

2 W K
sinh η x (37)

Unlike ordinary fluids, the stress tensor for a micropolar fluid is not symmetric. Thus, the shear
stresses τxy and τyx are not equal for a micropolar fluid. These stresses can be computed using the
following dimensionless expressions:

τxy =
∂u
∂y
− N2

1− N2 ω, (38)

τyx =
1

1− N2
∂u
∂y

+
N2

1− N2 ω. (39)

The dimensionless volume flow rate at any cross-section of the channel can be computed as:

Q(x) = W
∫ 1

−1
u(x, y)dy

= cosh η x− 2 pi W K
η

sinh η x. (40)

The expression for leakage flux q(x) through channel walls is given by:

q(x) = −dQ
dx

,

= 2 pi W K cosh η x− η sinh η x (41)

The fractional re-absorption (FR) is the amount of fluid that has been reabsorbed through the
channel walls. It can be computed using the following expression:

FR =
Q(0)−Q(1)

Q(0)
. (42)
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The streamlines can be determined by solving the following equation:

dx
u

=
dy
v

.

This results in the following equation of streamlines:[
y3 − 3y− 6φy− N2

2− N2

{
6

sinh My−M y cosh M
M2 sinh M

− y3 + 3y
}]

dp
dx

= C, (43)

where C is a constant due to integration.

5. Numerical Results and Discussion

This section contains numerical calculations and their graphical interpretations performed on the
computational software Maple [25]. In order to study the effects of the wall permeability parameter
K, the coupling number N, the micropolar parameter M, and the wall slip parameter φ on the flow
patterns, velocity profile, and the hydrostatic pressure, graphs of the numerical calculations are plotted.

Figures 2–5 are plotted to present the flow pattern of the micropolar fluid in a permeable channel.
It was observed that the flow was positive axial through the channel, and no reverse flow and reverse
leakage were seen. However, as the wall permeability of the channel was increased to a certain value,
a reverse flow happened, and a stagnation point flow can be seen in Figure 3. A slight decrease (about
10%) in the fluid seepage also happened as the coupling number N increased. This is observed in
Figure 4. However, we see that in the case of micropolar fluid flow in a permeable channel, the wall
slip parameter did not affect the fluid seepage significantly in contrast to the Newtonian fluid flow in a
permeable channel [24]. This observation can be seen in Figure 5.

A three-dimensional view of the tangential and normal velocity profiles is plotted in
Figures 6 and 7. These figures present variations of u(x, y) and v(x, y) with the wall permeability
parameter K. A parabolic velocity profile is observed in Figure 6, which had its maximum value at the
center line of the channel and minimum at the walls. The tangential velocity was found to decrease
with the increasing values of K, whereas the opposite effects can be seen in Figure 7, in which the
normal velocity increased as the wall permeability increased. Thus, fluid seepage through walls was
enhanced by increasing K. This is due to the fact that enhancement of K resulted in the increase of
the wall permeability of the channel. Thus, more fluid was allowed to pass through the walls, which
increased the magnitude of seepage velocity. This in turn reduced the magnitude of tangential velocity,
which is observed in Figures 6 and 7.

The impact of coupling number N on u and v at any cross-sectional element x = 0.3 of the channel
is plotted in Figures 8 and 9. In Figure 8, it is observed that initially, u increased by increasing the
coupling number N, then a point y = y0 can be seen in the figure at which u is independent of N, and
after that, u started decreasing by increasing the coupling number. Thus, a circle centered at (x0, y0)

can be drawn at which the tangential velocity u(x0, y) is invariant under the effect of coupling number.
Figure 9 shows the effect of N on the normal velocity. It shows that by increasing the magnitude of N,
the normal velocity v decreased.

Variations in the micro-rotation velocity at the cross-section x = 0.3 are sketched in
Figures 10 and 11. These figure reveal that the micro-rotation velocity was enhanced by strengthening
the coupling number N. A damping in the magnitude of w was observed as the wall permeability
parameter was increased.

Variations in the mean pressure difference 4P(x) in the axial direction are sketched in
Figures 12 and 13. The magnitude of the mean pressure difference was decreased by increasing
the permeability coefficient of the wall, whereas 4P(x) increased when the coupling number
was increased.
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Figure 2. Streamline pattern of the flow for pi = 0.02, K = 0.004, φ = 0.5, N = 0.5, M = 5, W = 1288.

Figure 3. Streamline pattern of the flow for pi = 0.02, K = 0.04, φ = 0.5, N = 0.5, M = 5, W = 1288.

Figure 4. Streamline pattern of the flow for pi = 0.02, K = 0.004, φ = 0.5, N = 0.98, M = 5, W = 1288.
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Figure 5. Streamline pattern of the flow for pi = 0.02, K = 0.004, φ = 20, N = 0.5, M = 5, W = 1288.

Figure 6. Variation of tangential velocity with K for pi = 0.02, φ = 0.5, N = 0.5, M = 5, W = 1288.

Figure 7. Variation of normal velocity with K for pi = 0.02, φ = 0.5, N = 0.5, M = 5, W = 1288.
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Figure 8. Variation of tangential velocity with N at x = 0.3 for pi = 0.02, K = 0.004, φ = 0.5,
M = 5, W = 1288.

Figure 9. Variation of normal velocity with N at x = 0.3 for pi = 0.02, K = 0.004, φ = 0.5, M = 5,
W = 1288.

Figure 10. Variation of the micro-rotation with N at x = 0.3 for pi = 0.02, K = 0.004, φ = 0.5,
M = 5, W = 1288.

Figure 11. Variation of the micro-rotation with K at x = 0.3 for pi = 0.02, φ = 0.5, N = 0.5, M = 5,
W = 1288.
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Figure 12. Variation of mean pressure drop with K for pi = 0.02, φ = 0.5, N = 0.5, M = 5, W = 1288.

Figure 13. Variation of mean pressure drop with N for pi = 0.02, K = 0.004, φ = 0.5, M = 5, W = 1288.

6. Application to a Flat Plate Dialyzer

In this section, theoretical expressions for the calculation of the ultrafiltration rate and the mean
axial pressure drop in a flat plate hemodialyzer (FPH) are presented using the results of the preceding
section. An FPH consists of several blood compartments. Each compartment comprises a pair of
rectangular sheets made up of regenerated cellulose. The edges of each sheet are fastened by a pair
of rectangular grooved plastic boards. The blood flows between the cellulose sheets, whereas the
dialyzing fluid passes in a counter-current or a cross-current flow along the grooves in the hemodialyzer
board [5,26,27]. The volume of blood lost by the seepage through the cellulose in a given time, from a
known recirculating volume, is the ultrafiltration rate.

If L is the length of cellulose, then the ultrafiltration rate for the presented model is given as:

Q̄A = Q̄(0)− Q̄(L), (44)

where the ¯ sign denotes the dimensional quantity. The non-dimensional expression for Q̄A can be
obtained using the dimensionless parameters defined in Section 4 and Equation (40). Thus, we obtain
the ultrafiltration rate as:

QA = Q(0)−Q(1),

= 1− cosh η +
2pi W K

η
sinh η. (45)

The expression for mean pressure drop in the axial direction between x = 0 and x = L can also be
obtained in a similar manner. By using Equation (37), we have the following expression for the mean
pressure drop in a flat plate hemodialyzer:

4P(1) = P(0)− P(1),

= pi

[
1− cosh η +

η

2pi W K sinh η

]
. (46)
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In order to check the accuracy of the presented formulas, exact values of the involved parameters
corresponding to the flat-plate hemodialyzer are needed. For this purpose, we have also used the
experimental data provided in [5,27] corresponding to a flat-plate disposable artificial kidney. It is also
referred to as RPkidney data and is presented in Table 1. From the data in Table 1, we found that the
parameter λ was of order 10−8. Therefore, ignoring terms of the order λ2 is justified for the flow in a
flat plate dialyzer. By making use of these parameters along with N = 0.5, M = 5, φ = 0.5 [22,24,28–30]
in Equation (44), we obtain the equation in one variable K. By expanding the hyperbolic functions in
this equation in the power series of K up to O

(
K5), a real solution of this equation was found to be

K = 0.00049. The magnitude of the ultrafiltration coefficient Lp was then calculated from K =
LpL2

a3t
.

This resulted in Lp = 5.24× 10−16 cm2. In a similar way and adopting the same steps, Equation (46)
results in the value of mean pressure drop in a flat plate hemodialyzer as P(0)− P(L) = 6.58 mm Hg.

Table 1. Physiological data related to the RPkidney [4,27].

Parameter Abbreviation Numerical Value

Number of blood 8
compartments
Membrane length L 42 cm
Membrane width w 11.6 cm
Membrane thickness t 2.59× 10−3 cm
Blood half channel a 9× 10−3 cm
height
Fluid viscosity µ 6.9× 10−3 dynes-s/cm2

Transmembrane
pressure difference p̄i − PT 150 mm Hg
at the entrance
Total ultrafiltration 8Q̄w 200 mL/h
rate
Total entrance 8Q̄0 160 mL/min
volume flow rate

The value of the filtration coefficient Lp is usually not given in the data for membranes of
hemodialyzers. The result of experiments performed by Kaufmann et al. [31] show that at the normal
body temperature, regenerated cellulose has hydraulic permeability as 2.41× 10−11 cm3/dynes-s
for the membrane having a thickness of 7.5× 10−3 cm. When the viscosity of fluid was taken as
6.9× 10−3 dynes-s/cm2 from Table 1, this yielded the value of Lp as 1.25× 10−15 cm2. The value
of Lp calculated by the empirical results of Marshall et al. [5] by using the experimental data of
Kaufmann et al. revealed that Lp = 6.36× 10−16 cm2. The experiments also showed that the mean
axial pressure drop in the artificial kidney was about 15 mm Hg [5,27]. Thus, a good agreement in
the order of magnitudes of the ultrafiltration coefficient and mean pressure drop can be observed
between the presented results and the earlier computed experimental and empirical results. This builds
confidence in stating that the presented model can be used to obtain theoretical results in advance to
study the hydrodynamical aspects of the flow in a flat plate hemodialyzer.

Data presented in Table 1 and the estimated value of Lp reveal the dimensionless wall permeability
(or filtration) parameter K << 1. Expanding (45) in power series of K, we have:

QA = −1
2

η2 + 2 pi W K + O(K2). (47)

In terms of dimensional variables, we have:

Q̄A ≈
A Lp

µ t
( p̄i − PT)

[
1− 3 µ L2 Q̄0

2 A ξ a3 ( p̄i − PT)

]
, (48)
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where A = 2wL is the area of the membrane. This equation reveals that for hemodialyzers in which:

3 µ L2 Q̄0

2 A ξ a3 ( p̄i − PT)
<< 1, (49)

the ultrafiltration rate is given by:

Q̄A ≈
A Lp

µ t
( p̄i − PT) . (50)

An inspection of Equation (50) suggests that the ultrafiltration rate is directly proportional
to the mechanical filtration coefficient Lp and membrane area and is inversely proportional to the
membrane thickness and channel half width. The linear dependence of Q̄A on p̄i − PT has been
found experimentally by Malino et al. [32] and Mcdonald [33] and was suggested empirically
by Marshall et al. [5]. A series of experiments performed by Brown et al. [34] also highlighted
the dependence of Q̄A on the mechanical filtration coefficient, membrane thickness, and the
membrane area.

Another important fact related to the renal tubular flow in kidneys can be observed from the
expressions describing the mean pressure, flow rate, and leakage flux, respectively in (36), (40) and
(41). These equations can be rewritten as:

P(x)
pi

= cosh η x− 1
ζ

sinh η x, (51)

Q(x) = cosh η x− ζ sinh η x, (52)
q(x)

η
= ζ cosh η x− sinh η x (53)

where ζ =
2 pi W K

η
. A consideration of the right-hand sides of these equations suggests that the

parameter ζ influences the behavior of mean pressure, flow rate, and the leakage flux strongly. Figure 14
is drawn to explore this fact for some values of ζ. This figure reveals that when ζ > 1, the flow rate
started decaying from its maximum value o one (Q̄0 in dimensional form), became zero at certain
point, and then became negative as η x → ∞. Thus, a reverse flow situation arose when ζ > 1.
For ζ < 1, Q(x) decayed initially from Q(0) = 1, attained its minimum value at a point, and then
started increasing. This caused the reverse leakage phenomena for ζ < 1. For ζ = 1, the graph of flow
rate behaved as an exponentially-decaying function. A similar discussion can also be made for the
behavior of P(x) and q(x).

Figure 14. Variation of the axial flow rate with η x.

The above discussion together with Figure 14 reveal that for the creeping motion of a micropolar
fluid in a porous-walled channel, in order to have no reverse flow and no reverse leakage, the value of
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parameter ζ must be approximately one. Substituting ζ = 1 in Equation (52) yields Q(x) = exp (−η x).
This is a well-accepted result regarding the flow rate of filtrate in the renal tubule of kidneys, which
was empirically proven by Kellman [35] and used by many researchers in the study of fluid flow in a
permeable tube with application to renal tubules of kidneys [3,21,24,36].

7. Conclusions

The micropolar fluid model is admitted to have a generalized constitutive relation that describes
the physiological flows of non-Newtonian fluids well. Therefore, the results of this article are applicable
to study a vast family of physiological fluids in a permeable channel of small width. The obtained
results can be reduced to the usual Newtonian models’ result as a special case. The derived equations
for the ultrafiltration rate and the mean pressure difference can be confidently used in studying the
flow in a flat plate hemodialyzer. In applying the current results to study the problem of flow in a flat
plate hemodialyzer, one should not overlook the physical aspects of the flow phenomenon. It is also
concluded that the presented results are theoretical at their heart, therefore one should perform more
experimental and theoretical investigation in order to have a complete understanding of the flow in a
flat plate hemodialyzer.
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Abbreviations

The following abbreviations are used in this manuscript:
FPD Flat plate dialyzer
ρ Fluid density
µ Coefficient of viscosity
µm Coefficient of the micro-rotation viscosity
αm, βm, γm Viscosity coefficients of the angular velocity
jm Micro-inertia coefficient
u Dimensionless tangential velocity component
v Dimensionless transverse velocity component
ω Dimensionless microrotation velocity
Q̄i Inlet flow rate
p̄i Inlet pressure
λ Ratio of the channel width to its length
N2 Coupling number
M2 Micropolar fluid parameter
K Dimensionless wall filtration coefficient
W Channel width to height ratio
φ Dimensionless wall slip parameter
QA Dimensionless ultrafiltration rate
4P Dimensionless mean pressure drop

References

1. Voutchkov, N. Desalination Engineering: Planning and Design; McGraw Hill: New York, NY, USA, 2012.
2. Macey, R.I. Pressure flow patterns in a cylinder with reabsorbing walls. Bull. Math. Biophys. 1963, 25, 303–312.

[CrossRef]
3. Macey, R.I. Hydrodynamics in the renal tubule. Bull. Math. Biophys. 1965, 27, 117–124. [CrossRef] [PubMed]
4. Marshall, E.A.; Trowbridge, E.A. Flow of a Newtonian fluid through a permeable tube: The application to

the proximal renal tubule. Bull. Math. Biophys. 1974, 25, 457–476. [CrossRef]

http://dx.doi.org/10.1007/BF02477766
http://dx.doi.org/10.1007/BF02498766
http://www.ncbi.nlm.nih.gov/pubmed/5832689
http://dx.doi.org/10.1007/BF02463260


Symmetry 2019, 11, 541 15 of 16

5. Marshall, E.A.; Trowbridge, E.A.; Aplin, A.J. Flow of a Newtonian fluid between parallel flat permeable
plates—The application to a flat-plate hemodialyzer. Math. Biophys. 1975, 27, 119–139. [CrossRef]

6. Sadeghi, R.; Shadloo, M.S.; Hirschler, M.; Hadjadj, H.A.; Nieken, U. Three-dimensional lattice Boltzmann
simulations of high density ratio two-phase flows in porous media. Comput. Math. Appl. 2018, 75, 2445–2465.
[CrossRef]

7. Hirschler, M.H.; Shadloo, M.S.; Nieken, U. Viscous fingering phenomena in the early stage of polymer
membrane formation. J. Fluid Mech. 2019, 864, 97–140. [CrossRef]

8. Kozinski, A.A.; Schmidt, F.P.; Lightfoot, E.N. Velocity profiles in porous-walled ducts. Ind. Eng.
Chem. Fundam. 1970, 9, 502–505. [CrossRef]

9. Papanastasiou, T.C. Viscous Fluid Flow; CRC Press LLC: Florida, FA, USA, 2000.
10. Berman, A.S. Laminar flow in channels with porous walls. J. Appl. Phys. 1953, 24, 1232–1235. [CrossRef]
11. Berman, A.S. Laminar flow in an annulus with porous walls. J. Appl. Phys. 1958, 29, 71-–75. [CrossRef]
12. Yuan, S.W.; Finkelstein, A.B. Laminar Pipe Flow With Injection and Suction Through a Porous Wall.

Trans. ASME 1956, 78, 719–724.
13. Haroon, T.; Siddiqui, A.M.; Shahzad, A. Creeping Flow of Viscous Fluid through a Proximal Tubule with

Uniform Reabsorption: A Mathematical Study. Appl. Math. Sci. 2016, 10, 795–807. [CrossRef]
14. Siddiqui, A.M.; Haroon, T.; Shahzad, A. Hydrodynamics of viscous fluid through porous slit with linear

absorption. Appl. Math. and Mech. 2016, 37, 361–378. [CrossRef]
15. Byron, B.R. Dynamics of Polymeric Liquids; John Wiley & Sons: New York, NY, USA, 1987.
16. Eringen, A.C. Theory of micropolar fluids. J. Math. Mech. 1965, 1, 1–18.
17. Cowin, S.C. Polar fluids. Phys. Fluids 1968, 35, 1919–1927. [CrossRef]
18. Beavers, G.S.; Joseph, D.D. Boundary conditions at a naturally permeable wall. J. Fluid Mech. 1967, 30,

197–207. [CrossRef]
19. Saffman, P.G. On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 1971, 50,

93–101. [CrossRef]
20. Darcy, H.P.G. Dètermination des Lois D’ècoulement de L’eau à Travers le Sable; Victor Dalamont: Paris,

France, 1856.
21. Siddiqui, A.M.; Haroon, T.; Kahshan, M. MHD flow of newtonian fluid in a permeable tubule.

Magnetohydrodynamics 2015, 51, 655–672.
22. Kahshan, M.; Siddiqui, A.M.; Haroon, T. A micropolar fluid model for hydrodynamics in the renal tubule.

Eur. Phys. J. Plus 2018, 133, 546. [CrossRef]
23. Oka, S.; Murata, T. A theoretical study of the flow of blood in a capillary with permeable wall. Jpn. J.

Appl. Phys. 1970, 9, 345. [CrossRef]
24. Siddiqui, A.M.; Haroon, T.; Kahshan, M.; Iqbal, M.Z. Slip Effects on the Flow of Newtonian Fluid in Renal

Tubule. J. Comput. Theor. Nanosci. 2015, 12, 4319–4328. [CrossRef]
25. Maple 18; Waterloo Maple Inc.: Waterloo, ON, Canada, 1981–2014.
26. Drukker, W.; Parsons, F.M.; Maher, J.F. Replacement of Renal Function by Dialysis: A Textbook of Dialysis;

Springer Science & Business Media: Hingham, MA, USA, 2012.
27. Funck-Brentano, J.L.; Sausse, A.; Vantelon, J.; Granger, A.; Zingraff, J.; Man, N.K. A new disposable

plate-kidney. ASAIO J. 1969, 15, 127–130.
28. Muthu, P.; Ratish, R.K.; Chandra, P. A study of micropolar fluid in an annular tube with application to blood

flow. J. Mech. Med. Biol. 2008, 8, 561–576. [CrossRef]
29. Kiran, G.R.; Radhakrishnamcharya, G.; Bég, O.A. Peristaltic flow and hydrodynamic dispersion of a reactive

micropolar fluid-simulation of chemical effects in the digestive process. J. Mech. Med. Biol. 2017, 17, 1750013.
[CrossRef]

30. Shadloo, M.S.; Kimiaeifar, A.; Bagheri, D. Series solution for heat transfer of continuous stretching sheet
immersed in a micropolar fluid in the existence of radiation. Int. J. Numer. Methods Heat Fluid Flow 2013, 23,
289–304. [CrossRef]

31. Funck-Brentano, J.L. Studies of intramembrane transport: A phenomenological approach. AIChE J. 1968, 14,
110–117.

32. Malinow, M.R.; Korzon, W. An experimental method for obtaining an ultrafiltrate of the blood. Transl. Res.
1947, 12, 461–471.

http://dx.doi.org/10.1016/0025-5564(75)90029-2
http://dx.doi.org/10.1016/j.camwa.2017.12.028
http://dx.doi.org/10.1017/jfm.2019.4
http://dx.doi.org/10.1021/i160035a033
http://dx.doi.org/10.1063/1.1721476
http://dx.doi.org/10.1063/1.1722948
http://dx.doi.org/10.12988/ams.2016.512739
http://dx.doi.org/10.1007/s10483-016-2032-6
http://dx.doi.org/10.1063/1.1692219
http://dx.doi.org/10.1017/S0022112067001375
http://dx.doi.org/10.1002/sapm197150293
http://dx.doi.org/10.1140/epjp/i2018-12410-6
http://dx.doi.org/10.1143/JJAP.9.345
http://dx.doi.org/10.1166/jctn.2015.4358
http://dx.doi.org/10.1142/S0219519408002541
http://dx.doi.org/10.1142/S0219519417500130
http://dx.doi.org/10.1108/09615531311293470


Symmetry 2019, 11, 541 16 of 16

33. McDonald, J.R.; Harold, P. An automatic peritoneal dialysis machine: Preliminary report. J. Urol. 1966, 96,
397–401. [CrossRef]

34. Brown, H.W.; Schreiner, G.E. Prolonged hemodialysis with bath refrigeration: The influence of dialyzer
membrane thickness, temperature and other variables on performance. Trans Am. Soc. Artif. Intern. Organs
1962, 8, 187–194. [CrossRef] [PubMed]

35. Kelman, R.B. A theoretical note on exponential flow in the proximal part of the mammalian nephron.
Bull. Math. Biol. 1962, 24, 303–317. [CrossRef]

36. Radhakrishnamacharya, G.; Chandra, P; Kaimal, M.R. A hydrodynamical study of the flow in renal tubules.
Bull. Math. Biol. 1981, 43, 151–163. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0022-5347(17)63278-6
http://dx.doi.org/10.1097/00002480-196204000-00042
http://www.ncbi.nlm.nih.gov/pubmed/13873657
http://dx.doi.org/10.1007/BF02477961
http://dx.doi.org/10.1007/BF02459440
http://www.ncbi.nlm.nih.gov/pubmed/7225642
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Equations
	Problem Statement
	Dimensionless Formulation and Solution
	Numerical Results and Discussion
	Application to a Flat Plate Dialyzer
	Conclusions
	References

