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Abstract: This paper considers the disturbance decoupling problem by the dynamic measurement
feedback for discrete-time nonlinear control systems. To solve this problem, the algebraic approach,
called the logic-dynamic approach, is used. Such an approach assumes that the system description
may contain non-smooth functions. Necessary and sufficient conditions are obtained in terms of
matrices similar to controlled and (h, f )-invariant functions. Furthermore, procedures are developed
to determine the corresponding matrices and the dynamic measurement feedback.
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1. Introduction

The dynamic disturbance decoupling problem (DDDP) for nonlinear dynamic systems has been
addressed in a few papers [1–7], while hybrid systems and finite automata have been considered
in [8,9]. Different from [6], the papers [1–5] consider the continuous-time case and the papers [1–3]
provide the solvability conditions within differential geometric framework. In the earliest paper [3],
the feedback considered to be the dynamic measurement feedback is restricted, whereas [1,2] consider
the general case but provide either only necessary conditions [1] or make additional assumptions [2].
In [5], a sufficient algorithm-based condition for a single-input single-output system with a single
measurement is suggested, applying the results (in terms of differential 1-forms) of the input–output
linearization by dynamic output feedback [10]. Moreover, [11] addresses the case where the measured
output is the same as the output-to-be-controlled. To summarize, the DDDP is old, but to date has had
no full solution for different classes of systems.

In the present paper, we consider the DDDP for discrete-time nonlinear control systems, and the
problem statement is similar to that of [3]. In particular, note that the controller is designed to
be a suitable subsystem of the original system and the initial state of the compensator has to be
chosen in accordance with that of the system. This type of controller reduces the dimension of the
closed-loop system compared, for example, with those in [1,2,5] and has contact points with the
‘regular interconnection’ as addressed in [12]. Note that in the solutions of [1,2,5], the dimension of the
closed-loop system is the sum of those of the plant and the controller whereas in this paper (and in [3])
it is equal to the state of the plant.

It is known that the extensions of the differential geometric tools for discrete-time systems are not
as well developed and universally accepted as those for continuous-time systems. To overcome this
difficulty, it is suggested to solve the DDDP on the basis of the so-called logic-dynamic approach (LDA).
The LDA was developed in [13,14] to solve different problems of system theory. The advantages of
the LDA are that it uses methods of linear algebra only by imposing some restrictions on the initial
system and on a class of the obtained solutions. Furthermore, the LDA can be applied to systems with
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non-smooth nonlinearities for continuous-time as well as for discrete-time systems; finally, the problem
of probabilistic decoupling [15] can also be solved based on the LDA.

2. Preliminaries

Consider a discrete-time nonlinear control system described by the equations

x(k + 1) = f (x(k), u(k), w(k)),
y(k) = h(x(k)),
y∗(k) = h∗(x(k)),

(1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rl are vectors of the state, control, and measured output; y∗ ∈ RL is the
output-to-be-controlled; f, h, and h∗ are nonlinear functions; w(k) ∈ Rp is the unmeasurable disturbance.
Note that f may be a non-smooth function.

The DDDP under a dynamic feedback can be formulated as follows: Find a vector function
x0 = α(x), x0 ∈ Rn0 , n0 ≤ n, and a feedback of the form

x0(k + 1) = f0(x0(k), y(k), u0(k)),
u(k) = g(x0(k), y(k), u0(k)),

(2)

where u0 ∈ U0 ⊆ Rm such that the values of the outputs y∗(k), for k ≥ 0, of the closed-loop system are
invariant with respect to the disturbance w(k).

Consider the main results from [6].
To solve the DDDP, a vector function α0 with the maximal number of independent components is

found at first, such that the function α0( f (x(k), u(k), w(k))) is invariant with respect to the unknown
function w(k).

The function α is said to be (h, f )-invariant (or f -invariant) if α( f (x, u, w)) = f∗(α(x), h(x), u, w)

(or α( f (x, u, w))= f∗(α(x), u, w)) for some function f∗. The function χ is a controlled invariant if a static
state feedback u = g′(x, u0) exists such that the function χ in the closed-loop system is f -invariant.

Theorem 1 [6]. The output y∗ = h∗(x) can be decoupled from the unknown function w(k) by compensator (2)
if and only if there exist (h, f )-invariant function α and a controlled invariant function χ such that

α0 ≤ α ≤ χ ≤ h∗. (3)

Here, β ≤ γ means that the function δ exists such that δ(β(x)) = γ(x) for all x [6–8].

Our goal is to find a solution of the DDDP similar to (3) in a class of linear functions using only
methods of linear algebra by imposing some limitations on system (1). Such a solution is based on
the LDA.

3. Logic-Dynamic Approach

To implement the LDA, system (1) should be presented in the form

x(k + 1) = Fx(k) + Gu(k) + Ψ(x(k), u(k)) + Dw(k),
y(k) = Hx(k),

y∗(k) = H∗x(k),
(4)

where

Ψ(x(k), u(k)) = C


ϕ1(A1x(k), u(k))

· · ·

ϕq(Aqx(k), u(k))

; (5)
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matrices F and G describe the linear dynamic part of the system; H, H∗, C, and D are constant matrices;
the functions ϕ1, . . . , ϕq may be non-smooth; A1, . . . , Aq are row matrices. Model (4) can be derived
from the initial system (1) by some transformations [13,14]. Specifically, we separate the linear part,
described by the matrices F and G, from the nonlinear addend (5) which contains the nonlinear
functions ϕ1, . . . , ϕq and matrices C, A1, . . . , Aq.

By analogy with (2), a dynamic measurement feedback (compensator) S0 is described by

x+0 = F0x0 + G0u + J0y + C0


ϕ1(A01z0, u)

· · ·

ϕq(A0qz0, u)

,

u = g(x0y, u0),

(6)

where the vector u0 is a new control, x0 ∈ Rn0 , n0 ≤ n, F0, G0, J0, C0, A01, . . . , A0q are matrices to be

determined, and z0 = (xT
0 yT)

T. For simplicity, the notation x+0 is used for x0(k + 1).
We assume initially that q = 1 and thus we can construct the compensator (6). The LDA, used to

solve this problem, contains three steps [13,14].
Step 1. The nonlinear term is removed from the initial nonlinear system (4).
Step 2. The problem under consideration is solved for the linear part, obtained in Step 1, under

some linear limitation. Such a limitation is used to find out whether or not the nonlinear term is
designed on the basis of the linear solution obtained in this step.

Step 3. The solution, obtained in Step 2, is supplemented by the transformed nonlinear term.
Recall [6] that the function α in (3) has the maximal number of independent components and

satisfies the condition α0 ≤ α. To obtain a linear method-based solution, we assume that x0(k) =

α(x(k)) = Φx(k) for some matrix Φ of maximal rank, which satisfies the following conditions [14]:

ΦF = F0Φ + J0H, G0 = ΦG, ΦD = 0. (7)

It can be shown that the relations C0 = ΦC and

A = A0

(
Φ
H

)
, (8)

describing the nonlinear term, are true [14].
An analogue of the function α0 is the matrix D0 of maximal rank such that D0D = 0. Clearly,

the condition ΦD = 0 is equivalent to the relation Φ = RD0 for some matrix R; this relation is an
analogue of the condition α0 ≤ α.

The relation (8) holds if and only if the matrix A linearly depends on the matrices Φ and H. This
implies that (8) is equivalent to

rank(ΦTHT) = rank(ΦTHTAT). (9)

If q > 1, the matrix A in (8) and (9) is replaced with Ai, i = 1, . . . , q.
We assume that the matrices F0 and H0 take the canonical form

F0 =


0 1 0 · · · 0
0 0 1 · · · 0

· · · · · · · · ·
. . . · · ·

0 0 0 · · · 0

, H0 = ( 1 0 0 · · · 0 ).

Here, the equation ΦF = F0Φ + J0H is replaced by k equations:

ΦiF = Φi+1 + J0iH, i = 1, . . . , k− 1, ΦkF = J0kH, (10)
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where Φi and J0i are the i-th rows of the matrices Φ and J0, respectively; i = 1, . . . , k; k is the number of
the matrix Φ rows.

4. Problem Solution

4.1. Disturbance Decoupling for the Linear Part of a System

Find the matrix Φ of maximal rank such that ΦD = 0. It was shown in [14] that (10) and the
condition ΦD = 0 can be changed to the single equation

(Φ1 − J01 − J02 . . .− J0k)(W(k)B(k)) = 0, (11)

where

W(k) =


Fk

HFk−1

· · ·

H

, B(k) =


D FD · · · Fk−1D
0 HD · · · HFk−1D

· · · · · ·
. . . · · ·

0 0 · · · 0

.

To obtain the system S0 of maximal dimension, take k := n− p and check the condition

rank(W(k)H(k)) < lk + n. (12)

When (12) is satisfied, then the row (Φ1 − J01 . . . − J0k) exists such that (11) is solvable. Then we
can construct the matrix Φ based on (10) and set G0 := ΦG. Thus, the linear part of the system S0

independent of the unknown function w(k) is constructed; set n0 := k.
If (12) is not satisfied, take k := k− 1 and continue checking (12). If (12) is not satisfied for all k,

then the system S0, independent of the disturbance, does not exist and the DDDP is not solvable. Since
the dimension n0 is maximal, the best choice for the function α in (3) is α(x) = Φx.

4.2. Dynamic Part of the Compensator Design

Clearly, if (9) is true for the matrix Φ found in Step 2, then the problem of constructing the
nonlinear system S0 reduces to that for a linear system. When (9) is not true, find the maximal k for
which (11) has several solutions in the form

(Φ(1)
1 − J(1)01 . . .− J(1)0k ), . . . , (Φ(N)

1 − J(N)
01 . . .− J(N)

0k ), (13)

where N is the number of all solutions.

Theorem 2 [14]. Let Φ(1), . . . , Φ(N) be matrices calculated on the basis of (10) and (11) and satisfying the
condition (7). Then the linear combination of rows (13) with some coefficients v1, . . . , vN yields the matrix
Φ = v1Φ(1) + . . .+ vNΦ(N), satisfying the condition (7) as well.

Let k be as maximal as possible, and solutions of (11) are presented in the form (13). To find the
vector v = (v1 . . . vN), rewrite (8) in the form

A = A01Φ + A02H, (14)

where A0 = (A01A02), A01 = (a1 . . . ak). Denote

ΦΣ
1 =


Φ(1)

1
· · ·

Φ(N)
1

, . . . , ΦΣ
k =


Φ(1)

k
· · ·

Φ(N)

k

, ΦΣ =


ΦΣ

1
· · ·

ΦΣ
k

,
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and present (14) in the form

A = A01


vΦΣ

1
. . .

vΦΣ
k

+ A02H. (15)

Similar to (8), Equation (15) is solvable if

rank((ΦΣ)
THT) = rank((ΦΣ)

THTAT). (16)

We propose that (16) is true and assume firstly that the matrix A has the only row. Here, (15) can
be presented in the form A = (a1v . . . akv)ΦΣ + A02H, or

A = AvΦΣ + A02H, (17)

where Av is assumed to be an unknown matrix. Solve (17) and find the matrices Av and A02. If Av can
be rewritten in the form (a1v . . . akv) for some coefficients a1, . . . , ak and the vector v = (v1 . . . vN), then
stop—the matrices A01 and A02 and the vector v = (v1 . . . vN) are obtained. Then, find the rows of J0

and Φ by

J0 j =
∑N

i=1
vi J

(i)
0 j , Φ j =

∑N

i=1
viΦ

(i)
j , j = 1, . . . , k;

set G0 := ΦG, C0 := ΦC. As a result, a dynamic part of the compensator (2) is built.
If (16) is not satisfied or the matrix Av cannot be presented in the form (a1v . . . akv), the dimension

k must be decreased and the described procedure repeated.
If the matrix A has several rows, Equation (17) is solved for each row with coefficients a1, . . . , ak

particular to the considered row; note that the vector v is identical for all rows.

4.3. Function χ Design

Let h∗ = (h∗1 . . . h∗L)
T and ri, wi be relative degrees of y∗i = h∗i(x) with respect to u(k) and w(k),

respectively [6]. Moreover, denote y∗i(k) = h∗i(x(k)) =: h∗i,1(x(k)), . . . , y∗i(k + ri − 1) =: h∗i,ri(x(k)),
i = 1, . . . , L. When h∗(x) = H∗x, these relations are transformed as follows.

Define the matrix C∗: If C(i, k) , 0 and ϕk contains some components of the input u, set
C ∗ (i, k) := 1, otherwise C ∗ (i, k) := 0.

Denote by r′i the minimal integer p such that H∗iFp−1G , 0, by wi the minimal integer p such that
H∗iFp−1D , 0, and by ri∗ the minimal integer p such that H∗iFp−1C∗ , 0, i = 1, . . . , L. It can be shown
that r′i and ri∗ are the relative degrees of y∗i(k) with respect to u(k); clearly, they correspond to the linear
and nonlinear terms of system (4), respectively. Set ri := min(r′i , ri∗), i = 1, . . . , L.

Assumption 1 [6]. wi > ri and wi > r′i for all i = 1, . . . , L, otherwise the DDDP is not solved.

It follows from the definition of ri and Assumption 1 that y∗i(k + ri) = f̂i(x(k), u(k)) for some
function f̂i, and the function f̂i(x(k), u(k)) is invariant with respect to w(k). Assume that L ≤ m and set

f̂ (x, u) :=( f̂1(x, u), . . . , f̂L(x, u))
T

.
Vector (r1, . . . , rL) is said to be the vector relative degree of y∗(k) if the condition

rank(∂ f̂1(x, u)/∂u = L is satisfied for all (x, u) except on a set of zero measure.

Assumption 2 [6]. The output y∗(k) has a vector relative degree (r1, . . . , rL).

Theorem 3 [6]. Set

χ :=


h0
∗1
. . .
h0
∗L

, (18)

where h0
∗i = (h

∗i,1 . . . h∗i,ri
)T, i = 1, . . . , L. Then, under Assumptions 1 and 2, χ is the controlled invariant

function; it satisfies the inequality χ ≤ h∗ and has a minimal number of components.
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To determine the function χ to be linear, the additional assumption is formulated.

Assumption 3. ri = r′i for all i = 1, . . . , L. This means that all relative degrees correspond to the linear terms
of system (4).

Set y∗1 = H∗1x, . . . , yr1
∗1 = H∗1Fr1−1x; clearly, the expression

yr1+
∗1 = H∗1Fr1−1x+ = H∗1Fr1−1(Fx + Gu + Ψ(x, u)) = H∗1Fr1x + H∗1Fr1−1Gu +ψ1(x)

contains the control u(k). Here ψ1(x) = H∗1Fr1−1Ψ(x, u); clearly, ψ1(x) is invariant with respect to u(k)
due to Assumption 3. It can be shown that H∗1Fr1x + H∗1Fr1−1Gu +ψ1(x) corresponds to the function
f̂1(x, u). Based on these expressions, produce the set of equations as follows:

H∗1Fr1x + H∗1Fr1−1Gu +ψ1(x) = u01,
· · ·

H∗LFrL x + H∗LFrL−1Gu +ψL(x) = u0L.
(19)

Set

H(i)
∗ :=


H∗i
· · ·

H∗iFri−1

, i = 1, . . . , L, Ĥ∗ :=


H∗1Fr1−1G
· · ·

H∗LFrL−1G

.

For the sake of simplicity, assume that rank(Ĥ∗) = L, which is equivalent to Assumption 2. Here,
Equations (19) are solvable for the control u.

Set Φ∗ := ((H(1)
∗ )

T
. . . (H(L)

∗ )
T
)

T
. If the condition

rank(Φ∗) = rank( ΦT
∗ AT ) (20)

is true, then the nonlinear term (5) can be obtained starting from the linear part. Note that the matrix
Φ∗ corresponds to the function χ from (18). Thus, this matrix can be treated as a controlled invariant
one for the linear terms of systems (4) and (6). Furthermore, H∗ = Q∗Φ∗ for some matrix Q∗; that is,
the equality H∗ = Q∗Φ∗ is analogue to the condition χ ≤ h∗ in (3). It follows from the definition of
relation ≤ that the condition α ≤ χ corresponds to the equality

rank(Φ) = rank( ΦT
∗ ΦT ). (21)

If (20) and (21) are true, then the DDDP can be solved; otherwise, a solution does not exist. Assume
that (20) and (21) are satisfied, therefore Φ∗ = QΦ for some matrix Q.

The solution of (19) is of the form u = g′(x, u0), which corresponds to the feedback in a static
state form. Since Φ∗ = QΦ and the matrix Φ corresponds to the (h, f )-invariant function, then x in
u = g′(x, u0) can be replaced by the pair (x0, y), where x0 = Φx. Consequently, a static state form
u = g′(x, u0) is transformed into a dynamic measurement form u = g(x0, y, u0) for some function g.

If the condition ri = r′i is not satisfied for some i, then the function ψi in (19) contains the variable
u(k). In this case the expressions for the functions g′ and g take more complex forms.

4.4. Discussion

Thus, we have established some analogues: The function α0 corresponds to the matrix D0,
the condition α0 ≤ α in (3) to the equality Φ = RD0, the condition χ ≤ h∗ to H∗ = Q∗Φ∗, and the
inequality α ≤ χ to (21). Note that the condition of the DDDP for continuous-time systems described by

.
x(t) = f (x(t)) + g(x)u(t) + p(x)w(t) (22)



Symmetry 2019, 11, 555 7 of 9

is of the form p ∈ ∆ ⊂ H⊥0 , where ∆ is the controlled invariant distribution [4] for system (22),
H0 = span{dh1, . . . , dhm}. The solution for finite automata is of the form π0 ≤ πα ≤ πχ ≤ π∗ [9], where
the partitions π0,πα,πχ,π∗ correspond to the functions α0,α,χ, h∗, respectively. Thus, one can see that
there are some correspondences between solutions for different classes of systems.

5. Example

Consider the control system

x+1 = x3 + x6 + x4 + u3 + d1, x+2 = sign(x3) + x6 + u1,
x+3 = −x3x4, x+4 = x4 + x5 + u1,
x+5 = x3 + x4 + d2, x+6 = x2

2 + x1 + u2,
y1 = x1, y2 = x5.

According to [14], these equations should be corrected by adding formal terms as follows: The term
x3 − x3 is added in the second equation, x3 + x4 − x3 − x4 in the third, and x2 − x2 in the fifth. As a result,
the matrices and nonlinearities describing the system are as follows:

F =



0 0 1 1 0 1
0 0 1 0 0 1
0 0 −1 −1 0 0
0 0 0 1 1 0
0 0 1 1 0 0
1 1 0 0 0 0


, G =



0 0 1
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0


, H =



1 0
0 0
0 0
0 0
0 1
0 0



T

, C =



0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1


, D =



1 0
0 0
0 0
0 0
0 1
0 0


,

ϕ1(x, u) = sign(A1x) −A1x,
ϕ2(x, u) = A1xA2x + A1x + A2x,

ϕ3(x, u) = (A3x)2
−A3x,

A1 = (0 0 1 0 0 0),
A2 = (0 0 0 1 0 0),
A3 = (0 1 0 0 0 0).

Calculate

D0 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

.

One can show that Φ = D0. Clearly, condition (9) is met; therefore, the nonlinearities in (6) can be
obtained on the basis of the matrix Φ. Clearly, C∗ = 0, H∗ = Φ, and L = 4.

Next, find r′1 = r′3 = r′4 = 1, r′2 = 2, r1∗ = . . . = r4∗ = ∞, w1 = w2 = 3, and w3 = w4 = 2; clearly,
Assumptions 1 and 3 are met.

One can check that conditions (20) and (21) are satisfied; therefore, the DDDP is solvable. Compute

Ĥ∗ =


H∗1Fr1−1G
· · ·

H∗LFrL−1G

 =


1 0 0
0 0 0
1 0 0
0 1 0

.

Since rank(Ĥ∗) = 2 < 4, Assumption 2 is not met. Here, it is recommended to find the matrix P such
that rank(PĤ∗) = rank(Ĥ∗) = 2; as a result,

P =

(
0 0 1 0
0 0 0 1

)
, Ĥ∗ := PĤ∗ =

(
1 0 0
0 1 0

)
.
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Clearly, Equations (19) with Ĥ∗ are solvable for u1, u2. Set u∗1 := x4 + x5 + u1 and u∗2 := x2
2 + x1 + u2.

Since x0 := Φx, set (x01, x02, x03, x04)
T := (x2, x3, x4, x6)

T and find the system S0:

x+01 = sign(x02) + x04 + u1, x+02 = −x02x03,
x+03 = x03 + y2 + u1, x+04 = x2

02 + y1 + u2.

Then, replace (x2, x3, x4, x6) by (x01, x02, x03, x04) and obtain

u01 := x03 + y2 + u1, u02 := x2
02 + y1 + u2.

As a result, the function u = g(x0, y, u0) in (6) is as follows:

u1 = u01 − x03 − y2, u2 = u02 − x2
02 − y1, u3 = u03.

6. Conclusions

This paper deals with the DDDP for dynamic systems. The so-called logic-dynamic approach is
used to solve the problem. The advantage of the LDA is that the system under consideration may
contain non-smooth nonlinearities such as Coulomb friction, backlash, and saturation. Moreover,
the LDA can be applied both for continuous-time and discrete-time systems. The DDDP solution can
be used as a basis to solve the problem of faulty plant reconfiguration [7].
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