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Abstract: The theory of nonlinear systems can currently be encountered in many important fields,
while the nonlinear behavior of electronic systems and devices has been studied for a long time.
However, a global approach for dealing with nonlinear systems does not exist and the methods
to address this problem differ depending on the application and on the types of nonlinearities.
An interesting category of nonlinear systems is one that can be regarded as an ensemble of
(approximately) linear systems. Some popular examples in this context are nonlinear electronic
devices (such as acoustic echo cancellers, which are used in applications for two-party or multi-party
voice communications, e.g., videoconferencing), which can be modeled as a cascade of linear and
nonlinear systems, similar to the Hammerstein model. Multiple-input/single-output (MISO) systems
can also be regarded as separable multilinear systems and be treated using the appropriate methods.
The high dimension of the parameter space in such problems can be addressed with methods based on
tensor decompositions and modelling. In recent work, we focused on a particular type of multilinear
structure—namely the bilinear form (i.e., two-dimensional decompositions)—in the framework of
identifying spatiotemporal models. In this paper, we extend the work to the decomposition of more
complex systems and we propose an iterative Wiener filter tailored for the identification of trilinear
forms (where third-order tensors are involved), which can then be further extended to higher order
multilinear structures. In addition, we derive the least-mean-square (LMS) and normalized LMS
(NLMS) algorithms tailored for such trilinear forms. Simulations performed in the context of system
identification (based on the MISO system approach) indicate the good performance of the proposed
solution, as compared to conventional approaches.

Keywords: nonlinear systems; multiple-input/single-output (MISO) systems; Wiener filter,
least-mean-square (LMS) algorithm; normalized LMS (NLMS) algorithm; trilinear forms; tensors

1. Introduction

The approximation of nonlinear systems can be performed using a finite sum of the Volterra
series expansion that relates the system’s inputs and outputs. This method has been studied since
the 1960s [1–3] and used in different applications, for example, Reference [4–6], among others. In this
context, bilinear forms have been used to approximate a large class of nonlinear systems, where the
bilinear component is interpreted in terms of an input-output relation (meaning that it is defined
with respect to the data). Consequently, the bilinear system may be regarded as one of the simplest
recursive nonlinear systems.

More recently, a new approach was introduced in Reference [7], where the bilinear term is
considered within the framework of a multiple-input/single-output (MISO) system, and it is defined
with respect to the spatiotemporal model’s impulse responses. A particular case of this type of system
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is the Hammerstein model [8]; in this scenario, a single-input signal passes through a nonlinear block
and a linear system, which are cascaded. Recently, adaptive solutions were proposed for the study of
such bilinear forms in the context of system identification [9–11]. The bilinear approach is suitable for
a particular form of the decomposition, which involves only two terms (i.e., two systems). In some
cases, it would be useful to exploit a higher-order decomposition, which could improve the overall
performance in terms of both complexity and efficiency.

Motivated by the good performance of these approaches in the study of bilinear forms, we aim
to further extend this approach to higher-order multilinear in parameters’ systems. Applications,
such as multichannel equalization [12], nonlinear acoustic devices for echo cancellation [13],
multiple-input/multiple-output (MIMO) communication systems [14,15] and others, can be addressed
within the framework of multilinear systems. Because many of these applications can be formulated
in terms of system identification problems [16], it is of interest to estimate a model based on the
available and observed data, which are usually the input and the output of the system. The challenges
that usually occur in such system identification tasks may be represented by a high length of
the finite impulse response filter [17,18], which may employ hundreds or even thousands of
coefficients. Moreover, another possible issue is the large parameter space [19,20]. Nowadays, such
scenarios are related to very important topics, for example, big data [21], machine learning [22],
and source separation [23]. Usually, they are addressed based on tensor decompositions and
modelling [24–27]. These techniques mainly exploit the Kronecker product decomposition [28],
which further allows the reformulation of a high-dimension problem as low-dimension models,
which can be tensorized together.

In this paper, we propose an iterative Wiener filter tailored for third-order systems (i.e., trilinear
forms), together with adaptive solutions for such problems—namely the least-mean-square (LMS)
and normalized LMS (NLMS) algorithms. Following this development, the solution can then be
extended to higher-order multilinear systems. The proposed approach presents an advantage from the
perspective of exploiting the decomposition of the global impulse response. One potential limitation of
such a method is related to the particular form of the global impulse response to be identified, which is
a result of separable systems. In perspective, it would be useful to extend this approach to identify
more general forms of impulse responses. Recently, we developed such ideas in References [29,30],
based on the Wiener filter and the recursive least-squares (RLS) algorithm, by exploiting the nearest
Kronecker product decomposition and the related low-rank approximation.

The rest of this paper is organized as follows: In Section 2, a brief theory of tensors is provided,
which is necessary for the following developments; next, in Section 3, the iterative Wiener filter tailored
for the identification of trilinear forms is proposed; Section 4 contains the derivation of the trilinear
forms for the LMS and NLMS adaptive algorithms; simulation results are provided in Section 5,
while Section 6 concludes the paper.

2. Background on Tensors

A tensor is a multidimensional array of data the entries of which are referred by using multiple
indices [31,32]. A tensor, a matrix, a vector, and a scalar can be denoted by A, A, a, and a, respectively.
In this paper, we are only interested in the third-order tensor A ∈ RL1×L2×L3 , meaning that its elements
are real-valued and its dimension is L1 × L2 × L3. For a third-order tensor, the first and second indices
l1 and l2 correspond to the row and column, respectively—as in a matrix—while the third index
l3 corresponds to the tube and describes its depth. These three indices describe the three different
modes. The entries of the different order tensors are denoted by (A)l1l2l3 = al1l2l3 , (A)l1l2 = al1l2 ,
and (a)l1 = al1 , for l1 = 1, 2, . . . , L1, l2 = 1, 2, . . . , L2, and l3 = 1, 2, . . . , L3.

The notion of vectorization, consisting of transforming a matrix into a vector, is very well
known. Matricization does somewhat the same thing but from a third-order tensor into a large
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matrix. Depending on which index’s elements are considered first, we have matricization along three
different modes [24,25]:

A[1] = A:,1:L2,1:L3

=
[

A::1 · · · A::L3

]
, A[1] ∈ RL1×L2L3 ,

A[2] = A1:L1,:,1:L3 , A[2] ∈ RL2×L1L3 ,

A[3] = A1:L1,1:L2,:, A[3] ∈ RL3×L1L2 ,

where A::l3 ∈ RL1×L2 , l3 = 1, 2, . . . , L3 are the frontal slices. Hence, the vectorization of a tensor is

vec (A) = vec
(

A[1]

)
=

 vec (A::1)
...

vec
(
A::L3

)
 ∈ RL1L2L3 .

Let b1, b2, and b3 be vectors of length L1, L2, and L3, respectively, whose elements are b1l1 , b2l2 ,
and b3l3 . A rank-1 tensor (of dimension L1 × L2 × L3) is defined as

B = b1 ◦ b2 ◦ b3, (1)

where ◦ is the vector outer product and the elements of B are given by (B)l1l2l3 = b1l1 b2l2 b3l3 .
The frontal slices of B in Equation (1) are B::l3 = b1bT

2 b3l3 ∈ RL1×L2 , l3 = 1, 2, . . . , L3. In particular,
we have B = b1 ◦ b2 = b1bT

2 , where T is the transpose operator. Therefore, the rank of a tensor A,
denoted rank (A), is defined as the minimum number of rank-1 tensors that generate A as their sum.

The inner product between two tensors A and B of the same dimension is

〈A,B〉 =
L1

∑
l1=1

L2

∑
l2=1

L3

∑
l3=1

al1l2l3 bl1l2l3 = vecT (B) vec (A) .

It is important to be able to multiply a tensor with a matrix [26,27]. Let the tensor be
A ∈ RL1×L2×L3 and the matrix be M1 ∈ RM1×L1 . The mode-1 product between the tensor A and the
matrix M1 gives the tensor:

U = A×1 M1, U ∈ RM1×L2×L3 , (2)

whose entries are um1l2l3 = ∑L1
l1=1 al1l2l3 mm1l1 , for m1 = 1, 2, . . . , M1, and U[1] = M1A[1]. In the same

way, with the matrix M2 ∈ RM2×L2 , the mode-2 product between the tensor A and the matrix M2

gives the tensor:

U = A×2 M2, U ∈ RL1×M2×L3 , (3)

whose entries are ul1m2l3 = ∑L2
l2=1 al1l2l3 mm2l2 , for m2 = 1, 2, . . . , M2, and U[2] = M2A[2]. Finally,

with the matrix M3 ∈ RM3×L3 , the mode-3 product between the tensor A and the matrix M3 gives
the tensor:

U = A×3 M3, U ∈ RL1×L2×M3 , (4)

whose entries are ul1l2m3 = ∑L3
l3=1 al1l2l3 mm3l3 , for m3 = 1, 2, . . . , M3, and U[3] = M3A[3].
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The multiplication of A with the row vectors bT
1 , bT

2 , and bT
3 (see the components of B in

Equation (1)) gives the scalar:

c = A×1 bT
1 ×2 bT

2 ×3 bT
3 =

L1

∑
l1=1

L2

∑
l2=1

L3

∑
l3=1

al1l2l3 b1l1 b2l2 b3l3 . (5)

In particular, we have

c = A×1 bT
1 ×2 bT

2 =
L1

∑
l1=1

L2

∑
l2=1

al1l2 b1l1 b2l2 = bT
1 Ab2 (6)

and

c = a×1 bT
1 =

L1

∑
l1=1

al1 b1l1 = bT
1 a. (7)

It is easy to check that Equations (5)–(7) are trilinear (with respect to b1, b2, and b3), bilinear
(with respect to b1 and b2), and linear (with respect to b1) forms, respectively.

We can express Equation (6) as

c = tr
(

b2bT
1 A
)
= tr

[(
b1bT

2

)T
A
]
= vecT

(
b1bT

2

)
vec (A)

= (b2 ⊗ b1)
T vec (A) , (8)

where tr(·) represents the trace of a square matrix and⊗ denotes the Kronecker product. Expression (5)
can also be written in a more convenient way. Indeed, we have

c = 〈A,B〉 = vecT (B) vec (A)

= vecT (b1 ◦ b2 ◦ b3) vec (A)

= (b3 ⊗ b2 ⊗ b1)
T vec (A) , (9)

where B is defined in Equation (1).

3. Trilinear Wiener Filter

Let us consider the following signal model, which is used in system identification tasks:

d(t) = y(t) + v(t)

= X (t)×1 hT
1 ×2 hT

2 ×3 hT
3 + v(t)

=
L1

∑
l1=1

L2

∑
l2=1

L3

∑
l3=1

xl1l2l3(t)h1l1 h2l2 h3l3 + v(t), (10)

where d(t) is the desired (also known as reference) signal at time index t, y(t) is the output signal
of a MISO system and v(t) is a zero-mean additive noise, uncorrelated with the input signals.
The zero-mean input signals can be described in a tensorial form X (t) ∈ RL1×L2×L3 :

(X )l1l2l3 (t) = xl1l2l3(t), lk = 1, 2, . . . , Lk, k = 1, 2, 3,

and the three impulse responses hk, k = 1, 2, 3, of lengths L1, L2, and L3, respectively, can be written as

hk =
[

hk1 hk2 · · · hkLk

]T
, k = 1, 2, 3.
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It can be seen that y(t) represents a trilinear form because it is a linear function of each of the
vectors hk, k = 1, 2, 3, if the other two are kept fixed. The trilinear form can be regarded as an extension
of the bilinear form [7].

Starting from the three impulse responses of the MISO system, a rank-1 tensor of dimension
L1 × L2 × L3 can be constructed in the following way:

H = h1 ◦ h2 ◦ h3, (11)

where

(H)l1l2l3 = h1l1 h2l2 h3l3 , lk = 1, 2, . . . , Lk, k = 1, 2, 3.

Consequently, the output signal becomes

y(t) = vecT (H) vec [X (t)] , (12)

where

vec (H) =

 vec (H::1)
...

vec
(
H::L3

)
 = h3 ⊗ h2 ⊗ h1 , h, (13)

vec [X (t)] =

 vec [X::1(t)]
...

vec
[
X::L3(t)

]
 , x(t), (14)

H::l3 and X::l3(t) (with l3 = 1, 2, . . . , L3) are the frontal slices of H and X (t), respectively, while h
and x(t) denote two long vectors, each of them having L1L2L3 elements. Hence, the output signal can
be expressed as

y(t) = hTx(t). (15)

In this framework, the aim is to estimate the global impulse response h. For that, first we define
the error signal:

e(t) = d(t)− ŷ(t) = d(t)− ĥTx(t), (16)

where ŷ(t) = ĥTx(t) represents the estimated signal, obtained using the impulse response ĥ of
length L1L2L3.

Based on Equation (16), let us consider the mean-squared error (MSE) optimization criterion,
that is, the minimization of the cost function:

J
(

ĥ
)
= E

[
e2(t)

]
, (17)

where E[·] denotes mathematical expectation. Using Equation (16) in Equation (17), together with the
notation σ2

d = E
[
d2(t)

]
(the variance of the reference signal), p = E [x(t)d(t)] (the cross-correlation

vector between the input and the reference signals) and R = E
[
x(t)xT(t)

]
(the covariance matrix of

the input signal), the cost function can be developed as

J
(

ĥ
)
= σ2

d − 2ĥTp + ĥTRĥ. (18)

By minimizing Equation (18), we obtain the well-known Wiener filter:
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ĥW = R−1p. (19)

As we can see, the dimension of the covariance matrix is L1L2L3 × L1L2L3, thus requiring a large
amount of data (much more than L1L2L3 samples) to obtain a good estimate of it. Furthermore, R could
be very ill-conditioned because of its huge size. As a result, the solution ĥW will be very inaccurate,
to say the least, in practice.

On the other hand, as we notice from Equation (13), the global impulse response h (with L1L2L3

coefficients) results based on a combination of the shorter impulse responses hk, k = 1, 2, 3, with L1,
L2, and L3 coefficients, respectively. In fact, we only need L1 + L2 + L3 different elements to form h,
even though this global impulse response is of length L1L2L3. This represents the motivation behind
an alternative approach to the conventional Wiener solution. Similar to Equation (13), the estimate of
the global system can be decomposed as

ĥ = ĥ3 ⊗ ĥ2 ⊗ ĥ1, (20)

where ĥk, k = 1, 2, 3 are three impulse responses of lengths L1, L2, and L3, respectively, which represent
the estimates of the individual impulse responses hk, k = 1, 2, 3. Nevertheless, we should note that
there is no unique solution related to the decomposition in Equation (20), since for any constants
α1, α2, and α3, with α1α2α3 = 1, we have ĥ = ĥ3 ⊗ ĥ2 ⊗ ĥ1 = α3ĥ3 ⊗ α2ĥ2 ⊗ α1ĥ1. Consequently,
αkĥk, k = 1, 2, 3 also represents a set of solutions for our problem. Nevertheless, the global system
impulse response—h—can be identified with no scaling ambiguity.

Next, we propose an iterative alternative to the conventional Wiener filter, following the
decomposition from Equation (20). First, we can easily verify that

ĥ =
(

ĥ3 ⊗ ĥ2 ⊗ IL1

)
ĥ1 (21)

=
(

ĥ3 ⊗ IL2 ⊗ ĥ1

)
ĥ2 (22)

=
(

IL3 ⊗ ĥ2 ⊗ ĥ1

)
ĥ3, (23)

where ILk is the identity matrix of size Lk × Lk, for k = 1, 2, 3. Based on the previous relations, the cost
function from Equation (18) can be expressed in three different ways. For example, using Equation (21),
we obtain

J
(

ĥ1, ĥ2, ĥ3

)
= σ2

d − 2ĥT
1

(
ĥ3 ⊗ ĥ2 ⊗ IL1

)T
p

+ ĥT
1

(
ĥ3 ⊗ ĥ2 ⊗ IL1

)T
R
(

ĥ3 ⊗ ĥ2 ⊗ IL1

)
ĥ1. (24)

When ĥ2 and ĥ3 are fixed, we can rewrite Equation (24) as

Jĥ2,ĥ3

(
ĥ1

)
= σ2

d − 2ĥT
1 p1 + ĥT

1 R1ĥ1, (25)

where

p1 =
(

ĥ3 ⊗ ĥ2 ⊗ IL1

)T
p, (26)

R1 =
(

ĥ3 ⊗ ĥ2 ⊗ IL1

)T
R
(

ĥ3 ⊗ ĥ2 ⊗ IL1

)
. (27)

In this case, the partial cost function from Equation (25) is a convex one and can be minimized
with respect to ĥ1.



Symmetry 2019, 11, 556 7 of 19

Similarly, using Equations (22) and (23), the cost function from Equation (18) becomes

J
(

ĥ1, ĥ2, ĥ3

)
= σ2

d − 2ĥT
2

(
ĥ3 ⊗ IL2 ⊗ ĥ1

)T
p + ĥT

2

(
ĥ3 ⊗ IL2 ⊗ ĥ1

)T
R
(

ĥ3 ⊗ IL2 ⊗ ĥ1

)
ĥ2 (28)

= σ2
d − 2ĥT

3

(
IL3 ⊗ ĥ2 ⊗ ĥ1

)T
p + ĥT

3

(
IL3 ⊗ ĥ2 ⊗ ĥ1

)T
R
(

IL3 ⊗ ĥ2 ⊗ ĥ1

)
ĥ3. (29)

Also, when ĥ1 and ĥ3 are fixed, Equation (28) becomes

Jĥ1,ĥ3

(
ĥ2

)
= σ2

d − 2ĥT
2 p2 + ĥT

2 R2ĥ2, (30)

where

p2 =
(

ĥ3 ⊗ IL2 ⊗ ĥ1

)T
p, (31)

R2 =
(

ĥ3 ⊗ IL2 ⊗ ĥ1

)T
R
(

ĥ3 ⊗ IL2 ⊗ ĥ1

)
, (32)

while when ĥ1 and ĥ2 are fixed, the cost function from Equation (29) results in

Jĥ1,ĥ2

(
ĥ3

)
= σ2

d − 2ĥT
3 p3 + ĥT

3 R3ĥ3, (33)

where

p3 =
(

IL3 ⊗ ĥ2 ⊗ ĥ1

)T
p, (34)

R3 =
(

IL3 ⊗ ĥ2 ⊗ ĥ1

)T
R
(

IL3 ⊗ ĥ2 ⊗ ĥ1

)
. (35)

In both cases, the partial cost functions from Equations (30) and (33) can be minimized with
respect to ĥ2 and ĥ3, respectively.

The previous procedure suggests an iterative approach. To start the algorithm, a set of initial
values should be provided for two of the estimated impulse responses. For example, we can

choose ĥ(0)
2 = (1/L2)

[
1 1 · · · 1

]T
and ĥ(0)

3 = (1/L3)
[

1 1 · · · 1
]T

. Hence, based on
Equations (26) and (27), one may compute

p(0)
1 =

(
ĥ(0)

3 ⊗ ĥ(0)
2 ⊗ IL1

)T
p, (36)

R(0)
1 =

(
ĥ(0)

3 ⊗ ĥ(0)
2 ⊗ IL1

)T
R
(

ĥ(0)
3 ⊗ ĥ(0)

2 ⊗ IL1

)
. (37)

In the first iteration, the first cost function to be minimized results from Equation (25)
(using Equations (36) and (37)), that is,

Jĥ2,ĥ3

(
ĥ(1)

1

)
= σ2

d − 2
(

ĥ(1)
1

)T
p(0)

1 +
(

ĥ(1)
1

)T
R(0)

1 ĥ(1)
1 ,

which leads to the solution ĥ(1)
1 =

(
R(0)

1

)−1
p(0)

1 . Also, since ĥ(1)
1 and ĥ(0)

3 are now available, we can
evaluate (based on Equations (31) and (32))

p(1)
2 =

(
ĥ(0)

3 ⊗ IL2 ⊗ ĥ(1)
1

)T
p, (38)

R(1)
2 =

(
ĥ(0)

3 ⊗ IL2 ⊗ ĥ(1)
1

)T
R
(

ĥ(0)
3 ⊗ IL2 ⊗ ĥ(1)

1

)
, (39)
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so that the cost function from Equation (30) becomes

Jĥ1,ĥ3

(
ĥ(1)

2

)
= σ2

d − 2
(

ĥ(1)
2

)T
p(1)

2 +
(

ĥ(1)
2

)T
R(1)

2 ĥ(1)
2 ,

while its minimization leads to ĥ(1)
2 =

(
R(1)

2

)−1
p(1)

2 . Finally, using the solutions ĥ(1)
1 and ĥ(1)

2 , we can

find ĥ(1)
3 in a similar manner. First, we evaluate (based on Equations (34) and (35))

p(1)
3 =

(
IL3 ⊗ ĥ(1)

2 ⊗ ĥ(1)
1

)T
p, (40)

R(1)
3 =

(
IL3 ⊗ ĥ(1)

2 ⊗ ĥ(1)
1

)T
R
(

IL3 ⊗ ĥ(1)
2 ⊗ ĥ(1)

1

)
. (41)

Then, we minimize the cost function (which results from Equation (33)):

Jĥ1,ĥ2

(
ĥ(1)

3

)
= σ2

d − 2
(

ĥ(1)
3

)T
p(1)

3 +
(

ĥ(1)
3

)T
R(1)

3 ĥ(1)
3 ,

which leads to the solution ĥ(1)
3 =

(
R(1)

3

)−1
p(1)

3 . Continuing the iterative procedure, at iteration
number n, we obtain the estimates of the impulse responses based on the following steps:

ĥ(n)
1 =

(
R(n−1)

1

)−1
p(n−1)

1 ,

p(n)
2 =

(
ĥ(n−1)

3 ⊗ IL2 ⊗ ĥ(n)
1

)T
p,

R(n)
2 =

(
ĥ(n−1)

3 ⊗ IL2 ⊗ ĥ(n)
1

)T
R
(

ĥ(n−1)
3 ⊗ IL2 ⊗ ĥ(n)

1

)
,

ĥ(n)
2 =

(
R(n)

2

)−1
p(n)

2 ,

p(n)
3 =

(
IL3 ⊗ ĥ(n)

2 ⊗ ĥ(n)
1

)T
p,

R(n)
3 =

(
IL3 ⊗ ĥ(n)

2 ⊗ ĥ(n)
1

)T
R
(

IL3 ⊗ ĥ(n)
2 ⊗ ĥ(n)

1

)
,

ĥ(n)
3 =

(
R(n)

3

)−1
p(n)

3 .

Thus, the global impulse response at iteration n results in

ĥ(n) = ĥ(n)
3 ⊗ ĥ(n)

2 ⊗ ĥ(n)
1 . (42)

The proposed iterative Wiener filter for trilinear forms represents an extension of the solution
presented in Reference [7] (in the context of bilinear forms). However, when the MISO system
identification problem results are based on Equation (10), it is more advantageous to use the algorithm
tailored for trilinear forms instead of reformulating the problem in terms of multiple bilinear forms.
The trilinear approach has some similarities (to some extent) with that introduced in Reference [33].
However, the batch Trilinear Wiener-Hopf (TriWH) algorithm from Reference [33] is more related to
an adaptive approach, since the statistics are estimated within the algorithm. On the other hand, in the
case of our iterative Wiener filter, the estimates of the statistics are considered to be a priori available
(see also the related discussion in the next section), which is basically in the spirit of the Wiener filter.

4. LMS and NLMS Algorithms for Trilinear Forms

It is well-known that the Wiener filter presents several limitations that may make it unsuitable to
be used in practice (e.g., the matrix inversion operation, the correlation matrix estimation, etc.). For this
reason, a more convenient manner of treating the system identification problem is through adaptive
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filtering. One of the simplest types of adaptive algorithms is the LMS, which will be presented in the
following, tailored for the new trilinear form approach.

First, let us consider the three estimated impulse responses ĥk, k = 1, 2, 3, together with the
corresponding a priori error signals:

eĥ2ĥ3
(t) = d(t)− ĥT

1 (t− 1)xĥ2ĥ3
(t), (43)

eĥ1ĥ3
(t) = d(t)− ĥT

2 (t− 1)xĥ1ĥ3
(t), (44)

eĥ1ĥ2
(t) = d(t)− ĥT

3 (t− 1)xĥ1ĥ2
(t), (45)

where

xĥ2ĥ3
(t) =

[
ĥ3(t− 1)⊗ ĥ2(t− 1)⊗ IL1

]
x(t), (46)

xĥ1ĥ3
(t) =

[
ĥ3(t− 1)⊗ IL2 ⊗ ĥ1(t− 1)

]
x(t), (47)

xĥ1ĥ2
(t) =

[
IL3 ⊗ ĥ2(t− 1)⊗ ĥ1(t− 1)

]
x(t). (48)

It can be checked that eĥ2ĥ3
(t) = eĥ1ĥ3

(t) = eĥ1ĥ2
(t). In this context, the LMS updates for the

three filters are the following:

ĥ1(t) = ĥ1(t− 1)−
µĥ1

2
×

∂e2
ĥ2ĥ3

(t)

∂ĥ1(t− 1)

= ĥ1(t− 1) + µĥ1
xĥ2ĥ3

(t)eĥ2ĥ3
(t), (49)

ĥ2(t) = ĥ2(t− 1)−
µĥ2

2
×

∂e2
ĥ1ĥ3

(t)

∂ĥ2(t− 1)

= ĥ2(t− 1) + µĥ2
xĥ1ĥ3

(t)eĥ1ĥ3
(t), (50)

ĥ3(t) = ĥ3(t− 1)−
µĥ3

2
×

∂e2
ĥ1ĥ2

(t)

∂ĥ3(t− 1)

= ĥ3(t− 1) + µĥ3
xĥ1ĥ2

(t)eĥ1ĥ2
(t), (51)

where µĥ1
> 0, µĥ2

> 0, µĥ3
> 0 represent the step-size parameters. Relations (49)–(51) define the LMS

algorithm for trilinear forms, namely LMS-TF.
For the initialization of the estimated impulse responses, we use

ĥ1(0) = [1 0 · · · 0]T , (52)

ĥ2(0) =
1
L2

[1 1 · · · 1]T , (53)

ĥ3(0) =
1
L3

[1 1 · · · 1]T . (54)

In the end, we can obtain the global filter using Relation (20). Alternatively, this global impulse
response may be identified directly with the regular LMS algorithm by using the following update:

ĥ(t) = ĥ(t− 1) + µĥx(t)e(t), (55)

where
e(t) = d(t)− ĥ(t− 1)x(t) (56)

and µĥ is the global step-size parameter.
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However, an observation needs to be made regarding the update in Relation (55): this involves
the presence of an adaptive filter of length L1L2L3, whereas the LMS-TF algorithm, which is defined
by the update Relations (49)–(51), uses three shorter filters of lengths L1, L2, and L3, respectively.
Basically, a system identification problem of size L1L2L3 (as in the regular approach) was reformulated
in terms of three shorter filters of lengths L1, L2, and L3. Taking into account that we usually have
L1 + L2 + L3 � L1L2L3, the advantage of the trilinear approach (in terms of reducing the complexity)
could be important. Therefore, the complexity of this new approach is lower and the convergence rate
is expected to be faster.

The step-size parameters in Relations (49)–(51) take constant values, chosen such that they ensure
the convergence of the algorithm and a good compromise between convergence speed and steady-state
misadjustment. Nevertheless, when dealing with non-stationary signals, it may be more appropriate
to use time-dependent step-sizes, which lead to the following update relations:

ĥ1(t) = ĥ1(t− 1) + µĥ1
(t)xĥ2ĥ3

(t)eĥ2ĥ3
(t), (57)

ĥ2(t) = ĥ2(t− 1) + µĥ2
(t)xĥ1ĥ3

(t)eĥ1ĥ3
(t), (58)

ĥ3(t) = ĥ3(t− 1) + µĥ3
(t)xĥ1ĥ2

(t)eĥ1ĥ2
(t). (59)

For deriving the expressions of the step-size parameters, we take into consideration the stability
conditions and we target to cancel the following expressions, which represent the a posteriori error
signals [34]:

εĥ2ĥ3
(t) = d(t)− ĥT

1 (t)xĥ2ĥ3
(t), (60)

εĥ1ĥ3
(t) = d(t)− ĥT

2 (t)xĥ1ĥ3
(t), (61)

εĥ1ĥ2
(t) = d(t)− ĥT

3 (t)xĥ1ĥ2
(t). (62)

By replacing Relation (49) in (60), Relation (50) in (61), and Relation (51) in (62), respectively,
and by imposing the conditions εĥ2ĥ3

(t) = 0, εĥ1ĥ3
(t) = 0, and εĥ1ĥ2

(t) = 0, we obtain that

εĥ2ĥ3
(t) = eĥ2ĥ3

(t)
[
1− µĥ1

(t)xT
ĥ2ĥ3

(t)xĥ2ĥ3
(t)
]
= 0, (63)

εĥ1ĥ3
(t) = eĥ1ĥ3

(t)
[
1− µĥ2

(t)xT
ĥ1ĥ3

(t)xĥ1ĥ3
(t)
]
= 0, (64)

εĥ1ĥ2
(t) = eĥ1ĥ2

(t)
[
1− µĥ3

(t)xT
ĥ1ĥ2

(t)xĥ1ĥ2
(t)
]
= 0. (65)

Consequently, assuming that eĥ2ĥ3
(t) 6= 0, eĥ1ĥ3

(t) 6= 0, and eĥ1ĥ2
(t) 6= 0, the following

expressions for the step-size parameters result:

µĥ1
(t) =

1
xT

ĥ2ĥ3
(t)xĥ2ĥ3

(t)
, (66)

µĥ2
(t) =

1
xT

ĥ1ĥ3
(t)xĥ1ĥ3

(t)
, (67)

µĥ3
(t) =

1
xT

ĥ1ĥ2
(t)xĥ1ĥ2

(t)
. (68)

In order to obtain a good balance between convergence rate and misadjustment, three positive
constants, 0 < αĥ1

< 1, 0 < αĥ2
< 1, and 0 < αĥ3

< 1, are employed [35]. In addition,
three regularization constants δĥ1

> 0, δĥ2
> 0, and δĥ3

> 0, usually chosen to be proportional
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to the variance of the input signal [36], are added to the denominators of the step-size parameters.
Finally, the updates of the NLMS algorithm for trilinear forms (NLMS-TF) become

ĥ1(t) = ĥ1(t− 1) +
αĥ1

(t)xĥ2ĥ3
(t)eĥ2ĥ3

(t)

xT
ĥ2ĥ3

(t)xĥ2ĥ3
(t) + δĥ1

, (69)

ĥ2(t) = ĥ2(t− 1) +
αĥ2

(t)xĥ1ĥ3
(t)eĥ1ĥ3

(t)

xT
ĥ1ĥ3

(t)xĥ1ĥ3
(t) + δĥ2

, (70)

ĥ3(t) = ĥ3(t− 1) +
αĥ3

(t)xĥ1ĥ2
(t)eĥ1ĥ2

(t)

xT
ĥ1ĥ2

(t)xĥ1ĥ2
(t) + δĥ3

. (71)

The initializations of the estimated filters may be the same as Equations (52)–(54). In a similar
way as for the LMS algorithm, the global impulse response can be identified using the regular NLMS:

ĥ(t) = ĥ(t− 1) +
αĥx(t)e(t)

xT(t)x(t) + δĥ
, (72)

where e(t) is given in Equation (56). The parameters αĥ and δĥ represent the normalized step-size
parameter and the regularization constant for the global filter, respectively. As previously shown in
Reference [9] for bilinear forms, the global misalignment can be controlled by using a constraint on
the sum of the normalized step-sizes, and this sum should be smaller than 1. In this way, for different
values of αĥ1

, αĥ2
, αĥ3

fulfilling this condition, the misalignment of the global filter is the same.
On the other hand, in the case when αĥ1

= αĥ2
= αĥ3

, the three filters achieve the same level of the
misalignment.

Again, we notice that the global impulse response identification involves the use of a filter of
length L1L2L3. Because the trilinear approach uses three much shorter impulse responses of lengths L1,
L2, and L3, respectively, it is expected that this new solution will yield a faster convergence. This will
be shown through simulations.

The NLMS-TF algorithm proposed here is similar to that presented in Reference [19]. However,
our choice of the system impulse responses used in simulations is different from that in Reference [19].
On the contrary, we aim to show the performance of the algorithm in a scenario that includes a real
echo path. In addition, we also study the tracking capability of the algorithm.

5. Simulation Results

In order to show the performance of our approach, we perform simulations in which we compare
the trilinear forms of the proposed algorithms with their regular counterparts.

5.1. Iterative Wiener Filter

In this section, the performance of the proposed iterative Wiener filter for trilinear forms is
evaluated in the context of system identification. The input signals that form X (t) are AR(1) processes,
which are obtained by generating white Gaussian noises and then filtering them through a first-order
system 1/

(
1− 0.9z−1). The additive noise v(t), corrupting the output signal y(t), is white and

Gaussian, with the variance set to σ2
v = 0.01. The impulse responses used in simulations are depicted

in Figure 1. The impulse response h1 is the first impulse response from the G168 Recommendation [37],
of length L1 = 64 (see Figure 1a). Next, h2 is a random impulse response (with Gaussian distribution)
of length L2 = 8 (as shown in Figure 1b). Finally, the coefficients of the impulse response h3 (depicted in
Figure 1c) are evaluated as h3l3 = 0.5l3−1, l3 = 1, 2, . . . , L3, using L3 = 4. Therefore, the global impulse
response from Figure 1d results in h = h3 ⊗ h2 ⊗ h1 and its length is L = L1L2L3 = 2048. As we can
see, this global impulse response is similar (to some extent) to a channel with echoes, similar to an
acoustic echo path.
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Figure 1. Impulse responses used in simulations: (a) h1 of length L1 = 64 (the first impulse response
from G168 Recommendation [37]), (b) h2 of length L2 = 8 (random impulse response with Gaussian
distribution), (c) h3 of length L3 = 4 (its elements are evaluated as h3l3 = 0.5l3−1, l3 = 1, . . . , L3),
and (d) the global impulse response h = h3 ⊗ h2 ⊗ h1 of length L = L1L2L3 = 2048.

In order to evaluate the identification of the individual filters hk, k = 1, 2, 3, we should use the
normalized projection misalignment (NPM) [38]:

NPM
(

hk, ĥk

)
= 1−

(
hT

k ĥk

‖hk‖‖ĥk‖

)2

, (73)

where ‖ · ‖ denotes the Euclidean norm. For the identification of the global impulse response, h(t),
we use the normalized misalignment (NM):

NM
(

h, ĥ
)
=
‖h− ĥ‖2

‖h‖2 . (74)

We consider that the covariance matrix R and the cross-correlation vector p are estimated based
on N data samples:

R̂ =
1
N

N

∑
t=1

x(t)xT(t), (75)

p̂ =
1
N

N

∑
t=1

x(t)d(t). (76)

These two terms are a priori computed and they are used afterwards (instead of R and p) for both
the conventional and iterative Wiener filters.

The matrix involved in the linear system, to be solved in the case of the conventional Wiener
filter from Equation (19), is of size L× L; hence, a number of data samples larger than L are needed to
estimate the statistics in Equations (75) and (76), in order to obtain a good solution. This is shown in
Figure 2, where different values of N (that is, the available amount of data in Equations (75) and (76))
are used and the solution provided by the conventional Wiener filter is evaluated for each of these
values. Similar to Equation (74), the performance measure in Figure 2 is the NM (in dB), which is

defined as 10log10

(∥∥∥h− ĥW

∥∥∥2
/ ‖h‖2

)
; in this case, the conventional Wiener solution ĥW results
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from Equation (19) (using Equations (75) and (76)). As we can see, the conventional Wiener filter
achieves a reasonable decrease in misalignment only when a large amount of data (i.e., N > L) are
used to estimate the statistics in Equations (75) and (76).

N

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
M

 (
d
B

)

-20

-10

0

10

20

30

40

Figure 2. NM of the conventional Wiener filter as a function of the number of available data samples
used to estimate the statistics (N), for the identification of the global impulse response from Figure 1d.
The input signals are AR(1) processes, L = 2048, and σ2

v = 0.01.

The main advantage provided by the iterative Wiener filter is that it operates with much shorter
filters (due to the decomposition in Equation (20)) and, consequently, the dimensions of the linear
systems of equations to be solved are significantly reduced. Therefore, even with a small amount of
data (i.e., N < L), the iterative Wiener filter is able to obtain a reliable estimation. This advantage
is outlined in Figure 3, where the solution provided by the conventional Wiener filter (based on
Equation (19) and using Equations (75) and (76)) is compared to the iterative Wiener filter from
Equation (42). The performance measure is the NM (in dB), which is evaluated based on Equation (74),
for the identification of the global system h. Three amounts of data are considered in this experiment,
that is, N = 500, 2500, and 5000. Clearly, in the first case (N = 500), the conventional Wiener filter
leads to an inaccurate solution due to the small amount of data (as compared to L = 2048). When
the amount of data slightly exceeds the value of L (e.g., N = 2500), the conventional Wiener filter
provides a more reliable solution, that is, the misalignment attenuation is approximately −10 dB.
Finally, for a large amount of data (N = 5000), this conventional solution is improved in terms
of accuracy (e.g., the misalignment is close to −20 dB). On the other hand, in all the previous cases,
the proposed iterative Wiener filter achieves a much more accurate solution (with only a few iterations),
which outperforms by far the conventional one (even in the case when a small amount of data are
available, e.g., N = 500). For example, the iterative Wiener filter which uses N = 500 yields a lower
misalignment level with respect to the conventional Wiener filter with N = 5000.

In Figure 4, the performance of the iterative Wiener filter is also illustrated using the NPMs (in dB),
based on Equation (73), for the identification of the individual impulse responses from Figure 1a–c.
Basically, the same conclusion applies, that is, only a few iterations are required by the iterative Wiener
filter to achieve a reliable solution (even for a small amount of data).



Symmetry 2019, 11, 556 14 of 19

Iterations

2 4 6 8 10 12 14 16 18 20

N
M

 (
d
B

)

-40

-30

-20

-10

0

10

20

30

Conventional Wiener filter, N = 500

Conventional Wiener filter, N = 2500

Conventional Wiener filter, N = 5000
Iterative Wiener filter, N = 500

Iterative Wiener filter, N = 2500

Iterative Wiener filter, N = 5000

Figure 3. NM of the conventional and iterative Wiener filters, for different values of the number of
available data samples used to estimate the statistics (N), for the identification of the global impulse
response from Figure 1d. The input signals are AR(1) processes, L = 2048, and σ2

v = 0.01.
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Figure 4. NPM of the iterative Wiener filter, for different values of the number of available data
samples used to estimate the statistics (N), for the identification of the individual impulse responses

from Figure 1a–c: (a) NPM
(

h1, ĥ(n)
1

)
, (b) NPM

(
h2, ĥ(n)

2

)
, and (c) NPM

(
h3, ĥ(n)

3

)
. The input signals

are AR(1) processes, L1 = 64, L2 = 8, L3 = 4, and σ2
v = 0.01.

5.2. LMS-TF and NLMS-TF

For the second set of simulations, the setup is the same as in the previous experiments. First,
we aim to show the influence of the constant step-size values on the performance of the LMS-TF
algorithm. The performance in terms of the NM (in dB) is shown in Figure 5.

It can be seen that if the step-sizes take large values, the LMS-TF algorithm reaches convergence
after less than 104 iterations. Then, as these values decrease, the convergence becomes slower but the
steady-state value of the NM also decreases, highlighting the compromise between convergence rate
and NM value.
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Figure 5. NM of the LMS-TF algorithm using different values of the step-size parameters.

Next, we illustrate the improvement brought by the proposed solution, by comparing the LMS-TF
algorithm to its regular counterpart, applied for the identification of the global filter. Figure 6 shows
the values of the NM for the regular LMS filter and the LMS-TF. The first observation is that, in order to
reach the same steady-state value of the NM, the regular LMS algorithm needs many more iterations.
On the other hand, for a similar convergence speed, the final NM provided by the LMS-TF is much
lower than that offered by its regular counterpart. This proves that the proposed solution offers a
significant improvement with respect to the classical approach.
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Figure 6. NM of the LMS-TF and regular LMS algorithms.

The next step is to study the behavior of the NLMS-TF filter. First, the performance of the
NLMS-TF algorithm is depicted in Figure 7, for different values of the normalized step-sizes.
The regularization constants are δĥ1

= δĥ2
= δĥ3

= 0.001. The same conclusion as for the LMS-TF case
is valid, namely that the decrease in the normalized step-sizes leads to a smaller value of the final NM
but at the cost of a slower convergence rate. When the step-size values decrease 10 times, the number
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of iterations needed to reach convergence increases almost 10 times, while the steady-state NM value
decreases by a bit more than 10 dB.

0 2 4 6 8 10 12 14 16 18

Iterations 104

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

N
M

 (
d

B
)

Figure 7. NM of the NLMS-TF algorithm using different values of the step-size parameters.

We then compare the NLMS-TF algorithm with its regular counterpart (applied on the global filter)
in Figure 8. Again, we observe that the NLMS-TF behaves better than the regular NLMS algorithm,
from the perspective of both convergence rate and final NM value.
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Figure 8. NM of the NLMS-TF and regular NLMS algorithms.

Finally, the tracking capability of the NLMS-TF algorithm is of interest, that is, the capability of the
algorithm to react to abrupt changes to the impulse responses. In order to study this characteristic, we
simulated a sudden change of the random impulse response h2 in the middle of the experiment. The
results are presented in Figure 9. The improvement brought by the NLMS-TF algorithm is clear. The
algorithm tracks faster after the change of the system, while the value of the NM is smaller, as compared
to the regular NLMS filter. This proves that even if the environment changes, the proposed approach
exhibits good behavior.
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Figure 9. NM of the NLMS-TF and regular NLMS algorithms. The impulse response h2 changes in the
middle of the experiment.

6. Conclusions

In this paper, we addressed the problem of multilinear system identification, focusing in particular
on trilinear forms in the framework of MISO systems. Trilinear forms are defined with respect
to the impulse responses of the system and are treated using third-order tensors. In this context,
we derived the corresponding Wiener filter, as well as the LMS and NLMS adaptive algorithms,
tailored for such trilinear forms (LMS-TF and NLMS-TF). We have shown through simulations that
the proposed algorithms lead to better solutions as compared to their regular counterparts, due to the
reformulation of the system identification problem of high dimension in lower dimension problems.
Experimental results support the theoretical analysis and highlight the good performance of the
proposed solutions for the problem of system identification. Future work can focus on extending the
approach to higher-order multilinear systems.
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algorithms for the identification of low-rank systems. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27,
903–918. [CrossRef]

31. Kiers, H.A.L. Towards a standardized notation and terminology in multiway analysis. J. Chemom. 2000, 14,
105–122. [CrossRef]

32. Kroonenberg, P. Applied Multiway Data Analysis; Wiley: Hoboken, NJ, USA, 2008.

http://dx.doi.org/10.1109/LSP.2017.2685461
http://dx.doi.org/10.1109/TAC.2004.837592
http://dx.doi.org/10.1016/j.dsp.2018.01.010
http://dx.doi.org/10.3390/a11120211
http://dx.doi.org/10.1016/S0165-1684(00)00085-2
http://dx.doi.org/10.1016/j.sigpro.2017.12.015
http://dx.doi.org/10.1109/MSP.2014.2329429
http://dx.doi.org/10.1109/TSP.2017.2690524
http://dx.doi.org/10.1109/TSP.2016.2617858
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1109/MSP.2014.2298533
http://dx.doi.org/10.1109/MSP.2013.2297439
http://dx.doi.org/10.1016/S0377-0427(00)00393-9
http://dx.doi.org/10.1109/TASLP.2018.2842146
http://dx.doi.org/10.1109/TASLP.2019.2903276
http://dx.doi.org/10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I


Symmetry 2019, 11, 556 19 of 19

33. Ribeiro, L.N.; de Almeida, A.L.F.; Mota, J.C.M. Identification of separable systems using trilinear filtering.
In Proceedings of the 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), Cancun, Mexico, 13–16 December 2015; pp. 189–192.

34. Morgan, D.R.; Kratzer, S.G. On a class of computationally efficient, rapidly converging, generalized NLMS
algorithms. IEEE Signal Process. Lett. 1996, 3, 245–247. [CrossRef]

35. Haykin, S. Adaptive Filter Theory, 4th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2002.
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