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Abstract: Temperature dependence of the magnetic field penetration depth λ was calculated for
water intercalated sodium cobaltate superconductor NaxCoO2 ⋅ yH2O. Assuming that the system
is in the chiral d+id–wave superconducting state, it was shown that the shifting of the excitation
spectrum nodal points off the normal phase Fermi surface due to variation of the sodium content x
changes the functional form of the temperature dependence of λ−2 from exponential to linear in the
low temperatures region. It is argued that this change in the functional form of T–dependence of
the λ−2 can serve as a proof for the chiral symmetry of the superconducting order parameter in the
sodium cobaltate.
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1. Introduction

Unusual properties of the superconducting state of the electron subsystem in sodium cobaltate
NaxCoO2 are due to the quasi-two-dimensional nature of the current carrier dynamics, as well as
the triangular symmetry of the conducting layers of the crystal lattice formed by cobalt ions [1,2].
Cooper instability in these compounds occurs in the sodium content region 1/4 < x < 1/3 under water
intercallation [3–5], and the maximum critical temperature Tc does not exceed 5 K.

According to the experimental data on spin-lattice relaxation [6–10] and specific heat [11–13],
there must be nodal points in the excitation spectrum of Bogolyubov quasiparticles. Besides, the drop
of the spin contribution to the knight shift with decreasing temperature below Tc [14–17] points to the
spin-singlet superconductivity.

In the paper [18] it was shown that the mentioned experimental features can be described on
the basis of a microscopic approach, assuming that the system is in the chiral dx2−y2+idxy-wave
superconducting state, but the pairing occurs between the holes which are not on the nearest, but
on the next nearest cobalt ions. Otherwise, the nodal (or rather Dirac) points are located only at the
edges and in the center of the Brillouin zone and thus could not appear on the Fermi surface of the
normal phase.

Complete suppression of Cooper pairing on the nearest sites (as it was supposed in [18]) is possible
due to strong Coulomb repulsion V1 of holes from the first coordination sphere. Since, however, in
sodium cobaltates V1 is not large, the study of superconductivity in these systems cannot be limited
by taking into account the pairing between holes only from the second coordination sphere, it is also
necessary to include pairings of the holes located on the nearest ions. In this case, as it was shown
in [19], it is also possible for nodal points, at a certain value x, to be on the Fermi surface of normal
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phase, but for this it is necessary that the pairing amplitude for holes on the next nearest cobalt ions ∆2

exceeded the pairing amplitude for holes on the nearest ions ∆1.
Vanishing only at certain points in the Brillouin zone is an important feature of the complex order

parameter with dx2−y2 +idxy–type of symmetry. For example, for dx2−y2 – and dxy–pairings (separately
forbidden by the triangular lattice symmetry) the whole lines of zeros are formed in the Brillouin zone
and, therefore, the nodal points in the excitation spectrum of Bogolyubov quasiparticles exist on the
Fermi surface at any current carriers concentration. For d+id pairing, nodal points on the Fermi surface
can appear only at certain values of x = xc.

Given the above, we can assume that if the chiral order parameter is actually realized in sodium
cobaltates, and the nodal points of this order parameter are on the Fermi surface at some value of
x (from the interval [1/4, 1/3]), as stated in [18], then changing x should obviously shift these nodal
points off the Fermi surface. This should necessarily lead for the gap to appear in the Bogolyubov
quasi-particles excitation spectrum on the entire Fermi surface and, therefore, to the changes in the
temperature dependence of various thermodynamic quantities in the superconducting state.

To verify the possibility of experimental observation of this effect in the sodium cobaltate
NaxCoO2 ⋅ yH2O, and, therefore, to prove that the order parameter in these materials has a d+id-wave
symmetry, we study theoretically modifications of the temperature dependence of the magnetic field
penetration depth when x changes in the range [1/4, 1/3] in which Cooper instability occurs.

The paper is organized as follows. In the second section, a microscopic model of sodium cobaltates
is formulated. The third section discusses in detail the formula for calculating the temperature
dependence of the London penetration depth. The fourth section presents the results of numerical
calculations of λ−2 as a function of temperature. The final fifth section presents the main conclusion of
the study. For convenience, cumbersome calculations were moved in Appendixes A and B.

2. Model

Microscopic three-band model for sodium cobaltates, accounting for all t2g orbitals of cobalt ions
and 2p orbitals of oxygen ions, was elaborated in [20] (LDA), [21] (DMFT), [22] (FRG). It was found
that only one band, formed predominantly by 3d-orbitals (dxy, dyz, dzx), intersects Fermi level, so that
Fermi surface is represented by only one hole pocket around Γ-point in the Brillouin zone. At the same
time, another LDA-calculations at x = 0.33 [23,24] besides the large Fermi surface around Γ-point of
the Brillouin zone give also six small e′g-pockets in the vicinity of K-points. However, according to
ARPES data [25–27] in the wide doping range x, there is only one wide Fermi surface in the vicinity
of Γ-point. Thus we assume that electronic structure of the sodium cobaltates in the doping range of
interest can be well described within the effective one-band or a1g-band model [28]. The dispersion
law of the hole-like quasiparticles of this band in the tight-binding approximation can be written as

tk = −2t[cos ky + 2 cos(
√

3kx/2) cos(ky/2)], (1)

where t – is the tunneling integral between nearest-neighbor cabalt ions, and the wavenumbers kx

and ky are given in the units of triangular lattice parameter a. The tunneling integral t′ between
next-nearest-neighbors was considered to be small here and hence was discarded. Though the energy
spectrum (1) resembles the spectrum of non-interacting quasiparticles [29], the value of t is assumed
to take into account renormalizations due to all interactions in the system. We chose t to be equal to
0.123 eV [28]. Dispersion of tk in the direction perpendicular to the triangular planes is not taken into
account because spacing between the planes in water intercalated sodium cobaltates is fairly large,
about 20 Angstroms [3].

Since, in the absence of sodium, the cobaltates are paramagnetic metal, and the compound
NaCoO2 is a band dielectric [1], it is reasonable to assume that the value of x = 0 corresponds to
exactly one hole per cobalt ion in the a1g – band (nh = 1), and at x = 1 the number of holes nh is zero.
Therefore, there is a relationship between x and nh: x = 1− nh. Since the interval for x variation we
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are interested in does not include the vicinity of the point x = 1/2, where the unusual dielectric phase
arises, we can assume that the model of a1g-band (1) describes correctly the spectral properties of the
sodium cobaltate in the region of the phase diagram where superconductivity is observed.

Without going into the detail of the nature of Cooper instability, we just postulate the existence
in the ensemble of holes of a superconducting pairing in the d+id–channel, which gives rise to
one superconducting gap in the quasiparticle spectrum. According to this the amplitudes of the
superconducting order parameter ∆n(0) (n = 1, 2), at T = 0, will be considered below as parameters of
the model. The amplitude ∆2(0) will be defined by the critical temperature Tc using the well-known, in
the BCS theory [30], relation: 2∆2(0)/Tc = 3.52 (see also [31,32]). The ratio of amplitudes ∆1(0)/∆2(0)
will be determined so that the nodal points of the chiral order parameter were right on the Fermi
surface at the optimal value of x (i.e. a value of x corresponding to the maximum critical temperature
Tc). Since the Cooper instability in the sodium cobaltite occurs in the interval 1/4 < x < 1/3, and the
maximum Tc equal to 5 K corresponds to the middle of this interval, it seems natural to approximate
the concentration dependence of the critical temperature in the given interval by parabola: Tc(x) =
−2880(x − 1/4)(x − 1/3). The change in the amplitude of the order parameter with temperature will be
modelled by the formula

∆n(T) = ∆n
√

1− T/Tc, (2)

also following from BCS theory.
When calculating the value of λ, we will also need the distance d between the CoO2-layers.

According to experimental data d = 19.6207
○

A [3].

3. Equation for the London Penetration Depth

Evaluation of the magnetic field penetration depth λ is based on the London equation [33]

j(r) = −
c

4πλ2 A(r), (3)

describing in the local approximation the linear relationship of the superconducting current density j
with a magnetic field vector-potential A. A comprehensive description of the methods for calculating
the London penetration depth can be found in the textbooks [31,32] and original papers [34–37].
We shall follow the paper [37] where a simple and physically clear derivation of the formula for λ is
given for arbitrary dispersion laws and gap functions of any symmetry. The formula reads as follows

1
λ2 =

4πe2

c2h̵2V
∑
k

Φk (1− Ek
d

dEk
) tanh(

Ek
2T

) , (4)

where

Φk =
dξk
dkx
⋅

1
E3

k
[∣∆k∣

2 dξk
dkx
−

ξk
2

d∣∆k∣
2

dkx
] . (5)

When writing Expressions (4) and (5), the following notations were used: e—electron charge,
c—speed of light, h̵—Planck’s constant, T—temperature in energy units. The Bogoliubov quasiparticle
spectrum Ek is expressed in the usual way via the dispersion of holes tk and the gap function ∆k

Ek =
√

ξ2
k + ∣∆k∣

2, (6)

where ξk = tk − µ, µ – chemical potential.
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Note that summation in Formula (4) runs over three components of the wave vector k: kx, ky

and kz. Since the integrand function does not depend on kz, the triple summation can be reduced to a
double one:

1
V
∑
k
=

1
d

1
S
∑

kx ,ky

where S is the area of the CoO2-layer, and d is the, defined above, distance between layers. Derivation
of Formulas (4) and (5) could be found in Appendix A.

The right part of Expression (4) can be conveniently written as the sum of two terms

λ−2
(T) = λ−2

(0) + δλ−2
(T). (7)

The first term

λ−2
(0) =

4πe2

c2h̵2V
∑
k

Φk (8)

gives the value of λ−2 at T = 0, and the second term

δλ−2
(T) = −

8πe2

c2h̵2V
∑
k

Φk f (Ek) (1+
Ek
T

f (−Ek)) (9)

describes temperature variation of λ−2. In Formula (9): f (Ek) = {exp(Ek/T) + 1}−1—Fermi-Dirac
distribution function.

In the case of spin-singlet pairing two types of symmetry of the superconducting order parameter
∆k are usually considered: s—and d+id—type. For triangular lattice we write down the order
parameter of interest, with d+id–wave symmetry, in the complex form [18,38]:

∆k = 2
2
∑
n=1

∆n (β′nk + iβ′′nk) , (10)

where ∆n are the above-introduced pairing amplitudes between n-th neighbors, and the functions β′nk
and β′′nk are defined by expressions

β′1k = cos ky − cos
√

3kx

2
cos

ky

2
,

β′′1k =
√

3 sin
√

3kx

2
sin

ky

2
,

β′2k = cos
√

3kx − cos
√

3kx

2
cos

3ky

2
,

β′′2k = −
√

3 sin
√

3kx

2
sin

3ky

2
. (11)

Functions β′nk are related to dx2−y2-symmetry of the order parameter, and functions β′′nk –
dxy-symmetry. It should be remembered here that the second harmonics (n = 2) in (10) are necessary
to be accounted for to shift the nodal points of the gap function inside the Brillouin zone on the
Fermi contour. In this regard, it is worth clarifying the seemingly contradicting conclusion of the
paper [22] on the absence of higher harmonic contributions to the d+id-wave pairing. The fact is
that the paper [22] does not take into account both the implied by us intersite interactions, leading
to the d+id-pairing, and the intersite Coulomb repulsion, which leads to the suppression of the first
harmonic amplitude ∆1 as compared to the second harmonic amplitude ∆2 (see formula (10)). As a
consequence, the authors of [22] did not obtain the nodal points of the gap function on the Fermi
contour for d+id-pairing.
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In the paper [37], Formula (4) was used to analyze the temperature dependence of the magnetic
field penetration depth in cuprate HTSCs. The current carriers spectrum tk was constructed as a
superposition of square lattice invariants and the tunneling integrals were chosen so as to fit the
dispersion curves to the result of ARPES–experiments. The order parameter ∆k for the cuprates
was written as a difference of cosines: cos kx − cos ky. In our case, related to the triangular lattice,
quasimomentum dependence of the function tk is defined by Formula (1) and the order-parameter—by
Equation (10).

4. Temperature Dependence of the London Penetration Depth for the Chiral Order Parameter

Given the results of the paper [19] we will choose the ratio between the amplitudes of the ∆1 and
∆2 so that the Dirac points of the spectrum Ek were strictly on the Fermi contour at the value x = 0.29,
corresponding to the middle of the interval 1/4 < x < 1/3 and, respectively, to the maximum value
of Tc = 5 K. For the quasiparticle spectrum (1) and the gap function (10), this condition is satisfied at
∆1/∆2 = 0.23 (see Figure 1). It can be shown (see Appendix B) that in this case the low-temperature
corrections to the function λ−2(T) are linear in T, i.e., δλ−2(T) ∼ −T at T → 0.ky kx

Figure 1. The Brillouin zone of triangular lattice of cobalt ions. The red solid line represents the Fermi
contour at x = 0.29. The blue dash-dotted and green dashed lines show zeros position for respectively
real and imaginary parts of the chiral order parameter ∆k. The points of the Brillouin zone where all
three lines intersect (marked by green circles) indicate the position of the Dirac points of the Bogolyubov
spectrum Ek. The model parameters are: t = 0.123 eV, ∆1 = 0.23 ⋅∆2, ∆2 = 1.76 Tc, Tc = 5 K.

When the value of x changes, the nodal points shift and, as a result, the superconducting gap
becomes different from zero on the entire Fermi contour. In this case the low-temperature part of the
function λ−2(T) should become exponential.

This means that if the order parameter in the sodium cobaltates has a chiral symmetry of d+id-type,
as it was assumed in the paper [18], then with x variation we should also expect changes in the
functional form of temperature dependence of λ−2 at T → 0: for x = 0.29 the function λ−2(T) should be
linear, but for values x other than 0.29 – exponential.

Note that for pure dx2−y2 (or dxy) pairing, as well as for s-pairing, the function λ−2(T) should not
change its analytical form in the low-temperature limit. In the first case, the nodal points of the gap
function on the Fermi surface exist at any value of x, which means the δλ−2(T) for all x is linear in T,
and in the second case, there is always a gap on the entire Fermi surface and, therefore, for any x the
T-dependence of δλ−2 must be exponential.



Symmetry 2019, 11, 633 6 of 12

An important practical question that arises in this regard is the possibility to observe the
modification of the functional form of δλ−2(T) with changing the value of x in the narrow range
[1/4, 1/3], in which sodium cobaltate manifests Cooper instability.

Figure 2 shows the temperature dependence of λ−2, calculated at the concentration x = 0.29 using
the formula (4). The value of λ at zero temperature turns out to be 1.75 ⋅ 10−5 cm.
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Figure 2. Temperature dependencies of λ−2 in NaxCoO2 ⋅ yH2O with the chiral (d+id) order parameter
for different values of x: the solid curve is for x = 0.291; dashed — x = 0.253; dash-dotted — x = 0.331.
Parameters of the model are: t = 0.123 eV, ∆1 = 0.23 ⋅∆2, ∆2 = 1.76 Tc, Tc=5 K. The insert shows the
same curves on the enlarged scale.

The other two curves in Figure 2, dashed and dash-dotted, are calculated for x values
corresponding to the boundaries of the superconducting region at x = 0.253 and x = 0.331 respectively.

The analysis of the presented curves (see also the insert in Figure 2) clearly indicates the change
in the analytical form of the temperature dependence of λ−2(T) in the low-temperature region. It
is seen that the solid line has a finite slope relative to the horizontal axis at T = 0, which indicates a
linear dependence of the function λ−2(T) at low temperatures and thus reveal the nodal points in the
excitation spectrum on the Fermi surface. The dashed and dash-dotted lines corresponding to the x
values lying on the boundaries of the superconducting region on the phase diagram are almost parallel
to the horizontal axis in the T → 0 limit. This means that for these values of x in the Bogolyubov
excitation spectrum, there is a gap on the entire Fermi surface.

5. Conclusions

In conclusion, we note that demonstrated possibility to observe the change in the analytical form
of the temperature dependence of the inversed square of the London penetration depth in sodium
cobaltate NaxCoO2 ⋅ yH2O with sodium doping x change may provide an evidence for the chiral order
parameter with dx2−y2+idxy – wave symmetry to be realized in this compound. For comparison we
remind that in cuprate HTSC the Cooper instability occurs in the dx2−y2 –channel. In this case, there are
always nodal points in the spectrum of Bogolyubov excitations on the Fermi surface, and therefore the
linear dependence of λ−2(T) in the low temperature region is preserved at any doping. In paper [39],
the linearity of the function λ−2(T) was proposed to be considered as a proof of dx2−y2 –wave pairing in
cuprates. Similarly, in s-wave superconductors the temperature dependence of λ−2 is always described
by an exponential function.

The insufficient amount of experimental data on the London penetration depth in sodium
cobaltates is due to weak motivation of such experiments, we believe. We are aware of just a few of
the experiments [40,41] with not good enough accuracy of measurements. The goal of the paper is
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to suggest to experimentalists a practical way to identify the order parameter symmetry in sodium
cobaltate superconductors by analysing the changes in temperature dependence of the inverse square
of the London penetration depth with doping.
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HTSC High Temperature Super Conductor
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LDA Local Density Approximation
DMFT Dynamical Mean-Field Theory
FRG Functional Renormalization Group

Appendix A

Derivation of the formula for the magnetic field penetration depth in superconductors on the
triangular lattice is carried out following the paper [37]. As is known [42], the account for the
magnetic field in the conduction electron Hamiltonian in the tight binding approximation leads to the
renormalization of the tunneling amplitude t f m:

t f m ⇒ t f m exp{
ie
ch̵ ∫

Rm

R f
drA(r)} , (A1)

where R f and Rm are the radius-vectors of the sites f and m between which the electron tunnels, A is
the magnetic field vector-potential. In this case the kinetic energy operator for electrons is

H A
kin = ∑

f mσ

t f me
ie
c̵h ∫

Rm
R f

drA(r)
c+f σcmσ, (A2)

where the operator c+f σ(c f σ) creates (annihilates) an electron on the site f with spin projection σ = ±1/2.
In the regime of weak magnetic fields (for which only the Peierls substitution (A1) is valid), the

vector-potential A changes little on the scale of interatomic distances. This fact allows us to expand the
phase factor in Expression (A1) in powers of A

e
ie
c̵h ∫

R f
Rm

drA(r)
= 1+

ie
ch̵

AR f m +
1
2
(

ie
ch̵

AR f m)

2
. . . , (A3)

where R f m = R f −Rm, and the value of the vector A is taken at the point (R f +Rm)/2. In accordance
with the expansion (A3), we represent the Hamiltonian (A2) as

H A
kin = H

(0)
kin +H

(1)
kin +H

(2)
kin + . . . . (A4)
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Corrections of the first order in A to the kinetic energy Hamiltonian in the quasimomentum
representation can be written in the form [37]

H
(1)

kin =
−e
2ch̵

1
N
∑
kqσ

[∇ktk +∇k+qtk+q]A−qc+kσck+qσ. (A5)

In this formula, N is the number of crystal lattice sites, and Fourier transforms of the vector-potential
and the second quantization operators are determined by expressions: A(r) = 1

N ∑q eiqrAq and c f σ =

1√
N ∑q eiqR f cqσ respectively. The quasiparticle spectrum tk for the triangular lattice under consideration

is given by Formula (1).
Comparing Expression (A5) for H

(1)
kin with the formula for the energy of charged particles in the

vector-potential field:

−
1
c ∫

d3rj(r)A(r) = −
V

cN2 ∑
q

jqA−q, (A6)

we find an expression for the paramagnetic part of the electric current density operator

ĵp
q =

e
2h̵

N
V
∑
kσ

[∇ktk +∇k+qtk+q] c+kσck+q,σ, (A7)

where V is the crystal volume.
For obtaining the average value of the superconducting current density jp

q using the Equation (A7),
the thermodynamic average ⟨c+kσck+q,σ⟩ should be calculated at least in the linear approximation in A,
since in the zero approximation jp

q = 0. To calculate the average ⟨c+kσck+q,σ⟩ in the superconducting phase

with the required accuracy, we add to the Hamiltonian of a superconductor the operator H
(1)

kin [31,37]:

H = ∑
kσ

Ekγ+kσγkσ +H
(1)

kin , (A8)

where Ek =
√

ξ2
k + ∣∆k∣

2 is the Bogoliubov quasiparticle spectrum, ξk = tk − µ, γ+kσ(γkσ) are the creation
(annihilation) operators of Bogoliubov quasiparticles with quasimomentum k and quantum number σ.

Next, we express the operator H
(1)

kin via γ–operators, and notice that to find the penetration depth
λ, it is sufficient to consider the long-wavelength limit for the vector-potential Fourier transform Aq.
Assuming q = 0 we find

H
(1)

kin = −
e

ch̵
Aq=0

N
∑
k
∇ktk (γ+k↑γk↑ − γ+−k↓γ−k↓) . (A9)

Taking into account Expression (A9), the formula for the Hamiltonian of a superconductor (A8)
can be represented in the form

H = ∑
kσ

Ẽkγ+kσγkσ, (A10)

where Ẽk = Ek −
e

ch̵
Aq=0

N ∇ktk is the quasiparticle spectrum subject to a weak magnetic field.
If now in Formula (A7) for ĵp

q we also transform to the Bogolyubov quasi-particle operators, then
for the average value of the paramagnetic part of the current density in the long-wavelength limit we
obtain

jp
q=0 =

e
h̵

N
V
∑
kσ

(∇ktk) ⟨γ
+
kσγkσ⟩. (A11)
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Since the thermodynamic averaging in (A11) involves a density matrix with the Hamiltonian (A10),
then ⟨γ+kσγkσ⟩ = f (Ẽk), where f is the Fermi-Dirac distribution function. Finally given the smallness of
A, we obtain the expression for the paramagnetic part of the current density:

jp
q=0 = −

2e2

ch̵2
1
V
∑
k

(∇ktk)
d f (Ek)

dEk
(Aq=0 ⋅∇ktk) . (A12)

To calculate the diamagnetic part jd of the current density j = jp + jd, we write down the expression
for H

(2)
kin in the long-wavelength limit using Formulas (A2) and (A3):

H
(2)

kin =
1
2
(

e
ch̵

)
2
∑
kσ

(
Aq=0

N
∇k)

2

tk c+kσckσ. (A13)

Let us rewrite Expression (A13) in terms of γ–operators and average it over thermodynamic
ensemble. Comparing the result with the current density definition (A6), after a few simple
transformations, we find:

jd
q=0 =

2e2

ch̵2
1
V
∑
k

(Aq=0 ⋅∇ktk)

×∇k (u2
k f (Ek) + v2

k f (−Ek)) , (A14)

where uk and vk are coefficients of the Bogolyubov u − v– transformation: u2
k =

1
2 (1+ ξk

Ek
), v2

k =
1
2 (−

ξk
Ek

).
Combining Expressions (A12) and (A14), we obtain the formula for the net superconducting

current density

jq=0 = −
e2

ch̵2
1
V
∑
k

(Aq=0 ⋅∇ktk)

×
⎡
⎢
⎢
⎢
⎣

∣∆k∣
2

E2
k

(∇ktk) −
ξk

2E2
k
(∇k∣∆k∣

2
)
⎤
⎥
⎥
⎥
⎦

×(
1
Ek
−

d
dEk

) tanh(
Ek
2T

) . (A15)

It is seen that in the normal phase (at ∆k = 0), the superconducting current density jq=0, as it
should be, turns into zero.

Formally, from Expression (A15) it follows that the superconducting current density jq=0 is
proportional not to the vector-potential Aq=0, but to the superposition of the dispersion gradient ∇ktk
and the gap function gradient ∇k∣∆k∣

2. This fact gives reason to suspect the nondiagonality of the
tensor connecting the current density jq=0 with the vector-potential Aq=0. However, if we consider
each projection jαq=0 (α = x, y) of the supercurrent density in Expression (A15) separately and take into
account the symmetry of the integrand, then each of these projections turns out to be proportional
only to the corresponding projection of the vector-potential Aα

q=0:

jα
q=0 = −

e2

ch̵2
1
V
∑
k

dtk
dkα

⎡
⎢
⎢
⎢
⎣

∣∆k∣
2

E2
k

dtk
dkα
−

ξk

2E2
k

d∣∆k∣
2

dkα

⎤
⎥
⎥
⎥
⎦

×(
1
Ek
−

d
dEk

) tanh(
Ek
2T

) Aα
q=0. (A16)

Numerical calculations show that, for both s – and d + id– wave order parameter symmetry, the
coefficient between jα

q=0 and Aα
q=0 in Formula (A16) is actually independent of the value of α. Choosing,

for definiteness, the direction of the vector Aq=0 along x-axis, and comparing the expression for the
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superconducting current density (A16) to the London Equation (3) we obtain Formula (4) for the
magnetic field penetration depth λ.

Appendix B

The general idea of calculating the low-temperature corrections to the thermodynamic properties
of superconductors is explained in the book [43]. To analyze the low-temperature behavior of the
inverse London penetration depth squared in quasi-two-dimensional superconductors on a triangular
lattice, consider the situation when the nodal points of the Bogolyubov quasiparticle spectrum are
located right on the Fermi surface (see Figure 1). It is obvious that in the limit T → 0, the main
contribution to the integral in Expression (9) for the function δλ−2(T) arises from a small neighborhoods
of six nodal points, marked in Figure 1 with bold circles. To be definite, consider the contribution to the
integral (9) from a small neighborhood UC of the nodal point C located in the positive domain of the
kx-axis and having coordinates (kC, 0). It is seen that in this point the gradients of the spectrum ξk and
the real part of the gap function ∆k are directed along the kx-axis, and the gradient of the imaginary
part of ∆k — along the ky-axis. This allows one to expand these functions in the neighborhood of the
point C as: ξk = ξC(kx − kC), Re∆k = ∆′

C(kx − kC), Im∆k = ∆′′
Cky, where ξC, ∆′

C and ∆′′
C are the values of

the spectrum, real and imaginary parts of the gap function in the point C respectively. Substituting
these expansions in the formula (9) and introducing new variables: qx = kx − kC, qy = ky, we get:

δλ−2
C (T) = −

2e2ξ2
C(∆′′

C)
2

πc2h̵2 ∫
UC

dqxdqy
q2

y

E3
q
×

× f (Eq)(1+
Eq

T
f (−Eq)) , (A17)

where Eq =
√

(ξ2
C + (∆′

C)
2)q2

x + (∆′′
C)

2q2
y, and the letters UC next to the symbol of integral mean that the

integration is over small neighborhood UC around the point C.
Further we note that, in the limit T → 0, the main contribution to the integral over qy in

Expression (A17) originates on the interval ∣qy∣ <

√
ξ2

C+(∆
′

C)
2

∆′′C
∣qx ∣ =

D
∆′′C

∣qx ∣. Therefore, for the integral in

formula (A17) we can write approximately

∫ dqx ∫

D
∆′′C

qx

− D
∆′′C

qx
dqy

q2
y

D3∣qx ∣3
f (D∣qx ∣) =

=
2

3(∆′′
C)

3 ∫ dqx f (D∣qx ∣) =
2T

3D(∆′′
C)

3 ∫
dx

e∣x∣ + 1
, (A18)

where x = Dqx/T. Since in the integral over x, the main contribution is due to the neighborhood of zero,
the limits of integration over x can be extended to infinity. Given that in this case ∫ dx/(ex + 1) = 2 ln 2,
we finally find:

δλ−2
C (T) = −

8e2 ln 2
3πc2h̵2 ⋅

ξ2
C

D∆′′
C
⋅ T. (A19)

Obviously integration over neighborhoods of other nodal points in formula (9) will also lead to
linear low-temperature corrections to the value of λ−2.
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