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Abstract: The main purpose of this paper is to find some interesting symmetric identities
for the (p, q)-Hurwitz-Euler eta function in a complex field. Firstly, we define the multiple
(p, q)-Hurwitz-Euler eta function by generalizing the Carlitz’s form (p, q)-Euler numbers and
polynomials. We find some formulas and properties involved in Carlitz’s form (p, q)-Euler
numbers and polynomials with higher order. We find new symmetric identities for multiple
(p, q)-Hurwitz-Euler eta functions. We also obtain symmetric identities for Carlitz’s form (p, q)-Euler
numbers and polynomials with higher order by using symmetry about multiple (p, q)-Hurwitz-Euler
eta functions. Finally, we study the distribution and symmetric properties of the zero of Carlitz’s
form (p, q)-Euler numbers and polynomials with higher order.

Keywords: Euler numbers and polynomials; q-Euler numbers and polynomials; Hurwitz-Euler
eta function; multiple Hurwitz-Euler eta function; higher order q-Euler numbers and polynomials;
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1. Introduction

The area of the specific functions like the gamma and beta functions, the hypergeometric
functions, special polynomials, the zeta functions and the area of series such as q-series, and series
representations are a rapidly developing area in advanced mathematics (see [1–15]). Many q-extensions
of specific functions and polynomials have been studied (see [1,3,6–10,13,16]). Srivastava [15] discussed
some properties and q-extensions of the Bernoulli polynomials, Euler polynomials, and Genocchi
polynomials. Choi, Anderson and Srivastava have developed the q-extension of the Riemann zeta
function and functions related to the Riemann zeta function (see [5]). Choi and Srivastava presented
a generalized Hurwitz formula and Hurwitz-Euler eta function (see [4]). Recently, many authors
have developed (p, q)-extensions of the special functions, Riemann zeta function and related functions
(see [1,13,17–19]). The symmetry of special polynomials is also actively studied (see [8,9,19]).

We use this
n

∑
m1=0

· · ·
n

∑
mr=0

=
n

∑
m1,··· ,mr=0

.

We know the binomial formula as

(1− a)n =
n

∑
i=0

(
n
i

)
(−a)i, where

(
n
i

)
=

n(n− 1) . . . (n− i + 1)
i!

,
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and
1

(1− a)n = (1− a)−n =
∞

∑
i=0

(
−n

i

)
(−a)i =

∞

∑
i=0

(
n + i− 1

i

)
ai.

Choi and Srivastava [4] constructed and made formulas about the multiple Hurwitz-Euler eta
function ηr(s, a) defined by following r-ple series:

ηr(s, a) =
∞

∑
k1,··· ,kr=0

(−1)k1+···+kr

(k1 + · · ·+ kr + a)s , (Re(s) > 0; a > 0; r ∈ N),

where N is the set of natural numbers. It is known that ηr(s, a) can be analytically continued to be all
complex s-plane (see [4]). The (p, q)-number was defined as

[n]p,q =
pn − qn

p− q
= pn−1 + pn−2q + pn−3q2 + · · ·+ p2qn−3 + pqn−2 + qn−1.

It can be seen that the (p, q)-number contains a symmetric property, and this number is q-number
when p = 1. In particular, we can see limq→1[n]p,q = n with p = 1. Since [n]p,q = pn−1[n] q

p
, we

observe that p-numbers and (p, q)-numbers are different. In other words, by substituting q by q
p in the

q-number, we could not obtain a (p, q)-number. Therefore, much research has been conducted in the
area of special functions by using (p, q)-number (see [1,13,18,19]). In this article, the (p, q)-extension of
the multiple form of Hurwitz-Euler eta function can be defined as follows: For s, x ∈ C with Re(x) > 0,
the multiple (p, q)-Hurwitz-Euler eta function η

(r)
p,q(s, x) is defined by

η
(r)
p,q(s, x) = [2]rq

∞

∑
m1,...,mr=0

(−1)m1+···+mr qm1+···+mr

[m1 + · · ·+ mr + x]sp,q
.

The aim of this paper is to introduce and study a new some generalizations of the Carlitz’s
form higher order q-Euler numbers and polynomials, the multiple q-Euler zeta function, and the
multiple Hurwitz q-Euler zeta function. We call them Carlitz’s type higher-order (p, q)-Euler numbers
and polynomials, the multiple (p, q)-Euler zeta function, and the multiple (p, q)-Hurwitz-Euler eta
function. The paper is structured as follows. In Section 2 we define Carlitz’s type higher-order
(p, q)-Euler numbers and (p, q)-Euler polynomials and induce some of their properties involving
elementary properties, distribution relation, property of complement, and so on. In Section 3, by
using the Carlitz’s type higher-order (p, q)-Euler numbers and polynomials, the multiple (p, q)-Euler
zeta function and the multiple (p, q)-Hurwitz-Euler eta function are defined. We also present some
connection formulae between the Carlitz’s type higher-order (p, q)-Euler numbers and polynomials,
the multiple (p, q)-Euler zeta function, and the multiple (p, q)-Hurwitz-Euler eta function. In Section 4
we give several symmetric identities about the multiple (p, q)-Hurwitz-Euler eta function and Carlitz’s
type higher-order (p, q)-Euler numbers and polynomials. In Section 5, we investigate the distribution
and symmetry of the zero of Carlitz’s type higher-order (p, q)-Euler polynomials using a computer.
Our paper ends with Section 6, where the conclusions and future developments of this work
are presented.

Definition 1. The classical higher-order Euler numbers denoted by E(r)
n and Euler polynomials denoted by

E(r)
n (x) are defined as the below generating functions(

2
et + 1

)r
=

∞

∑
n=0

E(r)
n

tn

n!
, (|t| < π),
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and (
2

et + 1

)r
ext =

∞

∑
n=0

E(r)
n (x)

tn

n!
, (|t| < π),

respectively (see [15]).

Definition 2. For 0 < q < p ≤ 1, the Carlitz’s type (p, q)-Euler polynomials denoted by En,p,q(x) are defined
as the below generating function (see [13])

∞

∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[m+x]p,qt.

2. Carlitz’s Form Higher-Order (p, q)-Euler Numbers and Polynomials

First, we think the Carlitz’s form with high-order (p, q)-Euler numbers and polynomials as
follows:

Definition 3. For r ∈ N, the high-order (p, q)-Euler polynomials denoted by E(r)
n,p,q(x) are defined like the

generating function:

∞

∑
n=0

E(r)
n,p,q(x)

tn

n!
= [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr e[m1+···+mr+x]p,qt. (1)

If x = 0, E(r)
n,p,q = E(r)

n,p,q(0) are called the higher-order (p, q)-Euler numbers E(r)
n,p,q. Note that if r = 1,

then E(r)
n,p,q = En,p,q and E(r)

n,p,q(x) = En,p,q(x). Observe that if p = 1, q → 1, then E(r)
n,p,q → E(r)

n and

E(r)
n,p,q(x)→ E(r)

n (x).

Definition 4. For r ∈ N, the (h, p, q)-Euler polynomials with high-order denoted by E(r,h)
n,p,q(x) are defined as

the below generating function:

∞

∑
n=0

E(r,h)
n,p,q(x)

tn

n!
= [2]rq

∞

∑
m1,··· ,mr=0

(−q)m1+···+mr ph(m1+···+mr)e[m1+···+mr+x]p,qt. (2)

If x = 0, E(r,h)
n,p,q = E(r,h)

n,p,q(0) is called (h, p, q)-Euler numbers with higher-order denoted by E(r)
n,p,q. Remark

that if h = 0, then E(r,h)
n,p,q = E(r)

n,p,q and E(r,h)
n,p,q(x) = E(r)

n,p,q(x). We see that if r = 1, then E(r,h)
n,p,q = E(h)

n,p,q and

E(r,h)
n,p,q(x) = E(h)

n,p,q(x) (see [13]). Observe that if p = 1, q→ 1, then E(r,h)
n,p,q → E(r)

n and E(r,h)
n,p,q(x)→ E(r)

n (x).
By (1) and (2), we know that

E(r)
n,p,q(x + y) =

n

∑
i=0

(
n
i

)
p(n−i)xqyiE(r,n−i)

i,p,q (x)[y]n−i
p,q ,

E(r)
n,p,q(x) =

n

∑
i=0

(
n
i

)
qxi[x]n−i

p,q E(r,n−i)
i,p,q .

(3)

Theorem 1. For r ∈ N, we have

E(r)
n,p,q(x) = [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr [m1 + · · ·+ mr + x]np,q

=
[2]rq

(p− q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

(
1

1 + ql+1 pn−l

)r
.

Proof. When we use the Taylor series expansion of e[x]p,qt, we can get
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∞

∑
l=0

E(r)
l,p,q(x)

tl

l!
= [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr e[m1+···+mr+x]p,qt

=
∞

∑
l=0

(
[2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr [m1 + · · ·+ mr + x]lp,q

)
tl

l!
.

The first part of the theorem follows when we compare the coefficients of tl

l! in the above equation.
By (p, q)-numbers and binomial expansion, we also note that

E(r)
n,p,q(x) = [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr [m1 + · · ·+ mr + x]np,q

= [2]rq
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

(
pm1+···+mr+x − qm1+···+mr+x

p− q

)n

=
[2]rq

(p− q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

×
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr q(l+1)(m1+···+mr)p(n−l)(m1+···+mr)

=
[2]rq

(p− q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

(
1

1 + ql+1 pn−l

)r
.

We finish the proof of Theorem 1.

Theorem 2. For r ∈ N, we get

E(r)
n,p,q(x) = [2]rq

∞

∑
m=0

(
r + m− 1

m

)
(−1)mqm[m + x]np,q. (4)

Proof. By Taylor-Maclaurin series expansion of (1− a)−n, we have(
1

1 + ql+1 pn−l

)r
=

∞

∑
m=0

(
m + r− 1

m

)
(−1)m(ql+1 pn−l)m.

Also, by Theorem 1 and binomial expansion, one can obtain the desired result immediately.

For d ∈ N with d ≡ 1( mod 2), by Theorem 1 we can show

E(r)
n,p,q(x) =

[2]rq
(p− q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

d−1

∑
a1,··· ,ar=0

∞

∑
m1,··· ,mr=0

(−1)a1+···+ar

× (−1)m1+···+mr q(l+1)(a1+dm1+···+ar+dmr)p(n−l)(a1+dm1+···+ar+dmr).

Theorem 3. (Distribution relation of (p, q)-Euler polynomials with higher-order). For d ∈ N with d ≡
1( mod 2), we have

E(r)
n,p,q(x) =

[2]rq
[2]rqd

[d]np,q

d−1

∑
a1,··· ,ar=0

(−q)a1+···+ar E(r)
n,pd ,qd

(
a1 + · · ·+ ar + x

d

)
.
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Proof. Since

E(r)
n,pd ,qd

(
a1 + · · ·+ ar + x

d

)
=

[2]rqd

(pd − qd)n

n

∑
l=0

(
n
l

)
(−1)lql(a1+···+ar+x)p(n−l)(a1+···+ar+x)

(
1

1 + qd(l+1)pd(n−l)

)r
,

we have

d−1

∑
a1,··· ,ar=0

(−q)a1+···+ar E(r)
n,pd ,qd

(
a1 + · · ·+ ar + x

d

)

=
[2]rqd

(pd − qd)n

n

∑
l=0

(
n
l

)
(−1)lqlx p(n−l)x

×
d−1

∑
a1,··· ,ar=0

(−1)a1+···+ar qa1+···+ar ql(a1+···+ar)p(n−l)(a1+···+ar)

(
1

1 + qd(l+1)pd(n−l)

)r
.

Hence, we derive

[2]rq
[2]rqd

[d]np,q

d−1

∑
a1,··· ,ar=0

(−q)a1+···+ar E(r)
n,pd ,qd

(
a1 + · · ·+ ar + x

d

)

=
[2]rq

(p− q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

(
1

1 + ql+1 pn−l

)r
.

We prove Theorem 3.

3. Multiple (p, q)-Hurwitz-Euler eta Function

We define multiple (p, q)-Hurwitz-Euler eta function. This function makes (p, q)-Euler
polynomials at negative integers with higher-order. Choi and Srivastava [4] defined ηr(s, a) by
means of

ηr(s, a) =
∞

∑
k1,··· ,kr=0

(−1)k1+···+kr

(k1 + · · ·+ kr + a)s , (Re(s) > 0; a > 0; r ∈ N).

It is known that ηr(s, a) can be continued analytically to be all complex s-plane (see [4]).
The (p, q)-extension of ηr(s, a) can be defined as follows:

Definition 5. For s, x ∈ C with Re(x) > 0, the multiple (p, q)-Hurwitz-Euler eta function η
(r)
p,q(s, x) is

defined as

η
(r)
p,q(s, x) = [2]rq

∞

∑
m1,...,mr=0

(−1)m1+···+mr qm1+···+mr

[m1 + · · ·+ mr + x]sp,q
.

Observe that when p = 1, q→ 1, then 2rη
(r)
p,q(s, a) = ηr(s, a).

Let

F(r)
p,q (t, x) =

∞

∑
n=0

E(r)
n,p,q(x)

tn

n!

= [2]rq
∞

∑
m1,...,mr=0

(−1)m1+···+mr qm1+···+mr e[m1+···+mr+x]p,qt.
(5)

Theorem 4. For r ∈ N, we get

η
(r)
p,q(s, x) =

1
Γ(s)

∫ ∞

0
F(r)

p,q (x,−t)ts−1dt, (6)
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where Γ(s) =
∫ ∞

0 zs−1e−zdz.

Proof. From (5) and Definition 5, we get

η
(r)
p,q(s, x) = [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

[m1 + · · ·+ mr + x]sp,q

= [2]rq
1

Γ(s)

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

[m1 + · · ·+ mr + x]sp,q

∫ ∞

0
zs−1e−zdz

=
[2]rq
Γ(s)

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

∫ ∞

0
e[m1+···+mr+x]p,qtts−1dt

=
1

Γ(s)

∫ ∞

0
F(r)

p,q (x,−t)ts−1dt.

We are finished Theorem 4.

The value of multiple (p, q)-Hurwitz-Euler eta function η
(r)
p,q(s, x) at negative integers is given

explicitly by the following theorem:

Theorem 5. Let n ∈ N . Then we obtain

η
(r)
p,q(−n, x) = E(r)

n,p,q(x).

Proof. Again, by (5) and (6), we have

η
(r)
p,q(s, x) =

1
Γ(s)

∫ ∞

0
F(r)

p,q (x,−t)ts−1dt =
1

Γ(s)

∞

∑
m=0

E(r)
m,p,q(x)

(−1)m

m!

∫ ∞

0
tm+s−1dt. (7)

We note that

Γ(−n) =
∫ ∞

0
e−zz−n−1dz = lim

z→0
2πi

1
n!

(
d
dz

)n
(zn+1e−zz−n−1) = 2πi

(−1)n

n!
. (8)

For n ∈ N, let us take s = −n in (7). Then, by (7), (8), and Cauchy residue theorem, we have

η
(r)
p,q(−n, x) = lim

s→−n

1
Γ(s)

∞

∑
m=0

E(r)
m,p,q(x)

(−1)m

m!

∫ ∞

0
tm−n−1dt

= 2πi
(

lim
s→−n

1
Γ(s)

)(
E(r)

n,p,q(x)
(−1)n

n!

)
= 2πi

(
1

2πi (−1)n

n!

)(
E(r)

n,p,q(x)
(−1)n

n!

)
= E(r)

n,p,q(x).

The proof of Theorem 5 is finished.

By (4), we have
∞

∑
n=0

E(r)
n,p,q

tn

n!
= [2]rq

∞

∑
m=0

(
m + r− 1

m

)
(−1)mqme[m]p,qt.

From Taylor series of e[m]p,qt in the above formula, we can get

∞

∑
n=0

E(r)
n,p,q

tn

n!
=

∞

∑
n=0

(
[2]rq

∞

∑
m=0

(
m + r− 1

m

)
(−1)mqm[m]np,q

)
tn

n!
.
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If we compare coefficients tn

n! , then we know

E(r)
n,p,q = [2]rq

∞

∑
m=0

(
m + k− 1

m

)
(−1)mqm[m]np,q. (9)

By using (9), we define multiple (p, q)-Euler zeta function like below formula:

Definition 6. For s ∈ C, we define

ζ
(r)
p,q(s) = [2]rq

∞

∑
m=1

(
m + r− 1

m

)
(−1)mqm

[m]sp,q
. (10)

The function ζ
(r)
p,q(s) makes the number E(r)

n,p,q in negative integers. Instead of s, s = −n for n ∈ N
into (10), and using (9), we can obtain the below theorem:

Theorem 6. Let n ∈ N, We have
ζ
(r)
p,q(−n) = E(r)

n,p,q.

4. Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function

Let w1, w2 ∈ N where, w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For r ∈ N and n ∈ Z+, we get
symmetry identities about the multiple (p, q)-Hurwitz-Euler eta function.

Theorem 7. Let w1, w2 be natural numbers, where w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). Then we obtain

[w2]
s
p,q[2]

r
qw2

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× η
(r)
pw1 qw1 (s, w2x +

w2

w1
(j1 + · · ·+ jr))

= [w1]
s
p,q[2]

r
qw1

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1 ∑r

l=1 jl

× η
(r)
pw2 ,qw2 (s, w1x +

w1

w2
(j1 + · · ·+ jr)).

(11)

Proof. We know that [xy]q = [x]qy [y]q for any x, y ∈ C. Hence, using w2x +
w2

w1
(j1 + · · ·+ jr) instead

of x and replacing by qw1 and pw1 instead of q and p in (11), respectively, we induce the next result

1
[2]rqw1

η
(r)
pw1 qw1 (s, w2x +

w2

w1
(j1 + · · ·+ jr))

=
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qw1m1+···+w1mr

[m1 + · · ·+ mr + w2x +
w2

w1
(j1 + · · ·+ jr)]spw1 ,qw1

=
∞

∑
m1,··· ,mk=0

(−1)m1+···+mr qw1m1+···+w1mr[
w1(m1 + · · ·+ mr) + w1w2x + w2(j1 + · · ·+ jr)

w1

]s

pw1 ,qw1

=
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qw1m1+···+w1mr

[w1(m1 + · · ·+ mk) + w1w2x + w2(j1 + · · ·+ jk)]sp,q

[w1]sp,q

= [w1]
s
p,q

∞

∑
m1,··· ,mk=0

(−1)m1+···+mr qw1m1+···+w1mr

[w1(m1 + · · ·+ mr) + w1w2x + w2(j1 + · · ·+ jr)]sp,q
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= [w1]
s
p,q

∞

∑
m1,··· ,mk=0

w2−1

∑
i1,··· ,ik=0

(−1)m1+···+mr qw1m1+···+w1mr

[w1(m1 + · · ·+ mr) + w1w2x + w2(j1 + · · ·+ jr)]sp,q

= [w1]
s
p,q

∞

∑
m1,··· ,mr=0

w2−1

∑
i1,··· ,ir=0

(−1)∑r
j=1(w2mj+ij)qw1 ∑r

j=1(w2mj+ij)

×
(
[w1(w2m1 + i1) + · · ·+ w1(w2mr + ir) + w1w2x + w2(j1 + · · ·+ jr)]sp,q

)−1

= [w1]
s
p,q

∞

∑
m1,··· ,mr=0

w2−1

∑
i1,··· ,ir=0

(−1)∑r
j=1 mj(−1)∑r

j=1 ij qw1w2 ∑r
j=1 mj qw1 ∑r

j=1 ij

×
(
[w1w2(x + m1 + · · ·+ mr) + w1(i1 + · · ·+ ir) + w2(j1 + · · ·+ jr)]sp,q

)−1
.

(12)

Thus, from (12), we see the following equation.

[w2]
s
p,q

[2]rqw1

w1−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw2(j1+···+jr)η
(r)
pw1 ,qw1 (s, w2x +

w2

w1
(j1 + · · ·+ jr))

= [w1]
s
p,q[w2]

s
p,q

∞

∑
m1,··· ,mr=0

w2−1

∑
i1,··· ,ir=0

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1(jl+il+ml)qw1w2 ∑r

l=1 ml

× qw1 ∑r
l=1 il qw2 ∑r

l=1 jl

×
(
[w1w2(x + m1 + · · ·+ mr) + w1(i1 + · · ·+ ir) + w2(j1 + · · ·+ jr)]sp,q

)−1

(13)

By using the same method as (13), we have

[w1]
s
p,q

[2]rqw2

w2−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw1(j1+···+jr)η
(r)
pw2 ,qw2 (s, w1x +

w1

w2
(j1 + · · ·+ jr))

= [w1]
s
p,q[w2]

s
p,q

∞

∑
m1,··· ,mk=0

w2−1

∑
j1,··· ,jr=0

w1−1

∑
i1,··· ,ir=0

(−1)∑r
l=1(jl+il+ml)

× qw1w2 ∑r
l=1 ml qw2 ∑r

l=1 il qw1 ∑r
l=1 jl

×
(
[w1w2(x + m1 + · · ·+ mr) + w1(j1 + · · ·+ jr) + w2(i1 + · · ·+ ir)]sp,q

)−1

(14)

Therefore, by (13) and (14), we complete the proof Theorem 7.

Taking w2 = 1 in Theorem 7, we obtain the below corollary.

Corollary 1. Let w1 be natural numbers, where w1 ≡ 1 (mod 2). For r ∈ N and n ∈ Z+, we obtain

η
(r)
n,p,q (s, w1x) =

[2]rq
[2]rqw1 [w1]sp,q

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× η
(r)
n,pw1 ,qw1

(
s, x +

j1 + · · ·+ jr
w1

)
.

(15)

If p = 1, q→ 1 in above Corollary 1, then we can see the below corollary.

Corollary 2. Let m ∈ N. m ≡ 1 (mod 2). For r ∈ N and n ∈ Z+, we obtain

ηr (s, x) =
1

ms

m−1

∑
j1,··· ,jr=0

(−1)j1+···+jr ηr

(
s,

x + j1 + · · ·+ jr
m

)
. (16)
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For r ∈ N and n ∈ Z+, we see symmetry identities about higher-order (p, q)-Euler polynomials.

Theorem 8. Let w1, w2 be natural numbers with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For r ∈ N and
n ∈ Z+, we obtain

[w1]
n
p,q[2]

r
qw2

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jr)

)
= [w2]

n
p,q[2]

r
qw1

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1 ∑r

l=1 jl

× E(r)
n,pw2 ,qw2

(
w1x +

w1

w2
(j1 + · · ·+ jr)

)
.

(17)

Proof. Using Theorems 5 and 7, we see easily the Theorem 8.

Taking w2 = 1 in Theorem 8, we have the below corollary.

Corollary 3. Let w1 be the natural number with w1 ≡ 1 (mod 2). For r ∈ N and n ∈ Z+, we obtain

E(r)
n,pw1 ,qw1 (w1x) =

[2]rq
[2]rqw1

[w1]
n
p,q

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
s, x +

j1 + · · ·+ jr
w1

)
.

(18)

If p = 1, q→ 1 in the above Corollary, then we get the another Corollary.

Corollary 4. Let m be the natural number, where m ≡ 1 (mod 2). Let r ∈ N and n ∈ Z+, we see

E(r)
n (x) = mn

m−1

∑
j1,··· ,jr=0

(−1)j1+···+jr E(r)
n

(
x + j1 + · · ·+ jr

m

)
. (19)

By (3), we have

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jk)

)
=

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

×
n

∑
i=0

(
n
i

)
qw2(n−i)(j1+···+jr)pw1w2xiE(r,i)

n−i,pw1 ,qw1 (w2x)
[

w2

w1
(j1 + · · ·+ jr)

]i

pw1 ,qw1

=
w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl pw2 ∑r

l=1 jl

×
n

∑
i=0

(
n
i

)
qw2(n−i)∑r

l=1 jl pw1w2xiE(r,i)
n−i,pw1 ,qw1 (w2x)

(
[w2]p,q

[w1]p,q

)i

[j1 + · · ·+ jr]
i
pw1 ,qw1

(20)

therefore, we can see the below theorem.
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Theorem 9. Let w1, w2 ∈ N. Let w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). Let r ∈ N and n ∈ Z+, we get

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jr)

)
=

n

∑
i=0

(
n
i

)
[w2]

i
p,q[w1]

−i
p,q pw1w2xiE(r,i)

n−i,pw1 ,qw1 (w2x)

×
w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2(n−i+1)∑r

l=1 jl [j1 · · ·+ jr]ipw2 ,qw2 .

For all different integers n ≥ 0, let

S (r)n,i,p,q(w) =
w−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl q(n−i+1)∑r

l=1 jl [j1 · · ·+ jk]ip,q.

This sum S (k)n,i,p,q(w) is called the alternating (p, q)-power sums.

By above Theorem 9, we get the result

[2]rqw2 [w1]
n
p,q

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jr)

)
= [2]rqw2

n

∑
i=0

(
n
i

)
[w2]

i
p,q[w1]

n−i
p,q pw1w2xiE(r,i)

n−i,pw1 ,qw1 (w2x)S (r)n,i,pw2 ,qw2 (w1).

(21)

By using the same method as in (21), we have

[2]rqw1 [w2]
n
p,q

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1 ∑k

l=1 jl

× E(r)
n,pw2 ,qw2

(
w1x +

w1

w2
(j1 + · · ·+ jr)

)
= [2]rqw1

n

∑
i=0

(
n
i

)
[w1]

i
p,q[w2]

n−i
p,q pw1w2xiE(r,i)

n−i,pw2 ,qw2 (w1x)S (r)n,i,pw1 ,qw1 (w2).

(22)

So we see the following result using (21) and (22) and Theorem 3.

Theorem 10. Let w1, w2 be the natural numbers, where w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). Let r ∈ N and
n ∈ Z+, we can see

[2]rqw1

n

∑
i=0

(
n
i

)
[w1]

i
p,q[w2]

n−i
p,q pw1w2xiE(r,i)

n−i,pw2 ,qw2 (w1x)S (r)n,i,pw1 ,qw1 (w2)

= [2]rqw2

n

∑
i=0

(
n
i

)
[w2]

i
p,q[w1]

n−i
p,q pw1w2xiE(r,i)

n−i,pw1 ,qw1 (w2x)S (r)n,i,pw2 ,qw2 (w1).

Using Theorem 10, we induce the symmetric identity (p, q)-Euler numbers E(r)
n,p,q for the

higher-order in complex field.
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Corollary 5. Let w1, w2 be the natural numbers which have w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For k ∈ N
and n ∈ Z+, we get

[2]rqw1

n

∑
i=0

(
n
i

)
[w1]

i
p,q[w2]

n−i
p,q pw1w2xiS (r)n,i,pw1 ,qw1 (w2)E(r,i)

n−i,pw2 ,qw2

= [2]rqw2

n

∑
i=0

(
n
i

)
[w2]

i
p,q[w1]

n−i
p,q pw1w2xiS (r)n,i,pw2 ,qw2 (w1)E(r,i)

n−i,pw1 ,qw1 .

5. Zeros of the Higher-Order (p, q)-Euler Polynomials E(r)
n,p,q(x) = 0

If it is difficult to find solutions of equations, visualizing distributions of solutions using a
computer can help to find regular patterns of solutions. These are particularly interesting because it
is hard to approach theoretically. Therefore, the work of the last section is of interest to us. Based on
these results, we suggest a few unsolved problems.

The values of the E(r)
n,p,q(x) are given by

E(r)
0,p,q(x) = 1,

E(r)
1,p,q(x) =

[2]rq
(

px
(

1
1+pq

)r
− qx

(
1

1+q2

)r)
p− q

,

E(r)
2,p,q(x) =

[2]rq

(
p2x
(

1
1+p2q

)r
− 2pxqx

(
1

1 + pq2

)r
+ q2x

(
1

1+q3

)r
)

(p− q)2 ,

E(r)
3,p,q(x) =

[2]rq
(

p3x
(

1
1+p3q

)r
− 3p2xqx

(
1

1+p2q2

)r
+ 3pxq2x

(
1

1+pq3

)r
− q3x

(
1

1+q4

)r)
(p− q)3 .

We see that the numerical results about approximate solutions of zeros of E(r)
n,p,q(x) = 0 are in

Tables 1 and 2. In Table 1, the numbers of zeros of E(r)
n,p,q(x) = 0 are listed about a fixed p = 1

2 and
q = 1

10 .

Table 1. Numbers of real and complex zeros of E(r)
n,p,q(x).

r = 1, p = 1
2 , q = 1

10 r = 3, p = 1
2 , q = 1

10

Degree n Real Zeros Complex Zeros Real Zeros Complex Zeros

1 1 0 0 1
2 2 0 ∗ ∗
3 1 2 1 2
4 2 2 ∗ ∗
5 1 4 1 4
6 2 4 2 4
7 1 6 1 6
8 ∗ ∗ ∗ ∗
9 1 8 1 8

10 2 8 2 8
11 1 10 1 10
12 2 10 2 10
13 1 12 1 12
14 ∗ ∗ 2 12
15 1 14 1 14
16 ∗ ∗ ∗ ∗
17 1 16 1 16
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The ∗mark in inside of Table 1 means that there is no solution of E(r)
n,p,q(x) = 0. It is possible to

visualize the zeros of E(r)
n,p,q(x) = 0 using computer graphics. The zeros of E(r)

n,p,q(x) = 0, where x ∈ C
are visualized in Figure 1.

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

Re(x)

Im(x)

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

Re(x)

Im(x)

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

Re(x)

Im(x)

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

Re(x)

Im(x)

Figure 1. Zeros of E(r)
n,p,q(x) = 0.

In Figure 1 (top-left), we chose r = 7, n = 10, p = 1/2 and q = 1/10. In Figure 1 (top-right), we
chose r = 7, n = 20, p = 1/2 and q = 1/10. In Figure 1 (bottom-left), we chose r = 7, n = 30, p = 1/2
and q = 1/10. In Figure 1 (bottom-right), we chose r = 7, n = 40, p = 1/2 and q = 1/10. We can
see that distribution of zeroes of E(r)

n,p,q(x) = 0 is very regular. Therefore, the theoretical prediction of

the regularity of distributions of the zeros of E(r)
n,p,q(x) = 0 will remain as future research problems

(Table 1).
Now, we have the numerical solution satisfying higher-order Euler polynomials E(r)

n,p,q(x) = 0

for x ∈ R. The numerical solutions of the higher-order Euler polynomials E(r)
n,p,q(x) = 0 are listed in

Table 2 about a fixed r = 3, p = 1
2 , and q = 1

10 and different value of n.
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Table 2. Numerical solutions of E(3)
n,p,q(x) = 0, p = 1

2 , q = 1
10 .

Degree n x

1 0.0723976

2 ∗

3 0.206956

4 ∗

5 0.258552

6 −0.163912, 0.273465

The ∗mark in Table 2 means that there is no solution of E(r)
n,p,q(x) = 0.

6. Conclusions and Future Developments

This paper introduced the Carlitz’s form higher-order Euler numbers and polynomials. We have
induced some formulas about the Carlitz’s form Euler numbers and polynomials with high-order.
Symmetric identities about Carlitz’s form Euler numbers and polynomials with high-order are also
gained. In addition, the result of [19] is a special case of r = 1, which can be induced from our paper.
We make the following conjectures by numerical experiments:

Conjecture 1. Prove or disprove that E(r)
n,p,q(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic complex

functions. Furthermore, E(r)
n,p,q(x) has Re(x) = a reflection symmetry for a ∈ R.

It have been checked about many values of n. It is still unknown when the conjecture 1 is true or
false about each value n (see Figure 1).

In Table 1, there is no solution of that the Carlitz’s form (p, q)-Euler polynomials with higher-order
is 0. Find such n so that there is no solution. If the Carlitz’s form (p, q)-Euler polynomials with
higher-order has solutions, it is doubtful whether it has distinct solutions.

Conjecture 2. Prove or disprove that E(r)
n,p,q(x) = 0 has n distinct solutions.

We use the following symbols. R
E(r)

n,p,q(x)
denotes the number of real zeros of E(r)

n,p,q(x) = 0 on the

real plane Im(x) = 0 and C
E(r)

n,p,q(x)
denotes the number of complex zeros of E(r)

n,p,q(x) = 0. We can check

R
E(r)

n,p,q(x)
= n− C

E(r)
n,p,q(x)

(see Tables 1 and 2) because n is the degree of the polynomial E(r)
n,p,q(x).

Also, when the Carlitz’s form higher-order (p, q)-Euler polynomials is 0, if the equation has
solutions, we have the following question:

Conjecture 3. Prove or disprove that

R
E(r)

n,p,q(x)
=

{
1, if n = odd,
2, if n = even.

We expect that the research in this direction will be a new approach using numerical methods for
the study of Carlitz’s form Euler polynomials E(r)

n,p,q(x) = 0 (See [13,17,19,20]).
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