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Abstract: In an actual industrial or military operations environment, a multi-state system (MSS)
consisting of multi-state components often needs to perform multiple missions in succession. To
improve the probability of the system successfully completing the next mission, all the maintenance
activities need to be performed during maintenance breaks between any two consecutive missions
under limited maintenance resources. In such case, selective maintenance is a widely used
maintenance policy. As a typical discrete mathematics problem, selective maintenance has received
widespread attention. In this work, a selective maintenance model considering human reliability
for multi-component systems is investigated. Each maintenance worker can be in one of multiple
discrete working levels due to their human error probability (HEP). The state of components after
maintenance is assumed to be random and follow an identified probability distribution. To solve
the problem, this paper proposes a human reliability model and a method to determine the state
distribution of components after maintenance. The objective of selective maintenance scheduling is to
find the maintenance action with the optimal reliability for each component in a maintenance break
subject to constraints of time and cost. In place of an enumerative method, a genetic algorithm (GA) is
employed to solve the complicated optimization problem taking human reliability into account. The
results show the importance of considering human reliability in selective maintenance scheduling for
an MSS.

Keywords: selective maintenance; multi-state system; human reliability; optimization;
genetic algorithm

1. Introduction

For some systems that require the continuous execution of multiple missions, all the maintenance
activities need to be performed during maintenance breaks. However, due to maintenance resource
constraints, it is not always feasible to repair all the components. In order to solve such problems,
Rice et al. [1] first proposed a maintenance policy called selective maintenance in 1998. In such a
strategy, in view of actual resource requirements such as maintenance time, only some components
can be repaired during maintenance breaks in order to enable the next mission to perform successfully.
Therefore, a selective maintenance policy greatly saves maintenance resources. Based on this theory,
Cassady et al. [2] defined a more complex system, whose components have two states, functioning
or failed, and then presented an optimization model with the goal of maximizing system reliability.
Cassady et al. [3] also assumed that the life of all components follow a Weibull distribution, and the
maintenance activities can be divided into three types, namely minimal repair of failed components,
replacement of failed components, or replacement of functioning components. To improve the selective
maintenance optimization, a selective maintenance model considering multiple missions was studied
by Maillart et al. [4]. Additionally, Schneider et al. [5] included a situation in which one or more future
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missions may be canceled. Yang et al. [6] considered a frequency-based maintenance optimization,
and gave a heuristic game framework to find a feasible solution. Diallo et al. [7] applied selective
maintenance for large, serial, k-out-of-n systems and considered both preventive maintenance actions
and corrective maintenance actions. Duan et al. [8] solved the selective maintenance problem for a
multi-component system with stochastic maintenance quality by using a simulated annealing algorithm.
Khatab et al. [9] focused on a system that needs to perform consecutive missions separated by scheduled
breaks. Ali et al. [10] considered that the repairing and replacement costs of all components are random.

However, in addition to binary systems (see [2]), many systems exhibit multiple discrete functioning
states in their degradation process. Such a system is defined as a multi-state system (MSS). The
degradation of MSS can be regarded as a discrete process. For example, the output capacities of a
power production plant will degrade continuously during the mission (such as 100 MW, 80 MW,
50 MW). Since an MSS has many states, it is more complicated for maintenance managers to make
optimal plans. Chen et al. [11] first applied selective maintenance to a multi-state series-parallel system
and gave an optimization model. Liu et al. [12] focused on an MSS that consisted of multiple binary
components considering imperfect repair. Lisnianski et al. [13] proposed that the states of components
can be represented by the performance rate, which simplifies the calculation process and establishes
the relationship between the overall system and the components.

Some researchers have found that the components that make up the MSS can also have multiple
states. Pandey et al. [14] applied selective maintenance in an MSS that consisted of multiple multi-state
components. In such a case, imperfect maintenance (see [15–17]) of a multi-state component is
considered to be a maintenance option, along with the “replacement” and the “do nothing” options.
Dao et al. [18,19] considered the economic dependence and structural dependence between multi-state
components, and gave the calculation model of maintenance time and costs. Due to the inefficiency
of the enumeration method (see [1]) in solving complicated optimization problems, Lust et al. [20]
proposed a tabu search-based metaheuristic that allows the quality of the solution obtained by the
construction heuristic to be improved. Xu et al. [21] applied five differential evolution (DE) algorithms
to solve the selective maintenance optimization problem and determined the optimal one.

It has been observed that the majority of the papers on selective maintenance ignore the effect
of human reliability on the maintenance tasks. However, the reduction of human error is one of the
major interests for the enhancement of system safety and availability (Moieni et al. [22]). For the
selective maintenance problem, an optimal plan can save maintenance time and costs during the
maintenance breaks and maximize the reliability of an MSS to perform the next mission. However,
some components may not be repaired to the best state, or may not even receive maintenance at all.
Such a maintenance policy will increase the risk of mission failure. Human error will further increase
this risk, and cannot be neglected in selective maintenance modeling. It is reasonable for maintenance
managers to set a standard to choose suitable maintenance workers. Zaitseva et al. [23] considered a
mathematical model for human reliability analysis, and used Dynamic Reliability Indices to estimate
the reliability of an MSS. Zhao et al. [24] assumed that the state after the maintenance of multi-state
components when human error has occurred followed uniform distribution, but did not consider the
influence of the different levels of workers on the state determination process.

One of the weaknesses of the existing models for the selective maintenance of MSSs considering
human reliability is that there is no relationship between workers and maintenance tasks. Generally,
human error usually means that the components are completely failed after maintenance. However,
for multi-state components, human error does not necessarily lead to failure. For example, the output
power of a laser system can be in many states. Human error will lead to the reduction of output power,
but the overall system can still operate. A human reliability model considering the characteristics of
multi-state components is needed for MSS reliability analysis and maintenance decision making.

In this paper, we will study the selective maintenance problem for a multi-state series-parallel
system considering human reliability. For a multi-state component, if the state after maintenance does
not meet the target state required by the maintenance plan (it may totally fail or occupy an intermediate
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state between the failed and target state), we consider that human error has occurred in this component
during the maintenance break. Therefore, human error does not mean that the component has totally
failed after maintenance, but rather it may merely be at a lower working level.

In order to estimate the different level of workers in the maintenance of multi-state components,
we use performance influencing factors (PIFs) to calculate the human error probability (HEP).
Hollnagel et al. [25] and Kontogiannis [26] applied PIFs in the quantification of the HEP, respectively.
According to the different HEPs, we can evaluate the working levels of different maintenance workers.
Additionally, we developed a discrete distribution instead of 0–1 or uniform distribution to determine
the state of components after a worker has made a human error during the maintenance break.
We also proposed a method to determine the distribution by dividing human reliability into several
discrete levels; then, a more accurate degradation model for the MSS is obtained. The universal
generating function (UGF) is employed to evaluate the reliability of the MSS for the next mission.
A selective maintenance optimization model is established to maximize the system reliability in the
next mission under the constraints of maintenance time and costs. Sometimes, the maintenance
manager has flexibility regarding time, but is constrained by budget or vice versa. Therefore, the effect
of the variation of resources on selective maintenance planning considering human reliability is also
investigated. Additionally, this paper also compares the influence of human reliability under different
performance requirements. The optimization model is solved by a genetic algorithm (GA). For the
problems discussed above, the following assumptions are made in this paper:

1. The MSS in this paper consists of multi-state components that are all repairable;
2. All the maintenance activities are performed by one maintenance worker, and there is no

maintenance activity during a mission; and
3. The states of each component at the end of each mission are known.

In this paper, we focus on the selective maintenance modeling of an MSS considering human
reliability. The structure of this paper is arranged as follows. After the introduction in Section 1,
Section 2 describes the MSS structure and the human error probability calculation model. The state
distribution after maintenance and the selective maintenance optimization model considering human
reliability are given in Section 3. An illustrative example and some comparative studies are presented
in Section 4. Section 5 contains the summary and conclusions.

2. Description of Multi-State System and Selective Maintenance Modeling

2.1. Description of Multi-State System

MSSs will show different discrete states during missions due to the state degradation of components.
The concept of the performance rate proposed by Lisnianski et al. [13] is widely used to represent
the performance of each state of the MSS and components, i.e., each state corresponds to a constant
performance rate. For example, the performance rate (productivity) of a urea production system is
determined by the performance rate (efficiency) of components such as condensers and synthetic towers.

Without losing generality, consider an MSS consisting of N independent components and L
subsystems, and each subsystem has NL components. Each component i (i = 1, 2, . . . , N) has Ki + 1
possible states, Si = 0, 1, . . . , Ki, with Si = 0 representing complete failure and Si = Ki representing
perfect functioning. When components are repaired in a maintenance break (without human error),
they are considered to be in the best state. The overall system consists of subsystems in series, and
each subsystem consists of components in parallel. Let gi(t) and gl(t) denote the performance rate of
component i and subsystem l in time t. Therefore, the performance rate G(t) of the MSS in time t can
be calculated by the performance rate of each component, using:

Gl(t) =
Nl∑

i=1

gi(t), l = 1, 2, . . . , L (1)
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G(t) = min
{
G1(t), G2(t), . . . , GL(t)

}
(2)

Nourelfath et al. [27] modeled the relationship between the performance rates of an MSS and
its components. At any time t, the system performance rate can be calculated completely if the
components’ performance rates are known. In order to facilitate the calculation of the relationship
between the state of the components and the system, we use the composition operator Φ to represent
the relationship. Then, the performance rate of the MSS can be calculated by:

G(t) = Φ
{
g1(t), g2(t), . . . , gN(t)

}
. (3)

This paper only addresses maintenance activities performed during one maintenance break and at
the end of the previous mission; the states of all components are known. Let Xi and Yi denote the state
of component i before and after maintenance. For components in the best state (Xi = Ki), maintenance
workers will not perform any maintenance. For components in an imperfect state (0 ≤ Xi < Ki),
maintenance workers may take the following measures:

1. Do Nothing: for a component under this maintenance option, the state before and after the
maintenance is unchanged, i.e., Xi = Yi.

2. Imperfect Maintenance: for a component under this maintenance option, it will not be repaired to
their best state after maintenance, although the maintenance worker performs some maintenance
actions during the break, i.e., Xi < Yi < Ki.

3. Repair: If the target state Yi satisfies Xi < Yi = Ki, it is considered that this component is to be
repaired. Under this option, components function perfectly after the maintenance break (without
considering human error).

2.2. Maintenance Time and Costs

In the selective maintenance problem discussed in this paper, two types of resources are used for
maintenance activities—maintenance time and costs. Since the state of each component is known at
the end of the previous mission, maintenance decision makers need to make an optimal maintenance
plan with limited resources so that the MSS will meet the reliability requirement in the next mission.
Assume that the maintenance time and costs for all the multi-state components are known. During the
maintenance break, the maintenance time and costs for component i are given by:

Ti = T(Xi, Yi) (4)

Ci = C(Xi, Yi) (5)

where T(Xi, Yi) and C(Xi, Yi) are the maintenance time and costs, respectively, for component i from
states Xi to Yi, and their matrix form is given by Equations (6) and (7):

0 Ti(0, 1) · · · Ti(0, Ki)

0 0 · · · Ti(1, Ki)

· · · · · · · · · · · ·

0 0 0 Ti(Ki − 1, Ki)

0 0 0 0


, i = 1, 2, . . .N (6)


0 Ci(0, 1) · · · Ci(0, Ki)

0 0 · · · Ci(1, Ki)

· · · · · · · · · · · ·

0 0 0 Ci(Ki − 1, Ki)

0 0 0 0


, i = 1, 2, . . .N (7)
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The maintenance time and costs for component i are determined using the state before and after
maintenance. Clearly, T(Xi, Yi) = 0 and C(Xi, Yi) = 0 if the maintenance option for component i is
“Do Nothing”, i.e., Yi = Xi. Additionally, T(Xi, Yi) > 0 and C(Xi, Yi) > 0 if the maintenance option for
component i is “Imperfect Maintenance” or “Repair”. It is reasonable that the larger Yi −Xi is, the
more time and costs are required for component i in the maintenance break.

2.3. Maintenance Workers

In order to ensure the success of the next mission, the overall system must meet the reliability
requirements. If the system reliability is lower than expected, it may cause system failure during
the mission. For a binary system or component, human error means that the system or component
completely failed and cannot be used for the next mission. However, for an MSS that consists of multiple
multi-state components, human error does not mean that the component completely failed. If the true
state of component i after maintenance is lower than the target state Yi, it is considered that human
error has occurred during the maintenance break. The state of components after maintenance follows
a discrete distribution, and the distribution is different due to the ability of different maintenance
workers. Before determining the state distribution of components after maintenance, we need to
first calculate the human error probability (HEP) of maintenance workers, and then establish the
relationship between the state distribution and HEP.

Performance influencing factors (PIFs) are widely used to calculate HEP. Kim et al. [28] introduced
the application of PIFs in human reliability analysis. In this paper, we use an exponential model [14] to
calculate the HEP of different maintenance workers. Due to the influencing modes of factors, PIFS are
divided into historical influencing factors (HIFs) and real-time influencing factors (RIFs).

HIFs, such as maintenance experience, are long-term accumulations, and maintain relatively
stable values over short periods of time. The elements of HIFs can be determined by analyzing
the historical maintenance data of maintenance workers. However, RIFs consider the complexity of
current maintenance tasks and may vary dramatically depending on the actual tasks. Additionally,
the influence of RIF is also different depending on the maintenance workers. For example, a bad
maintenance environment will have less influence on experienced maintenance workers than on
inexperienced workers. For binary systems, human reliability analysis and system reliability modeling
are relatively independent. Therefore, the determination of HIFs depends mainly on the analysis
of human behavior. However, for MSSs, different HEPs lead to different state distributions after
maintenance. Hence, it is reasonable to include some human factors that are related to MSSs. For
example, the HEP should change dynamically according to the maintenance task complexity (the
greater the Yi −Xi, the greater the complexity). In order to calculate the HEP, It is assumed that the
HEP of all the workers is determined by four factors (more factors about human error analysis can
be found in [28]), which are Maintenance Experience (ME), Maintenance Quality (MQ), Maintenance
Environment (MT), and Maintenance Complexity (MC).

Let FH and FR denote the quantization function of HIFs and RIFs, respectively. FH consists of two
factors, ME and MQ. The larger the value of ME is, the richer the worker’s maintenance experience is.
It is reasonable to consider that experienced maintenance workers have a lower HEP. MQ denotes the
number of human errors, and the larger the value of MQ is, the worse the worker’s working ability is.
Clearly, it is also reasonable to believe that if a worker makes fewer maintenance errors, their HEP
is lower. FR consists of two factors, MT and MC. MT represents the influence of the maintenance
environment on maintenance time. A bad environment (such as one with excessively high or low
temperature) may affect the operation of maintenance workers. Clearly, the worse the environment is,
the higher the HEP. MC refers to the complexity of current maintenance activities, assuming that the
larger the Yi −Xi of component i is, the harder the maintenance task is. Based on the description of the
above factors, the calculation model of FH and FR is given by:

FH = λ1 × e−
ME

5 ×(1−
MQ
V ) (8)
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FR = λ2 × e−(2×MT+MD) (9)

where λ1 and λ2 (λ1 + λ2 = 1) are the weights of HIFs and RIFs. The weights should be determined
according to the actual industrial (or military) environments. Parameter V is the number of maintenance
tasks performed by one maintenance worker. The ratio of the total number of maintenance tasks to
the number of human errors can be used to determine the success rate of a worker’s maintenance
tasks. The coefficients of each parameter in the formula can be obtained from statistical data, and
different coefficients will change the weights of the influencing factors. In this paper, we assume that
the coefficients of ME, MT, and MC are 0.2, 2, and 1, respectively. Additionally, MT and MC can be
calculated by:

MT =
Tc

Tn
(10)

MC =
Ed
Er

(11)

where Tc denotes the maintenance time in an optimal environment (minimum maintenance time), and
Tn represents the maintenance time in the current environment. Obviously, Tc ≤ Tn and MT ≤ 1, and
it can be seen that the larger the value of MT, the lower the influence of environmental states on a
worker. For example, in an extremely harsh environment, whether there are excellent maintenance
workers or unskilled workers, the time used for maintenance will increase. However, excellent
maintenance workers are able to adapt harsh environmental states better, i.e., the proportion of
increases in maintenance time is smaller. We assume that the proportion of time increase due to the
maintenance environment is the same for all the components. Ed denotes the warning state difference
of a worker, and Er is the average state difference of the current maintenance task. Ed can be obtained
from the statistical historical maintenance data. Whenever a maintenance worker commits an error, the
average state difference of this maintenance task should be recorded in the maintenance history record.
Obviously, the higher Ed is, the more skilled the workers are. Er can represent the complexity of all the
maintenance tasks during a maintenance break. The higher the value, the greater the complexity of the
maintenance tasks. The parameter Er is given by:

Er =

N∑
i=1

(Yi −Xi)

N
(12)

Let m, m = 1, 2, . . . , M denote the maintenance worker who performs all the maintenance tasks.
Then, according to equations (8) to (12), we can calculate the human error probability Pm of maintenance
worker m by:

Pm = FH + FR (13)

When a worker lacks a historical maintenance record, let P f denote the initial HEP and Pm = P f
(for example, for a worker who has no maintenance experience). In Section 3.1, by comparing Pm and
P f , we can divide the human reliability of different maintenance workers into several discrete levels.

3. Selective Maintenance Modeling Considering Human Reliability

From what we discussed above, the state distribution after maintenance changes with the Pm of
the maintenance worker. By dividing human reliability into different levels, we can determine the
state distribution with different Pm values. For binary systems and components, the failure rate of a
maintenance task is equal to Pm, so it is unnecessary to analyze different levels of human reliability.
However, for MSSs and multi-state components, the failure of maintenance tasks does not mean that
the system and its components have totally failed. Therefore, in order to establish the degradation
model during the next mission, it is indispensable to determine the state distribution after maintenance
if human error occurs. In this paper, we determine the human reliability level of maintenance workers
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by comparing P f and Pm. Given the P f , whenever the Pm (worker in lowest level when Pm = P f ) drops
by half, the level is considered to have changed. Figure 1 shows the human reliability level set.
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In order to establish the selective maintenance optimization model, it is crucial to estimate the
system reliability to perform the next mission. Let Zi denotes the state of component i after human error
has occurred (the true state). First, determine the distribution of Zi according to the human reliability
level of the maintenance worker. Second, analyze the degradation process of each component during
the next mission. Then, with the constraints of maintenance resources, an optimization model can be
established to obtain the optimal maintenance plan and select the suitable worker.

3.1. State Determination after Human Error

If the maintenance worker did not make a human error, the state of component i after the
maintenance break is Yi (Zi = Yi). However, once a worker has made an error, Zi satisfies 0 ≤ Zi < Yi.
Then, we use the conclusion of the BCG Experience Curve to estimate Zi. BCG Experience Curve refers
to that there is a consistent correlation between the costs and total cumulative output. In short, if a
production mission is executed repeatedly, its production cost will decrease. Each time the production
is doubled, the cost (including management, marketing, distribution and manufacturing, etc.) will fall
at a constant and measurable rate (approximately 10% to 30% per year). The proficiency of the workers
is one of the most fundamental factors affecting the curve change. Yelle [29] made a detailed summary
of the development history of the Experience Curve. According to the basic principle of the curve, an
increase in production leads to an increase in the operational proficiency of workers, which in turn
reduces production costs. High worker proficiency means lower HEP, which reduces operational losses
due to human error. In this paper, human errors affect the state of components after maintenance, and
thus affect the estimation of system reliability. Therefore, whether in a profit-oriented enterprise or
a reliability-oriented industrial environment, a general conclusion is that the reduction of HEP will
reduce unnecessary operational losses. Based on this theory, we apply the BCG Experience Curve in
the distribution determination process after maintenance. The following assumptions are considered
in this paper.

1. If human error occurs in a multi-state component i, the true state after maintenance Zi is lower
than the target state (0 ≤ Zi < Yi). The probability distribution of Zi is related to the human
reliability level of the worker who performs the task during this maintenance break;

2. Experienced maintenance workers not only have lower HEP, but also have lower operational
losses after human error occurs, i.e., the component has a higher probability of being in a better
state when a human error occurs;

3. When Pm satisfies Pm = P f , the state of component i after human error satisfies Zi= 0;

4. Let Pb denotes the transition rate between adjacent human reliability levels. The probability
distribution of Zi is determined by Pb and Pm.

Let Pn
m(Zi = Bi) denote the probability of Zi = Bi, 0 ≤ Bi < Yi when the human reliability

level is n. Clearly,
∑Yi−1

Bi=0 Pn
m(Zi = Bi) = 1. If the human reliability level changes, the probability

distribution of Zi will change accordingly, and Pn+1
m (Zi= Bi) in the new distribution is calculated by

Pn
m(Zi= Bi − 1) · Pb + Pn

m(Zi= Bi) · (1− Pb), i.e., the probability of each state is transferred according
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to Pb. Given the human reliability level set and Pb, Figure 2 shows an example of the distribution
determination process when the human reliability level changes from 0 to 2. The distribution of Zi in
each level is given by Equations (14) to (17).

1
2

P f < Pm ≤ P f

{
P0

m(Zi = 0) = 1
P0

m(Zi = 1) = P0
m(Zi = 2) = · · · = P0

m(Zi, Yi − 1) = 0
(14)

1
4

P f < Pm ≤
1
2

P f


P1

m(Zi = 0) = 1− Pb
P1

m(Zi = 1) = Pb
P1

m(Zi = 2) = P1
m(Zi = 3) = · · · = P1

m(Zi = Yi − 1) = 0
(15)

1
8

P f < Pm ≤
1
4

P f


P2

m(Zi = 0) = (1− Pb)
2

P2
m(Zi = 1) = 2Pb(1− Pb)

P2
m(Zi = 2) = Pb

2

P2
m(Zi = 3) = P2

m(Zi = 4) = · · · = P2
m(Zi = Yi − 1) = 0

(16)

1
2n−1

P f < Pm ≤
1
2n P f



Pn
m(Zi = 0) = (1− Pb)

n

...
Pn

m(Zi = Bi) = Pn−1
m (Zi = Bi − 1) · Pb + Pn−1

m (Zi = Bi) · (1− Pb)
...
Pn

m(Zi = n + 1) = Pn
m(Zi = n + 2) = · · · = Pn

m(Zi = Yi − 1) = 0

(17)
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Figure 2. An example of the distribution determination process.

If n > Yi − 1, repeat Equation (17). According to the above equations (14) to (17), we can obtain the
probability distribution of the state after a human error is made by maintenance worker m. Additionally,
we can see that if Pm is infinitely close to 0, we obtain Zi = Yi − 1. This conclusion is similar to that
of the BCG Experience Curve. It means that the worker is more skilled and the HEP is lower, so the
operational losses due to human error are also lower.

The following example is given to illustrate the working principle of this model. Consider a
component that has six states, {0, 1, 2, 3, 4, 5}, and the initial HEP is P f = 0.8, the transition rate is
Pb = 0.3, the initial state is 0, and the target state is 5. The probability that this component has different
human reliability is shown in Figure 3. It can be seen that as the HEP decreases, there is a higher
probability that the component will be in a higher state. If we use the selective maintenance model
proposed in [24], the probability of components in different states after maintenance is equal for all
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workers, i.e., Pn
m(Zi = Bi) = 0.2, which is unable to reflect the different levels of workers. Table 1 shows

the probability ranking of component i in each level.
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Table 1. The probability ranking of different human reliability levels.

Level Human Error Probability Probability Ranking

0 0.4 < Pm ≤ 0.8 P(Zi = 0) > P(Zi = 1) = P(Zi = 2) = P(Zi = 3) = P(Zi = 4)
1 0.2 < Pm ≤ 0.4 P(Zi = 0) > P(Zi = 1) > P(Zi = 2) = P(Zi = 3) = P(Zi = 4)
2 0.1 < Pm ≤ 0.2 P(Zi = 0) > P(Zi = 1) > P(Zi = 2) > P(Zi = 3) = P(Zi = 4)
3 0.05 < Pm ≤ 0.1 P(Zi = 1) > P(Zi = 0) > P(Zi = 2) > P(Zi = 3) > P(Zi = 4)
4 0.025 < Pm ≤ 0.5 P(Zi = 1) > P(Zi = 2) > P(Zi = 0) > P(Zi = 3) > P(Zi = 4)
5 0.0125 < Pm ≤ 0.025 P(Zi = 1) > P(Zi = 2) > P(Zi = 0) > P(Zi = 3) > P(Zi = 4)
6 0.00625 < Pm ≤ 0.0125 P(Zi = 2) > P(Zi = 1) > P(Zi = 3) > P(Zi = 0) > P(Zi = 4)
7 3.125× 10−3 < Pm ≤ 0.00625 P(Zi = 2) > P(Zi = 1) > P(Zi = 3) > P(Zi = 4) > P(Zi = 0)
8 1.56× 10−3 < Pm ≤ 3.125× 10−3 P(Zi = 2) > P(Zi = 3) > P(Zi = 1) > P(Zi = 4) > P(Zi = 0)
9 7.8× 10−4 < Pm ≤ 1.56× 10−3 P(Zi = 4) > P(Zi = 3) = P(Zi = 2) > P(Zi = 1) > P(Zi = 0)

10–14 Pm ≤ 7.8× 10−4 P(Zi = 4) > P(Zi = 3) > P(Zi = 2) > P(Zi = 1) > P(Zi = 0)

3.2. Estimation of Component State Degradation and Multi-State System Reliability

The multi-state component degrades during the next mission. The degradation process of a
multi-state component can be found in [14,30]. Assume that the components will not age during
the maintenance break, and the degradation processes of all the components in the next mission are
independent. As the mission progresses, the state of each component will progressively degrade, and
the performance rate will also decrease. Let T denote the time required to perform the next mission.
In this paper, the probability that component i with state r after maintenance by worker m degrading
to state q at the end of the next mission, Pi

r,q(T, m), is given. Since r = 0, 1, . . . , Ki and q = 0, 1, . . . , r, the
probabilities Pi

r,q(T, m) form a transition probability matrix in the next mission, which is given by:


0 0 · · · 0 0

Pi
1,0 Pi

1,1 · · · 0 0
· · · · · · · · · · · · · · ·

Pi
Ki,0

Pi
Ki,1

· · · Pi
Ki,Ki−1 Pi

Ki,Ki

, i = 1, 2, . . . , N (18)
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The state change process of component i between entering the maintenance break and the end of
the next mission considering human reliability is shown in Figure 4. The probability of the next event
occurring is marked next to the connecting lines.
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The state distribution of components after the next mission is given by the universal generating
function (UGF) (see [12,14,31]). The UGF is defined by Liu et al. [12] as a polynomial function to
represent the probability mass function of a discrete random variable. For component i, the performance
rate distribution at time t can be represented as:

ui,Yi(v, t) =
Ki∑

j=0

Pi
Yi, j

(t, m)vgi, ji (19)

According to equations (1) to (3) discussed in Section 2, the UGF of the overall system can be
expressed by:

UY(v, t) = Φ

 K1∑
j1=0

 (1− Pm)P1
Y1, j1

(t, m) + Pm
Y1−1∑
Z1=0

P1
Z1, j1

(t, m)

 vg1, j1 ,

K2∑
j2=0

[
(1− Pm)P2

Y2, j2
(t, m) + Pm

Y2−1∑
Z2=0

P2
Z2, j2

(t, m)

]
vg2, j2 , · · ·

· · · ,
KN∑

jN=0

[
(1− Pm)PN

YN , jN
(t, m) + Pm

YN−1∑
ZN=0

PN
ZN , jN

(t, m)

]
vgN, jN


(20)

Equation (20) extends the UGF in [14] by considering human reliability. Clearly, if Pm = 0, the
state after maintenance is Yi and the UGF is similar to that proposed in [14]. However, if Pm > 0, the
state after maintenance follow a discrete distribution, which is proposed in Section 3.1. Therefore, the
reliability of the system will decrease, since the performance is reduced.

As the performance rate decreases, the functioning level of the MSS gets worse. Whether the
mission can be successfully completed depends on the performance rate of the MSS at the end of the
next mission. Let W denote the performance rate requirement of the MSS at the end of the next mission.
If G(T) is not less than W, the mission is considered successful. Therefore, the reliability of the MSS to
perform the next mission is given by:

RMSS(Y, T, W, m) =
∑

G(T)≥W

PJ(Y, T, m) (21)
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where Y = {Y1, Y2, . . . , YN} is the states vector set of all the components after maintenance, and
J =

{
j1, j2, . . . , jN

}
is the states vector set of all the components after degradation. Therefore, PJ(Y, T, m)

represents the probability that the state of the overall system is J at the end of the next mission. If the
performance rate of state J is greater than W, the mission is considered successful, and vice versa.

Through Equation (21), we can obtain the system reliability under a selective maintenance plan Y
considering human reliability.

For example, consider a simple MSS that consists of two components in parallel. Each component
has three states, the performance rates of which are 0, 10, and 20, and the HEP of the maintenance
worker is 0.1. According to equations (14) to (17), the probability that a component is in each state
after human error occurs is P(Z1= 0) = P(Z2 = 0) = 0.49, P(Z1= 1)= P(Z2 = 1) = 0.51. The state
of each component entering the maintenance break is X= {0, 0} and the target state is Y= {2, 2}. The
probabilities of degradation are P1

0,0= 1, P1
1,0= 0.3, P1

1,1= 0.7, P1
2,0= 0.1, P1

2,1= 0.3, P1
2,2= 0.6, P2

0,0= 1,
P2

1,0= 0.2, P2
1,1= 0.8, P2

2,0= 0.2, P2
2,1= 0.3, and P1

2,2= 0.5. Therefore, the performance rate distribution of
each component at time t can be represented as:

u1,2(v, T) = P1
2,0(T, m)v0 + P1

2,1(T, m)v10 + P1
2,2(T, m)v20

= 0.1v0 + 0.3v10 + 0.6v20 (22)

u2,2(v, T) = P2
2,0(T, m)v0 + P2

2,1(T, m)v10 + P2
2,2(T, m)v20

= 0.2v0 + 0.3v10 + 0.5v20 (23)

Therefore, the composition function is given by:

UY(v, t) = min
{[

0.9P1
2,0(t, m) + 0.1× (0.49P1

0,0 + 0.51P1
1,0)

]
v0 +

[
0.9P1

2,1(t, m) + 0.1× 0.51P1
1,1)

]
v10 + 0.9P1

2,2(t, m)v20

,
[
0.9P2

2,0(t, m) + 0.1× (0.49P2
0,0 + 0.51P2

1,0)
]
v0 +

[
0.9P2

2,1(t, m) + 0.1× 0.51P2
1,1)

]
v10 + 0.9P2

2,2(t, m)v20
}

= min
{
0.1543v0 + 0.3057v10 + 0.54v20, 0.2392v0 + 0.3108v10 + 0.45v20

}
= 0.3566v0 + 0.4004v10 + 0.243v20

(24)

If the performance rate requirement of the MSS at the end of the next mission is 10, the reliability
of the MSS to perform the next mission is 0.6434.

3.3. Optimization Model

Selective maintenance is a risky policy, since some components of the system cannot be perfectly
functional in the next mission. Additionally, the risk of the selective maintenance is further increased
by human error. In such a case, a suitable maintenance worker must be selected for this maintenance
task. The optimization model in this paper is for finding the best selective maintenance subset for
maximizing the probability of successfully completing the next mission. The associated integer decision
variable is Yi. Let TL and CL denote the maintenance time and costs limitation. The resulting nonlinear
optimization problem is given by:

P : Maximiz RMSS(Y, T, W, m) =
∑

G(T)≥W

PJ(Y, T, m) (25)

N∑
i=1

Ti ≤ TL (26)

Subject to
N∑

i=1

Ci ≤ CL (27)

Xi ≤ Yi ≤ Ki (28)

Yi is integer, i = 1, 2, . . . , N (29)
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In the above formulations, the objective of function (25) is to maximize the reliability of the overall
system under the maintenance by worker m, which has been formulated in Section 3.2. Constraints (26)
and (27) exhibit the limited available maintenance resources to perform maintenance. The calculation
method of Ti and Ci is given in Section 2.2. Constraints (28) and (29) show that the state after
maintenance must be an integer value between Xi and the maximum state Ki for all i = 1, 2, . . . , N,
since the maintenance does not worsen the state of the components. For a given MSS’s configuration,
this nonlinear optimization problem can be solved. The following section presents an example and
discusses how the human reliability may have an important impact on the selective maintenance
model. In this experiment, the duration and costs are given in time and monetary units, respectively.

Different maintenance workers have different HEPs, and not all workers are qualified for the
maintenance task. After the model gives the optimal maintenance plan, let R̂MSS denotes the reliability
of the system without considering human reliability, and let RL be the minimum acceptable reliability
for the MSS to perform the next mission considering human reliability. Then, RL can be calculated by:

RL= αR̂MSS (30)

where α (0 < α < 1) represents the risk factor for human error, with a higher value of α indicating a
higher requirement for human reliability.

For a maintenance worker m, if the optimal reliability satisfies RMSS(Y, T, W, m) ≥ RL given by the
optimization model, the worker can be selected to perform maintenance tasks. Since this is a typical
constrained nonlinear optimization problem involving integer variables only, a genetic algorithm (GA)
is employed to solve the discrete mathematics problem in this paper. More details about GA can be
found in [32].

4. Case Analysis

Consider a multi-state series-parallel system (Figure 5) consisting of 10 components that are
numbered 1 to 10. Components 1, 4, and 10 have five states, while Components 2, 3, 5, 6, 7, 8, and 9 have
four states. The overall system consists of six subsystems, which are numbered 1 to 6. Subsystems 1, 3,
and 6 consist of only one component; Subsystems 2 and 4 consist of two components, and Subsystem 5
consists of three components. The basic information of the maintenance task in this break is shown in
Table 2. The maintenance time and costs for each component are shown in Table 3. The degradation
information of all the components after the next mission is shown in Table 4. The information of three
maintenance workers (M= 3) is shown in Table 5. The parameters of the genetic algorithms are shown
in Table 6. For this maintenance break, the state set before maintenance is X = {0, 1, 1, 1, 0, 1, 2, 1, 0, 1}.
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Table 2. Maintenance information.

TL (Units) CL (Units) M λ1 λ2 Pf Pb W α

540 185 3 0.50 0.50 0.50 0.30 20 0.97
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Table 3. Component information.

Component ID

Component Information

State Performance Rate
Maintenance Time/Costs (Units)

0 1 2 3 4

1

0 0 0/0 38/7 64/13 91/27 121/40
1 20 - 0/0 26/6 53/20 83/33
2 40 - - 0/0 27/14 57/27
3 65 - - - 0/0 30/13
4 95 - - - - 0/0

2

0 0 0/0 32/9 56/20 76/31 -
1 30 - 0/0 24/11 44/22 -
2 50 - - 0/0 20/11 -
3 70 0/0 -

3

0 0 0/0 25/8 48/16 83/20 -
1 25 - 0/0 23/8 58/4 -
2 45 - - 0/0 35/4 -
3 70 - - - 0/0 -

4

0 0 0/0 33/12 68/25 108/40 140/51
1 40 - 0/0 35/13 75/28 107/39
2 75 - - 0/0 40/15 72/26
3 90 - - - 0/0 32/11
4 125 - - - - 0/0

5

0 0 0/0 19/6 36/10 55/15 -
1 20 - 0/0 17/4 36/9 -
2 35 - - 0/0 19/5 -
3 50 - - - 0/0 -

6

0 0 0/0 22/8 44/17 67/26 -
1 25 - 0/0 22/9 45/18 -
2 35 - - 0/0 23/9 -
3 55 - - - 0/0 -

7

0 0 0/0 15/3 31/7 45/11 -
1 15 - 0/0 16/4 30/8 -
2 25 - - 0/0 14/4 -
3 40 - - - 0/0 -

8

0 0 0/0 23/7 44/15 63/23 -
1 30 - 0/0 21/8 40/16 -
2 50 - - 0/0 19/8 -
3 75 - - - 0/0 -

9

0 0 0/0 31/10 60/19 94/30 -
1 25 - 0/0 29/9 63/20 -
2 40 - - 0/0 34/11 -
3 55 - - 0/0 -

10

0 0 0/0 32/12 65/23 99/33 140/45
1 35 - 0/0 33/11 69/21 110/33
2 60 - - 0/0 36/10 77/22
3 95 - - - 0/0 41/12
4 115 - - - - 0/0
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Table 4. Component degradation information.

Com ID Initial State State after Maintenance
Degradation Probability

0 1 2 3 4

1 0

0 1 0 0 0 0
1 0.20 0.80 0 0 0
2 0.15 0.24 0.61 0 0
3 0.05 0.15 0.28 0.52 0
4 0.02 0.09 0.14 0.26 0.49

2 1

0 1 0 0 0 -
1 0.30 0.70 0 0 -
2 0.12 0.22 0.66 0 -
3 0.05 0.11 0.27 0.57

3 1

0 1 0 0 0 -
1 0.13 0.87 0 0 -
2 0.08 0.32 0.60 0 -
3 0.06 0.24 0.34 0.36

4 1

0 1 0 0 0 0
1 0.17 0.83 0 0 0
2 0.09 0.16 0.75 0 0
3 0.05 0.11 0.21 0.63 0
4 0.01 0.04 0.11 0.24 0.60

5 0

0 1 0 0 0 -
1 0.42 0.48 0 0 -
2 0.27 0.35 0.38 0 -
3 0.16 0.22 0.29 0.33 -

6 1

0 1 0 0 0 -
1 0.30 0.70 0 0 -
2 0.16 0.24 0.60 0 -
3 0.08 0.12 0.35 0.55 -

7 2

0 1 0 0 0 -
1 0.35 0.65 0 0 -
2 0.22 0.31 0.47 0 -
3 0.14 0.20 0.29 0.37 -

8 1

0 1 0 0 0 -
1 0.44 0.56 0 0 -
2 0.18 0.38 0.44 0 -
3 0.03 0.09 0.30 0.58 -

9 0

0 1 0 0 0 -
1 0.14 0.86 0 0 -
2 0.12 0.25 0.63 0 -
3 0.08 0.14 0.27 0.51 -

10 1

0 1 0 0 0 0
1 0.27 0.73 0 0 0
2 0.15 0.23 0.62 0 0
3 0.06 0.12 0.20 0.62 0
4 0.01 0.03 0.13 0.18 0.65
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Table 5. Maintenance worker information.

Worker ID
Parameter

ME MQ V MT Ed Pm

A 25 1 120 0.95 4 0.0166
B 15 5 60 0.90 3 0.0544
C 5 5 35 0.80 3 0.1174

Table 6. Genetic algorithm parameters.

Population Size Number of
Iterations

Mutation
Probability

Crossover
Probability Generation Gap

100 30 0.01 0.7 0.9

According the calculation method given in Section 2.3, the HEPs of three maintenance workers
in this paper are 0.0166, 0.0544, and 0.1174, respectively, and the genetic algorithm program was run
multiple times using the MATLAB software (MathWorks, Natick, MA, USA). The results are shown
in Table 7 and Figure 6. The optimal maintenance plan is found to be Y= {4, 2, 1, 4, 3, 3, 2, 3, 1, 4}, and
the optimal maintenance options were found to be “Repair” for Components 1, 4, 5, 6, 8, and 10,
“Imperfect Maintenance” for Components 2, 7, and 9, and “Do Nothing” for Component 3. The time
and costs required for the optimal selective maintenance plan are 533 units and 182 units, respectively.
The reliability of the optimal selective maintenance plan for the system to perform the next mission
without considering human reliability is 0.9316. According to Table 7, the reliability of the MSS after
maintenance by workers A, B, and C is 0.9239, 0.8948, and 0.8391, respectively. Clearly, the system
reliability will be reduced when human reliability is taken into account in the selective maintenance
optimization model, i.e., ignoring human error will lead to overestimation of the system performance
rate at the end of the next mission. According to the maintenance information given in Table 2, the
minimum reliability requirement for the MSS considering human reliability is 0.9037. If the system
reliability after considering human reliability is greater than 0.9037, the maintenance worker can
perform the maintenance task; otherwise, the worker needs to be replaced with a more qualified worker.
Clearly, worker A meets the minimum reliability requirements, and can perform this maintenance task.
However, workers B and C do not meet the minimum reliability requirements. If maintenance worker
B or C is responsible for the maintenance task without considering the human reliability, the optimal
reliability will be 0.9316 after solving the optimization model. This value is seriously overestimated
compared to the true reliability, and does not meet the minimum reliability requirements (RL). If the
maintenance task is still carried out by maintenance worker B or C, the performance rate of the MSS at
the end of the next mission may not meet the requirements, resulting in unnecessary operational losses.
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Table 7. Optimal maintenance plan.

Component
ID

Target
State

Option Time
(Units)

Costs
(Units) R̂MSS RL

Reliability Considering
Human Reliability

A B C

1 4 Repair

533 182 0.9316 0.9037 0.9239 0.8948 0.8391

2 2 Imperfect
Maintenance

3 1 Do Nothing
4 4 Repair
5 3 Repair
6 3 Repair

7 2 Imperfect
Maintenance

8 3 Repair

9 1 Imperfect
Maintenance

10 4 Repair
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In this case, the maintenance resources and performance rate requirement (W) are factors that
affect the reliability of the MSS to perform the next mission, and also affect the selection of the
maintenance worker. Loose resource limitations reduce the risk of selective maintenance and reduce
the requirements of HEP for maintenance workers. However, tighter resource limitations lead to a
lower system reliability.

In this case, the maintenance time and costs of all the components are 688 and 221, respectively.
Figures 7 and 8 show the effect of human reliability under different constraints of maintenance time
and costs. When comparing different time limitations, it is considered that there is no limit on the
costs. Similarly, time limitations are not considered when comparing different cost limitations. As
the limitations become tighter, the reliability of the system becomes lower, and the higher the HEP is,
the faster the reliability decreases. This indicates that the error is magnified when the limitation of
resources is tighter.

Figure 9 shows the system reliability under different performance rate requirements. It can be
seen that the tighter the requirements, the lower the reliability of the system, the higher the HEP of the
maintenance workers, and the faster the reliability decreases.

By comparing the system reliability with different limitations of time, costs, and performance rate,
the importance of considering human reliability is fully proven. When the limitations are tighter, the
impact of human reliability on the system reliability is more obvious.
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5. Conclusions

A selective maintenance model for an MSS considering human reliability was investigated for the
first time in this paper. We formulated the relationships between the HEP and the state of components
after maintenance using a dynamic discrete distribution and a model proposed to calculate the HEP. A
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method to determine the distribution of component states after maintenance was also proposed. A
reliability evaluation for the MSS was performed by using a UGF for different maintenance options that
depends on the available maintenance resources and human reliability level. A generalized selective
maintenance optimization model was developed to maximize the system reliability in the next mission
considering both time and cost constraints. The maintenance model helps maintenance decision
makers decide the best combination of maintenance activities and suitable workers to maximize the
system reliability in the next mission within the available time and budget. An illustrative example is
presented, and the discrete mathematics optimization problem is solved using a genetic algorithm, and
selective maintenance strategies considering and not considering human reliability are analyzed. The
results demonstrate that ignoring human reliability may lead to the overestimation of system reliability,
and this error is magnified when the limitation of resources and the performance rate requirement are
tighter. The proposed selective maintenance model can be applied to many industrial and military
situations where it is crucial to allocate limited resources during a maintenance break. Further extension
of the model to consider multiple maintenance workers for one maintenance break is a suitable topic
for future research. Another interesting future research topic could be the development of multiple
missions in a planning horizon using a selective maintenance model that takes human reliability into
account. Finally, considering uncertain data in human reliability modeling (such as [33,34]) can also
help to estimate the system reliability accurately, which is important for further research.
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Notation

N total number of components in an MSS
i index of components, i = 1, 2, . . . , N
L number of subsystems in an MSS
l index of subsystems, l = 1, 2, . . . , L
Nl number of components in subsystem l
Si the state set of the component i, Si = (0, 1, . . . , Ki − 1, Ki)

Φ composition operator for all components
X states vector set of all components before maintenance, X = {X1, X2, . . . , XN}

Y states vector set of all components after maintenance, Y = {Y1, Y2, . . . , YN}

J states vector set of all components at the end of the next mission, J =
{
j1, j2, . . . , jN

}
Zi state of component i after human error occurs, Xi ≤ Zi < Yi
Ti maintenance time of component i during maintenance break
Ci maintenance costs of component i during maintenance break
TL maintenance time limit
CL maintenance costs limit
gi, j performance rate of component i in state j, j = 0, 1, 2, . . .Ki
gi(t) performance rate of component i at time t
Gl(t) performance rate of subsystem l at time t
G(t) performance rate of an MSS at time t
M number of maintenance workers available
m index of maintenance workers, m = 1, 2, . . . , M
Pm human error probability of maintenance worker m

Pi
Yi, j

(t, m)
the probability of component i degrading from state Yi to state ji at time t after maintenance by
worker m, ji = 0, 1, . . . , Yi

ui,Yi (v, t) universal generating function for component i in state Yi at time t
UY(v, t) universal generating function for an MSS in state Y at time t
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T time required to perform next mission
W the requirement of performance rate at the end of next mission
RMSS reliability of MSS to perform the next mission considering human reliability
R̂MSS reliability of MSS to perform the next mission without considering human reliability
RL minimum reliability required for next mission
ME number of years of maintenance experience
MQ total number of human errors
MT influence of maintenance environment on maintenance time
MC the state difference before and after maintenance (Yi −Xi)
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