A general phenomenon of spontaneous amplification of optical purity under an achiral chromatographic conditions

(ESI)

K. Michał Pietrusiewicz, ¹ M. Borkowski,^{1,2} D. Strzelecka,¹ K. Kielar,¹ W. Kicińska,¹ S. Karevych,¹ R. Jasiński,³ Oleg M. Demchuk ^{1,4*}

- ¹ Faculty of Chemistry, Maria Curie-Sklodowska University, 2 M. Sklodowskiej-Curie Square, 20-031 Lublin, Poland;
- ² Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 31-155 Cracow , Poland;
- ³ Institute of Organic Chemistry and Technology, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland;
- ⁴ Pharmaceutical Research Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland.

Table of Contents:

1. Chemistry. General information typical procedure	S2
2. Computational studies	s 3
3. Tables and selected spectral data.	s 4
4. Synthesis of model compounds	S13
5. References	S15

* Correspondence: O.Demchuk@IFarm.eu

CHEMISTRY

GENERAL INFORMATION AND TYPICAL PROCEDURES

All the chemicals used in this research were purchased from Sigma-Aldrich, Avantor Performance Materials Poland S.A. (formerly POCH S.A) and Merck. Analytical thin-layer chromatography (TLC) was performed using silica gel 60 F254 precoated plates (0.25 mm thickness). Visualization of TLC plates was performed by means of UV light. NMR spectra were recorded on Bruker Avance 500 MHz spectrometers, and chemical shifts are reported in ppm, and calibrated to residual solvent peaks at 7.27 ppm and 77.00 ppm for ¹H and ¹³C in CDCl₃ or TMS as internal reference compounds. The enantiomeric compositions of the obtained fractions was determined by a chromatographic method (Shimadzu LCMS IT-TOF spectrometer) using chiral chromatographic columns Chiralpak® and Chiralcel® with the following dimensions: 150 x 2.1 mm, or by ¹H NMR and ¹³C NMR techniques using an appropriate chiral differentiating factor and solvents. The purification process and the study of the SDE phenomenon were conducted on a flash low pressure BUCHI chromatograph using 12x150 mm PE columns packed with 10 g spherical silica gel 60 with the particle size of 230-400 mesh as the stationary phase. The studied compounds were dissolved in 5 mL of an appropriate solvent and mixed with 1g of silica gel. Next, the solvent was evaporated and the sample supported on silica was placed at the top of the column prepacked with 10 g of silica. After that the column was connected to the MPLC to be subjected to SDE studies. In the case of compounds 1 and 6, instead of supporting them on silica, the solutions of the studied compounds in 0.6 mL of pure hexane were injected onto the column prepacked with 11g of silica and prewashed with the mobile phase. The fractions were automatically collected by 18 mL volume. The elution progress was monitored by TLC.

The double injection experiment (compound **6**, MBTE as an eluent) was carried out as below: in the first case, on the prepared column (the same parameters of the column as previously) the injected compound dissolved in 0.5 mL of pure methyl *tert*-butyl ether and the collected fraction was monitored by the TLC technique. In the next step, when in the collected fraction, the compound was nowhere to be found, the next portion of the same initial mixture was injected and then the fractions from the second injection were collected. The volume of the fractions in both runs equals 18 mL. The obtained fractions were evaporated and dried. In the next step, the fractions were weighed and samples were prepared, using appropriate differentiating agents and solvents. The enantiomeric compositions of the obtained fractions were determined by ¹H NMR and ¹³C NMR techniques.

COMPUTATIONAL STUDIES

All DFT calculations were performed using the "Prometheus" cluster in the "Cyfronet" computational centre in Cracow. A new generation M062x [1]; [2] functional, implemented in the Gaussian 09 package [3], was used. This functional has been recently used by us to resolve several similar problems [4]; [5]; [6]. All stationary structures have been optimised using the advanced 6-311++G(d,p) basis set and were characterised by only positive eigenvalues in their diagonalised Hessian matrices. For the optimised structures, thermochemical data for the temperature T = 298 K and pressure p = 1 atm were computed using vibrational analysis data. For the simulation of the solvent presence, the PCM model has been applied, similarly as in previous our works [5,6].

TABLES, SPECTRA, CHROMATOGRAMS

Fraction	Elution volume, [mL]	Total amount of 1, [mg]	Ratio of enantiomers* <i>R-</i> /S-, [mg/mg]	Ee, [%]
		Eluent: hexane / acet	tone = 99 / 1	
1	18	1.9	1.4 / 0.5	49.2
2	36	6.2	4.8 / 1.4	49.0
3	54	8.7	6.5 / 2.2	49.5
4	72	6.3	4.7 / 1.6	49.1
5	90	7.3	5.5 / 1.8	50.2
6	108	4.2	3.1 / 1.0	50.1
7	126	126 2.1 1.6 / 0.5		51.0
Tot	al amount:	36.6	27.6 / 9	
		Eluent: <i>hexane / acetor</i>	ne = 99.7 / 0.3	
1	18	2.1	1.5 / 0.6	47.0
2	36	8.3	6.2 / 2.1	49.5
3	54	12.4	9.3 / 3.1	50.0
4	72	6.2	4.7 / 1.5	50.1
5	90	4.1	3.1 / 1.0	52.2
6	108	1.1	0.9 / 0.2	54.0
Tot	al amount:	34.3	25.7 / 8.5	

Table 1-ESI. SDE and the analysis of the enantiomeric composition of compound 1.

*Calculated based on ee and total amount

Figure 1-ESI. Chiral HPLC chromatogram of the selected fraction of compound 1. Chiralpak[®] AS-RH column and mobile phase $H_2O / CH_3CN = 55 / 45$, and 0.4 mL/min flow.

Fraction	Elution volume [mL]	Ee, [%]
32	576	21.0
34	594	28.0
36	612	31.0
38	630	36.0
40	648	42.0
42	666	48.0
46	684	55.0
48	702	58.0
50	720	59.0
52	738	63.0
32	756	21.0
34	774	28.0

Figure 2-ESI. Chiral HPLC chromatograms of selected fractions of compound **2**. *CHIRALPAK*^{*} *AS-RH column, and the mobile phase* $H_2O / CH_3CN = 50 / 50$, and 0.3 mL/min flow.

50 mg of 3		50 mg of 3 100 mg of 3		150	mg of 3
Fraction	Ee, [%]	Fraction	Ee, [%]	Fraction	Ee, [%]
37	55.6	29	52.5	29	48.8
40	52.0	33	49.5	33	46.0
43	48.8	37	47.4	37	45.2
46	44.6	41	45.7	41	43.0
49	41.5	45	44.6	45	41.0
52	39.1	49	43.9	49	38.9
55	38.0	53	43.2	53	37.8
58	36.7	57	42.2	57	37.0
61	34.8	61	41.9	61	36.2
64	33.2	65	39.9	65	35.3
67	35.6	69	38.4	69	35.0
70	32.0	73	37.7	71	32.0
		77	36.4		
		81	35.9		
		85	35.3		

Table 3-ESI. SDE of compound **3** via MPLC on the achiral stationary phase usinghexane / t-butyl methyl ether (85 / 15) as the eluent.

Figure 3-ESI. Chiral HPLC chromatogram of selected fraction of compound 3. *Chiralpak*^{$^{\circ}} AD-RH column, and the CH₃CN / H₂O = 30 / 70.</sup>$

Electronic Supplementary Information

Fraction	Amount, [mg]	Ee, [%]	Fraction	Amount, [mg]	Ee, [%]	Fraction	Amount, [mg]	Ee, [%]
Initial ee = 27%		Initial ee = 60%		Initial ee = 75%				
7	12	28	6	5	59	9	11	76
8	9	28	7	3	60	10	15	75
9	1	28	8	2	60	11	5	75
10	2	26	9	1	60	12-24	33	73
11	1	27	10	1	59			
12-23	39	25	11	5	58			
			12	8	56			
			13-22	21	56			

Figure 4-ESI. The fragments of the ³¹P and ¹H NMR spectra of selected fractions of compound 4.

Electronic Supplementary Information

A general phenomenon of spontaneous amplification of optical purity under an achiral chromatographic conditions

Fraction	Amount of 5, [mg]	Ratio of isomers R/S, [mg/mg]*	Ee, [%]			
	Eluent: <i>Hexane / i-PrOH</i> = 92 / 8					
9	6.1	4.7 / 1.4	53.51			
10	9.9	7.4 / 2.5	49.62			
11	13.6	6.8 / 2.4	47.86			
12	9.2	6.9 / 2.0	48.56			
13	4.8	3.6 / 1.2	50.55			
14	4.1	3.0 / 1.0	48.73			
15	3.3	2.4 / 0.9	46.11			
16	2.7	2.0 / 0.7	46.07			
17	2.1	1.6 / 0.6	45.99			
18	2.2	1.8 / 0.6	49.49			
19	2.2	1.6 / 0.6	44.73			
20	1.7	1.2 / 0.5	45.39			
21	1.7	0.8 / 0.3	46.79			
22	1.2	0.9 / 0.3	47.23			
23	1.3	1.0/ 0.4	47.61			
Total	661 491/167	491/167				
amount:	00.1	17.17 10.7				
		Eluent: <i>dichloroethane</i>				
12	2.0	1.4 / 0.6	42.80			
13	3.7	2.7 / 1.0	46.53			
14	5.6	4.1 / 1.5	47.81			
15	5.7	4.2 / 1.5	46.85			
16	5.9	4.3 / 2.0	37.41			
17	5.6	4.0 / 1.6	43.41			
18	5.4	3.8 / 1.6	40.64			
19	4.6	3.3 / 1.3	42.98			
20	3.9	2.8 / 1.0	46.24			
21	2.8	2.1 / 0.7	47.51			
22	1.8	1.3 / 0.4	50.34			
Total amount:	47	34.0 / 13.0				

Table 5-ESI. SDE of	f compound 5 .
---------------------	-----------------------

*Calculated based on ee and total amount

Figure 5-ESI. Chiral HPLC chromatogram of selected fraction of compound 5. *Chiralpak*[®] *OJ-RH, H*₂*O / CH*₃*CN = 85 / 15, 0.3 mL/min.*

Electronic Supplementary Information

A general phenomenon of spontaneous amplification of optical purity under an achiral chromatographic conditions

Enstian	Amount of ([mo]	Ratio of isomers R/S,		E		
Flaction	Amount of 6, [mg]	[mg/mg]	¹ H NMR	¹³ C NMR	¹³ C NMR	Average
	-	Eluent: dieth	yl ether			
12	1.5	0.5 / 1.0	36.9	39.8	41.8	39.5
13	6.0	1.7 / 4.3	46.5	40.5	39.9	42.3
14	5.8	1.8 / 4.0	36.5	41.4	36.1	38.0
15	10.6	3.3 / 7.3	38.3	31.5	40.8	36.9
16	9.1	2.8 / 6.3	36.3	33.9	46.0	38.7
17	11.4	3.5 / 7.9	36.1	27.9	43.9	36.0
18	4.7	1.6 / 3.1	28.8	30.2	42.9	33.9
19	6.3	2.0 / 4.3	33.3	36.3	38.9	36.0
20	5.2	1.8 / 3.4	32.2	24.6	36.1	30.9
21	3.8	1.4 / 2.4	28.8	22.8	29.9	27.2
22	3.7	1.4 / 2.3	27.3	30.0	19.8	25.7
Total	68.1	21.8 / 16.2				
amount:	00.1	21.0 / 40.5				

Table 6-ESI. SDE of compound 6 in diethyl ether.

Table 7-ESI. SDE of co mpound 6 eluted by *tert*-butyl methyl ether.

	Amount	Ratio of	Ee, [%] measured by			
Fraction	of 6, [mg]	isomers R/S, [mg/mg]	¹ H NMR	¹³ C NMR	¹³ C NMR	Average ee, [%]
			1 st separation			
7	7.5	2.2 / 5.3	40.9	37.0	43.6	40.5
8	18.7	5.7 / 13.0	38.9	40.9	34.5	38.1
9	16.5	5.2 / 11.3	37.0	31.6	39.0	35.9
10	10.5	3.5 / 7.0	34.2	31.6	35.0	33.6
11	6.6	2.2 / 4.4	32.5	36.1	29.8	32.8
12	2.9	1.0 / 1.9	26.6	33.3	29.1	29.7
13	3.3	1.2 / 2.1	30.7	22.0	25.8	26.3
14	3.0	1.1 / 1.9	24.2	24.2	24.6	24.2
Total amount:	68.0	22.3 / 46.7				
			2 nd separation			
	0.5	01/04		16	20.2	40 5
36	0.5	0.1/0.4	42.6	46.	39.3	42.7
37	7.6	2.3 / 5.3	41.8	41.8	38.0	40.6
38	24.1	7.7 / 16.4	38.9	33.3	35.1	35.8
39	23.9	7.6 / 16.3	35.1	36.1	39.0	36.7
40	14.6	5.0 / 9.6	33.3	32.5	29.5	31.8
41	8.9	3.1 / 5.8	29.9	30.7	33.0	31.2
42	3.2	1.2 / 2.0	25.0	25.8	28.0	26.3
43	3.9	1.7 / 2.2	12.4	14.3	18.8	15.1
44	1.5	0.7 / 0.8	11.1	11.1	14.4	12.2
45	2.8	1.3 / 1.5	9.9	8.1	8.9	9.0
Total amount:	91.0	30.7 / 60.3				

Figure 6-ESI. The ¹H and ¹³C NMR spectra of 6 in the presence of enantiomerically pure 4.

SYNTHESIS OF BENCHMARK COMPOUNDS

Synthesis of compound 1.

A 10 ml Schlenk flask was loaded with (-)-BisNapPhos [7] ligand (25 mg), [Pd(allyl)Cl]2 (3.6 mg) and toluene (1 mL). Reactor was degassed and backfilled with argon. After 30 min of stirring to the reactor was added solution of dimethyl malonate (100 mg) and (E)-1,3-diphenylallyl acetate (100 mg) in toluene (1 mL). Reactor was degassed and backfilled with argon again. After that BSA (192 mkL) was added to the reaction mixture. The solution was stirred at 40 °C for 10h. Solvents were evaporated to dryness, and column chromatography (hexane/acetone, 15:1, as eluent) of the residue gave **1** in quantitative yield and 49% ee. The enantiomeric composition and *R*- absolute configuration of the product were determined by the peak integration and elution order from chiral HPLC using a Chiralcel[®] OD-H column [8]. The spectra data of obtained compounds were identical to that found in literature [9]. ¹H NMR (CDCl₃) δ : 3.5 (s, 3H), 3.7 (s, 3H), 4.0 (d, *J* = 11.0 Hz, 1H), 4.3 (dd, *J* = 11.0, 8.0 Hz, 1H), 6.3 (dd, *J* = 8.0, 15.7 Hz, 1H), 6.5 (d, *J* = 15.7 Hz, 1H), 7.2–7.3 (m, 10H).

Synthesis of compound 2.

A round-bottom flask containing magnetic stir bar was charged with 15 mL of 0.3% aqueous SDS and Na₂CO₃ (318 mg). Then 1-bromo-2-methoxy-naphthalene, (237 mg) dissolved in a minimum amount of THF, 2-methoxy-1-naphthalenyl boronic acid (300 mg) and the pre-catalyst (prepared by premixing (*S*)-*BisNap*-Phos ligand (1 mol%) and Pd(C₆H₅CN)₂Cl₂ (0.5 mol%) in 1 mL of THF) were added. Reactor was degassed and backfilled with argon. The contents of flask was stirred at 60 °C for 16 hours. The product was extracted with methylene chloride or filtered. After drying the organic layer of MgSO4, the solvent was evaporated and the product was isolated by chromatography (hexane/acetone, 15:1, as eluent) to gave **2** in 96% yield and 41% ee. The enantiomeric excess of **2** was determined by an HPLC technique using a Chiralpak® AS-RH column, and the mobile phase H₂O / CH₃CN = 50 / 50. The spectra data of obtained compounds were identical to that found in literature [<u>10</u>]. <u>¹H NMR</u> (CDCl3): δ = 3.78 (s, 6H, OC<u>H</u>₃), 7.10-7.12 (m, 2 H, C<u>H</u>), 7.21-7.23 (m, 2 H, C<u>H</u>), 7.31-7.34 (m, 2 H, C<u>H</u>), 7.47 (d, *J* = 9.1, 2 H, C<u>H</u>), 7.87-7.89 (m, 2 H, C<u>H</u>), 7.99 (d, *J* = 8.8, 2 H, C<u>H</u>).

Synthesis of compound 3.

A 10 ml Schlenk flask was loaded with *4-nitrobenzaldehyde* (185 mg), technical grade acetone (6 mL). Reactor was degassed and backfilled with argon. After that to the reactor was added L-proline (34.5 mg). Reactor was degassed and backfilled with argon again. The solution was stirred at 25 °C for 3 days. To the reaction mixture 10 mL of saturated aqueous solution of NH4Cl was added, and product was extracted with 15 mL of ethyl acetate. Organic phase was separated and dried over MgSO4. Solvents were evaporated to dryness, and column chromatography (hexane/ethyl acetate/ methanol = 5/3/0.2, as eluent) of the residue gave **2** in 73% yield and 47% ee. The optical purity of synthesized compound **3** was determined by an HPLC technique using a Chiralpak® AD-RH column, and the CH₃CN / H₂O = 30 / 70 mobile phase. The spectra data of obtained compounds were identical to that found in literature

[12]. ¹H NMR (CDCl3): *δ* = 2.3 (s, 3H) , 2.9 (m, 2 H), 3.6 (d, *J* = 3.0 Hz, 1 H), 5.2-5.3 (m, 1 H), 7.6 (d, *J* = 8.5 Hz, 1 H), 8.2 (d, *J* = 8.5 Hz, 1 H).

Synthesis of compound 4.

The chosen model compound was earlier synthesized in accordance with the literature procedure [13].

Synthesis of compound 5.

A 50 mL flask equipped with reflux condenser was loaded with phenylalanine (3 g), methanol (15 mL) and acetic anhydride (5 g). The reaction mixture was stirred at 65 °C overnight. Solvents were evaporated to dryness and solid residual was recrystallized from ethyl acetate to give **5** in 80% yield. The enantiomeric composition of the consecutive fractions was determined be means of a chiral HPLC Chiralpak[®] OJ-RH column, with the mobile phase using H₂O / CH₃CN = 85 / 15 at the flow rate equal to 0.3 mL/min. The spectra data of obtained compounds were identical to that found in literature [14]. ¹H NMR (CD3OD): 1.9 (s, 3H), 2.3 (dd, *J* = 14.0, 9.0 Hz, 1H), 3.2 (dd, *J* = 14.0, 5.0 Hz, 1H), 4.7 – 4.6 (m, 1H), 7.4 – 7.1 (m, 5H).

To obtain the compounds of required ee, the corresponding amounts of racemic **5** and optically pure **5** obtained as presented above were mixed.

Synthesis of compound 6.

A 50 mL flask was loaded with phenylalanine of required optical purity (3 g), methanol (15 mL) and cooled to 0°C in an ice bath. Thionyl chloride (6 mL) was added dropwise keeping the reaction in continuous stirring at 0°C. Next, the reaction mixture warmed to room temperature and stirred for next 1 h. The solvents were removed under reduced pressure to yield the hydrochloride salt of **6** in quantitative yield. The compound **6** was liberated from the salt before the SDS experiments. 1 g of **6***HCl was shacked in separation funnel with 20 mL DCM and 10 ml a saturated Na₂CO₃. Organic phase was separated, dried over Na₂SO₄, and solvent was evaporated off under reduced pressure, while residue dried in vacuum for few hours. The optical purity of the fractions was determined based on the ¹H and ¹³C NMR techniques using, as CDA, 100 mol% of enantiomericaly pure **4**. The spectra data of obtained compounds were identical to that found in literature [15]. ¹H NMR (CDCl₃): 1.49 (bs, 2H), 2.8 (dd, *J* = 9.0, 13.5 Hz, 1H), 3.1 (dd, *J* = 5.0, 13.5 Hz, 1H), 3.7 (s, 3H), 3.7 (m, 1H), 7.2-7.3 (m, 5H).

REFERENCES

- 1. Zhao, Y.; Truhlar, D.G. Density Functionals with Broad Applicability in Chemistry. *Accounts of Chemical Research* **2008**, *41*, 157-167.
- 2. Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theoretical Chemistry Accounts* **2007**, *120*, 215-241.
- 3. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. *Gaussian 09, Revision B.01*; Gaussian Inc.: Wallingford, UK, 2010.
- 4. Demchuk, O.M.; Jasiński, R.; Pietrusiewicz, K.M. New Insights into the Mechanism of Reduction of Tertiary Phosphine Oxides by Means of Phenylsilane. *Heteroatom Chemistry* **2015**, *26*, 441-448.
- 5. Pietrusiewicz, K.; Szwaczko, K.; Mirosław, B.; Dybała, I.; Jasiński, R.; Demchuk, O.M. New Rigid Polycyclic Bis(phosphane) for Asymmetric Catalysis. *Molecules* **2019**, *24*, 571.
- 6. Mirosław, B.; Babyuk, D.; Łapczuk-Krygier, A.; Kącka-Zych, A.; Demchuk, O.M.; Jasiński, R. Regiospecific formation of the nitromethyl-substituted 3-phenyl-4,5-dihydroisoxazole via [3+2]cycloaddition. *Monatshefte für Chemie Chemical Monthly* **2018**, *149*, 1877-1884.
- 7. Demchuk, O.M.; Kielar K.; Pietrusiewicz K.M. Rational design of novel ligands for environmentally benign cross-coupling reactions. *Pure Appl. Chem.* **2011**, *3*, 633-644.
- 8. Jin, M.-J.; Takale, V.B.; Sarkar, M.S.; Kim, Y.-M. Highly enantioselective Pd-catalyzed allylic alkylation using new chiral ferrocenylphosphinoimidazolidine ligands. *Chemical Communications* **2006**, *6*, 663.
- 9. Laufer, R., Veith, U., Taylor, N. J., & Snieckus, V. (–)-Sparteine-mediated stereoselective directed ortho metalation of ferrocene diamides. *Canadian Journal of Chemistry*, 2006, 84(2), 356–369.
- 10. Demchuk, O.M.; Kapłon, K.; Mazur, L.; Strzelecka, D.; K. Pietrusiewicz K.M., Readily available catalysts for demanding Suzuki–Miyaura couplings under mild conditions, *Tetrahedron*, **2016**, *7*2, 6668-6677.
- Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C.F. Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon–Carbon Bond-Forming Reactions. *Journal of the American Chemical Society* 2001, 123, 5260-5267
- 12. Fernandez-Lopez, R., Kofoed, J., Machuqueiro, M., & Darbre, T. (2005). A Selective Direct Aldol Reaction in Aqueous Media Catalyzed by Zinc-Proline. *European Journal of Organic Chemistry*, **2005**(24), 5268–5276.
- 13. Omelańczuk, J.; Mikołajczyk, M. Chiral t-butylphenylphosphinothioic acid: A useful chiral solvating agent for direct determination of enantiomeric purity of alcohols, thiols, amines, diols, aminoalcohols and related compounds. *Tetrahedron: Asymmetry*, **1996**, *7*, 2687-2694
- 14. Jiang, X., & Zhu, B. (2006). Palladium-Catalyzed Amidocarbonylation Improved by Recyclable Ionic Liquids. Synlett, 2006(17), 2795–2798
- 15. Ahmed, S.; Amba Sankar, K. N.; Pramanik, B.; Mohanta, K.; Das, D., Solvent Directed Morphogenesis and Electrical Properties of a Peptide–Perylenediimide Conjugate. Langmuir 2018, 34, (28), 8355-8364.