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Abstract

:

K-Means is a well known and widely used classical clustering algorithm. It is easy to fall into local optimum and it is sensitive to the initial choice of cluster centers. XK-Means (eXploratory K-Means) has been introduced in the literature by adding an exploratory disturbance onto the vector of cluster centers, so as to jump out of the local optimum and reduce the sensitivity to the initial centers. However, empty clusters may appear during the iteration of XK-Means, causing damage to the efficiency of the algorithm. The aim of this paper is to introduce an empty-cluster-reassignment technique and use it to modify XK-Means, resulting in an EXK-Means clustering algorithm. Furthermore, we combine the EXK-Means with genetic mechanism to form a genetic XK-Means algorithm with empty-cluster-reassignment, referred to as GEXK-Means clustering algorithm. The convergence of GEXK-Means to the global optimum is theoretically proved. Numerical experiments on a few real world clustering problems are carried out, showing the advantage of EXK-Means over XK-Means, and the advantage of GEXK-Means over EXK-Means, XK-Means, K-Means and GXK-Means (genetic XK-Means).
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1. Introduction


Clustering algorithms are a class of unsupervised classification methods for a data set (cf. [1,2,3,4,5]). Roughly speaking, a clustering algorithm classifies the vectors in the data set such that distances of the vectors in the same cluster are as small as possible, and the distances of the vectors belonging to different clusters are as large as possible. Therefore, the vectors in the same cluster have the greatest similarity, while the vectors in different clusters have the greatest dissimilarity.



A clustering technique called K-Means is proposed and discussed in [1,2] among many others. Because of its simplicity and fast convergence speed, K-Means is widely used in various research fields. For instance, K-Means is used in [6] for removing the noisy data. A disadvantage of K-Means is that it is easy to fall into local optima. As a remedy, a popular trend is to integrate the genetic algorithm [7,8] with K-means to obtain genetic K-means algorithms [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]. K-Means is also combined with fuzzy mechanism to obtain fuzzy C-Means [24,25].



A successful modification of K-Means is proposed in [26], referred to as XK-Means (eXploratory K-Means). It adds an exploratory disturbance onto the vector of the cluster centers so as to jump out of the local optimum and to reduce the sensitivity to the initial centers. However, empty clusters may appear during the iteration of XK-Means, which violates the condition that the number of clusters should be a pre-given number K and causes damage to the efficiency of the algorithm (see Remark 1 in Section 2.3 below for details). As a remedy, we propose in this paper to modify XK-Means in terms of an empty-cluster-reassignment technique, resulting in an EXK-Means clustering algorithm.



The involvement of the exploratory disturbance in EXK-Means helps to jump out of the local optimum during the iteration. However, in order to guarantee the convergence of the iteration process, the exploratory disturbance has to decrease and tend to zero in the iteration process. Therefore, it is still possible for EXK-Means to fall into local optimum. To further resolve this problem, we follow the aforementioned strategy to combine the genetic mechanism with our EXK-Means, resulting in a clustering algorithm called GEXK-Means.



Numerical experiments on thirteen real world data sets are carried out, showing the higher accuracies of our EXK-Means over XK-Means, and our GEXK-Means over GXK-Means, EXK-Means, XK-Means and K-Means: first, our GEXK-Means achieves the highest S, and the lowest MSE, DB and XB (see the next section for definitions of these evaluation tools) for all of the thirteen data sets. Therefore, GEXK-Means performs better than the other four algorithms. Second, the overall performance of our EXK-Means is a little bit better than that of XK-Means, which shows the benefit of the introduction of our empty cluster reassignment technique.



The numerical experiments also show that the execution times of EXK-Means are a little bit longer than those of K-Means and XK-means, and the execution times of GEXK-Means are the longest in the five algorithms. This is a disadvantage of EXK-Means and GEXK-Means. However, the computer speed is getting high and high in nowadays, and sometimes the computational time does not matter very much in practice if the data set is not very large. In case we do not mind a bit of an increase in the computational time and we care very much about the accuracy, our algorithm may be of value.



A probabilistic convergence of our GEXK-Means to the global optimum is theoretically proved.



This paper is organized as follows. In Section 2, we describe the K-Means, XK-Means, GXK-Means, and our proposed EXK-Means and GEXK-Means. In Section 3, numerical experiments are shown on GEXK-Means and its comparison with K-Means, XK-Means, GXK-Means and EXK-Means. The convergence of GEXK-Means to a globally optimal solution is theoretically proved in Section 4. Some short conclusions are drawn in Section 5.




2. Algorithms


In this section, we first give some notations and describe some evaluation tools. Then, we define the clustering algorithms used in this paper.



2.1. Notations


Let us introduce some notations. Our task is to cluster a set of n genes {xi,i=1,2,…,n} into K clusters. Each gene is expressed as a vector of dimension D: xi=(xi1,xi2,⋯,xiD)T. For i=1,2,…,n and k=1,2,…,K, we define


wik=1,ifthei-thgenebelongstothek-thcluster,0,otherwise.



(1)







In addition, we define the label matrix W=[wik]. We require that each gene belongs to precisely one cluster, and each cluster contains at least one gene. Therefore,


∑k=1Kwik=1,i=1,2,…,n,



(2)






1≤∑i=1nwik<n,k=1,2,…,K.



(3)







Denote the center of the k-th cluster by ck=(ck1,ck2,…,ckD)T, defined as


ck=∑i=1nwikxi∑i=1nwik.



(4)







The Euclidean norm ||.|| will be used in our paper. Then, for any two D-dimensional vectors y=(y1,y2,…,yD)T and z=(z1,z2,…,zD)T in RD, the distance is


‖y−z‖=(∑i=1D|yi−zi|2)12.



(5)








2.2. Evaluation Strategies


In our numerical simulation, we will use the following evaluation tools: the mean squared error (MSE), the Xie–Beni index (XB) [12], the Davies–Bouldin index (DB) [13,27], and the separation index (S) [4]. The aim of the clustering algorithms discussed in this paper is to choose the optimal centers ck’s and the optimal label matrix W so as to minimize the mean square error MSE. Then, MSE together with the indexes XB, DB and S will be applied to evaluate the outcome of the clustering algorithms.



MSE is defined by


MSE=1n∑k=1K∑i=1nwik‖xi−ck‖2.



(6)




MSE will be used as the evaluation function in the genetic operation of the numerical simulation later on. Generally speaking, lower MSE means better clustering result.



The XB index [12] is defined as follows:


XB=MSEdmin,



(7)




where dmin is the shortest distance between cluster centers. Higher dmin means better clustering result. As we mentioned above, the MSE is the lower the better. Therefore, lower XB implies better clustering results.



To define the DB index [13,27], we first defined the within-cluster separation Sk as


Sk=(1∣Ck∣∑xi∈Ck‖xi−ck‖2)12,



(8)




where Ck (resp. |Ck|) denotes the set (resp. the number) of the samples belonging to the cluster k. Next, we define a term Rk for cluster ck as


Rk=maxj,j≠kSk+Sj‖ck−cj‖.



(9)







Then, the DB index is defined as


DB=1K∑k=1KRk.



(10)







Generally speaking, lower DB implies better clustering results.



The separation index S [4] is defined as follows:


S=1∑k,j=1;k≠jK|Ck||Cj|∑k,j=1;k≠jK|Ck||Cj|‖ck−cj‖.



(11)







Generally speaking, higher S implies better clustering results.



The Nemenyi test [28,29,30] will be used for evaluating the significance of differences of XK-Means vs. EXK-Means and GXK-Means vs. GEXK-Means, respectively. The function cdf.chisq of SPSS software (SPSS Statistics 17.0, IBM, New York, USA) is used to compute the significance probability Pr. The value of Pr is in between 0 and 1. The smaller value of Pr implies the bigger significance of the difference of the two groups. One can say that the difference of the two groups is significant if Pr is less than a particular threshold value. The most often used threshold values are 0.01, 0.05 and 0.1. The threshold value 0.05 will be adopted in this paper.



The relative error ReError defined below will be used for a stop criterion in our numerical iteration process:


ReError=|MSEt−1−MSEtMSEt|,



(12)




where MSEt and MSEt−1 denote the values of MSE in the current and previous iteration steps, respectively.




2.3. XK-Means


Trying to jump out of the local minimum, the XK-Means algorithm is proposed in [26], where the usual K-Means is modified by adding an exploratory vector onto each cluster center as follows:


ck*=ck+θk,



(13)




where θk is a D-dimensional exploratory vector at the current step. It is used to disturb the center produced by K-Means operation, and its component is randomly chosen as


(θk)i=rand(ai,bi)∗randsign(i),i=1,2,⋯,D,



(14)




where bi is a given positive number, and


ai=βbi,



(15)




with a given factor β∈[0,1). In general, the disturbance should be decreased with the increase of the iteration step. Thus, for a new iteration step, the new value of bi is set to be


bi*=αbi,



(16)




with a given factor α∈[0,1).



Remark 1.

Empty cluster will not appear in a usual K-Means iteration process. However, it is possible for XK-Means to produce an empty cluster in the iteration process. This happens when the exploratory vector θk in Formula (13) drives the center ck away from the genes in the k-th cluster, such that all these genes join another cluster in the re-organization stage of the XK-Means and leave the k-th cluster empty. Then, the XK-Means iteration will end up with the number of clusters less than K, which violates the condition that the number of clusters should be K.






2.4. EXK-Means


Due to the disturbance θk, the XK-Means algorithm may produce empty clusters during the iteration process, which violates condition (3). The reason for such a cluster to become empty is that it is too close to, and is attracted into other cluster when the centers are disturbed by the θk’s. In this sense, it seems reasonable for such a cluster to “disappear”. However, on the other hand, the empty clusters will damage the clustering efficiency due to the decrease of the number of working clusters.



To resolve this problem, our idea is to re-assign such an empty cluster by a vector that is farthest to its center. Specifically, our EXK-Means modifies the XK-means by applying the following Empty-cluster-reassignment procedure when empty clusters appear after an XK-Means iteration step.



Empty-cluster-reassignment procedure:




	
Let K0 be the number of empty clusters, 1≤K0<K.



	
Find the most marginal point of each non-empty cluster: xk*=argmaxxi∈Ck‖xi−ck‖, where Ck is the set of genes in the k-th cluster.



	
Sort {x1*,x2*,…,xK*} in descending order according to their distances to the corresponding centroids to get {x1**,x2**,…,xK**}.



	
Take the first K0 genes from {x1**,x2**,…,xK**} to form K0 new centers {x1**},{x2**},…,{xK0**}.



	
Adjust the partition of genes according to original centers and the new K0 centers.









2.5. Genetic Operations


As we argued in the Introduction, although EXK-Means and XK-Means algorithms improve the K-Means on the local minimum issue, but the possibility remains for them to fall into local optimum. We try to combine a genetic mechanism with the EXK-Means to get the global convergence. In particular, we propose to use the following genetic operations:



2.5.1. Label Vectors


For the convenience of genetic operation, in place of the label matrix W, let us introduce the n-dimensional label vector


L=(l1,l2,…,li,…,ln)T,



(17)




where each component li∈{1,2,…,K} represents the cluster label of xi, as in [10]. Let N denote the population size. Then, we write the population set as {Lj,j=1,2,…,N}.




2.5.2. Initialization


To avoid empty clusters in the initialization stage, we initialize the population as follows. First, the top K components of each Lj are randomly assigned as a permutation of {1,2,…,K}. Secondly, the other components of Lj are assigned as random cluster numbers respectively selected from the uniform distribution of the {1,2,…,K}.




2.5.3. Selection


The usual roulette strategy is used for the random selection. The probability that an individual Lj is selected from the existing population to breed the next generation is given by


P(Lj)=F(Lj)∑h=1NF(Lh),j=1,2,…,N,



(18)






F(Lj)=11n∑k=1K∑i=1nwik||xi−ck||,



(19)




where F(Lj) is the reciprocal of MSE and represents the fitness value of the individual Lj in the population.




2.5.4. Mutation


The mutation probability is denoted by Pm, which determines whether an individual Lj will be mutated. If an individual Lj is to be mutated, the translation probability of its component li to be k is defined as


Pik=P{li=k}=2dmaxi−||xi−ck||∑l=1K(2dmaxi−||xi−cl||),



(20)






dmaxi=maxk{||xi−ck||},



(21)




where i=1,2,…,n,k=1,2,…,K. To avoid empty individuals after mutation operation, li is mutated only when the li-th cluster contains more than two genes.




2.5.5. Three Steps EXK-Means


A three-step EXK-Means is applied for rapid convergence. For an individual L, it is updated through the following operations: calculate the cluster centers by using (4) for the given L; add the exploratory vector and update the cluster centers by using (13); reassign each gene to the cluster with the closest cluster center to form a new individual L; correct the new L by using the Empty-cluster-reassignment procedure in Section 2.4 if it contains empty cluster(s) at this moment. Repeat the process three times, and finally form an individual L of the next generation.





2.6. Genetic XK-Means ( GXK-Means )


The GXK-Means is briefly described as follows:




	
Initialization: Set the population size N, the maximum number of iterations T, the mutation probability Pm, the number of clusters K and the error tolerance ETol. Let t=0, and choose the initial population P(0) according to Section 2.5.2. In addition, choose the best individual from P(0) and denote it as super individual L*(0).



	
Selection: Select a new population from P(t) according to Section 2.5.3, and denote it by P1(t).



	
Mutation: Mutate each individual in P1(t) according to Section 2.5.4, and get a new population denoted by P2(t).



	
XK-Means: Perform XK-Means on P2(t) three times to get the next generation population denoted by P(t+1).



	
Update the super individual: choose the best individual from P(t+1) and compare it with L*(t) to get L*(t+1).



	
Stop if either t=T or ReError≤ETol (see (12)), otherwise go to 2 with t←t+1.









2.7. GEXK-Means (Genetic EXK-Means)


The process of GEXK-Means proposed in this paper is as follows:




	
Initialization: Set the population size N, the maximum number of iterations T, the mutation probability Pm, the number of clusters K and the error tolerance ETol. Let t=0, and choose the initial population P(0) according to Section 2.5.2. In addition, choose the best individual from P(0) and denote it as super individual L*(0).



	
Selection: Select a new population from P(t) according to Section 2.5.3, and denote it by P1(t).



	
Mutation: Mutate each individual in P1(t) according to Section 2.5.4, and get a new population denoted by P2(t).



	
EXK-Means: Perform the three steps EXK-Means on P2(t) according to Section 2.5.5 to get the next generation population denoted by P(t+1).



	
Update the super individual: choose the best individual from P(t+1) and compare it with L*(t) to get L*(t+1).



	
Stop if either t=T or ReError≤ETol (see (12)), otherwise go to 2 with t←t+1.








Let us explain the functions of the four operations in the GEXK-Means: selection, mutation, EXK-Means and updating of the super individual. The selection operation encourages the population to have a good evolution direction. The function of the EXK-Means operation is local search for better individuals. The mutation operation guarantees the ergodicity of the evolution process, which in turn guarantees the appearance of a global optimal individual in the evolution process. Finally, the updating operation of the super individual will catch forever the global optimal individual once it appears.





3. Experimental Evaluation and Results


3.1. Data Sets and Parameters


Thirteen data sets shown in Table 1 are used for evaluating our algorithms. The first five data sets are gene expression data sets, including Sporulation [31], Yeast Cell Cycle [32], Lymphoma [33], and two UCI data sets Yeast and Ecoli. The other eight are UCI data sets, which are not gene express data sets.



As shown in Table 1, Sporulation, Yeast Cell Cycle and Lymphoma data sets contain some sample vectors with missing component values. To rectify these defective data, we follow the strategy adopted in [34,35,36]: the sample vectors with more than 20% missing components are removed from the data sets. In addition, for the sample vectors with less than 20% missing components, the missing component values are estimated by the KNN algorithm with the parameter k=15 as in [35], where k is the number of the neighboring vectors used to estimate the missing component value (see [34,35,36] for details). Here, we point out that this parameter k here is different from the index k we have used in this paper for denoting the k-th cluster.



The values of the parameters used in the computation are set as follows:





	Population size n=20
	(cf. Section 2.6 and Section 2.7)



	Mutation probability Pm=0.1
	(cf. Section 2.6 and Section 2.7)



	Error tolerance ETol=0.001
	(cf. Section 2.2, Section 2.6 and Section 2.7)



	α=0.3
	(cf. (14), (16))



	β=0.95
	(cf. (14), (15))



	T=150
	(cf. Section 2.6 and Section 2.7)






In the experiments, we use two different computers: M1 (Intel (R), Core (TM) i3-8100 CPU and 4 GB RAM, Santa Clara, CA, USA) and M2 (Intel (R), Core (TM) i5-7400 CPU and 8 GB RAM). The software Matlab (Matlab 2017b, Math Works, Natick, MA, USA) is used to implement the clustering algorithms.




3.2. Experimental Results and Discussion


We divide this subsection into three parts. The first part concerns with the performances of the algorithms in terms of MSE, S, DB and XB. The second part demonstrates the significance of differences of the algorithms in terms of Nemenyi Test. The third part presents the computational times of the algorithms. We shall pay our attention mainly on the comparisons of EXK-Means vs. XK-Means and GEXK-Means vs. GXK-Means, respectively, so as to show the benefit of the introduction of our empty-cluster-reassignment technique.



3.2.1. MSE, S, DB and XB Performances


Each of the five algorithms conducted fifty trials on the thirteen data sets. The averages over the fifty trials for the four evaluation criteria (MSE, S, DB and XB) are listed in Table 2 and Table 3, devoted to the five gene expression data sets and the other eight UCI data sets, respectively.



From Table 2 and Table 3, we see that our GEXK-Means achieves the highest S, and the lowest MSE, DB and XB for all the thirteen data sets. Therefore, GEXK-Means performs better than the other four algorithms.



We also observe that the overall performance of our EXK-Means is a bit better than that of XK-Means: EXK-Means is better than XK-Means in terms of all the four clustering criteria (MSE, S, XB and DB) for three of the thirteen data sets; EXK-Means is better in terms of three criteria for three data sets; EXK-Means is better in terms of two criteria for four data sets; and EXK-Means is better in terms of one criteria for three data sets. This means that EXK-Means performs better than XK-Means in nearly two thirds of the cases. (In the total 13×4=52 cases, EXK-Means is better than XK-Means for 3×4+3×3+2×4+1×3=32 cases.) The better case is marked by black face number in Table 2 and Table 3.



To see more clearly the overall performance, in Figure 1, Figure 2, Figure 3 and Figure 4 for MSE, DB, XB and S evaluations respectively, we further present the average performances of the five algorithms over the thirteen data sets. These figures clearly show that, in the sense of average performance, the proposed GEXK-Means outperforms the other four algorithms, and EXK-Means outperforms K-Means and XK-Means.



As an example to show what happens in the iteration processes, a typical iteration process on Yeast Cell Cycle data set is shown in Figure 5, Figure 6, Figure 7 and Figure 8, presenting the MSE, XB, DB and S curves respectively for the five algorithms.




3.2.2. Nemenyi Test


Table 4 shows the results of Nemenyi Test on MSE, S, DB and XB indexes. We use the threshold value 0.05 for the significance evaluation. For DB index, EXK-Means shows significant difference compared with XK-Means, while EXK-Means does not show significant difference compared with XK-Means for the other three indexes. For all four of the indexes, GEXK-Means shows a significant difference compared with GXK-Means.




3.2.3. Computational Time


Table 5 gives the average computational times over the fifty runs for each data set. It shows that the computational times of EXK-Means are a little bit longer than those of K-Means and XK-means, and the computational times of GEXK-Means are a little bit longer than those of GXK-Means. This indicates that the introduction of our empty-cluster-reassignment technique increases the computational time. However, our algorithms are better if we do not mind a bit of increase in the computational time and we care very much about the accuracy.






4. Convergence


In this section, the convergence properties of GEXK-Means are analyzed. It is clear that there exist m=Kn possible solutions when classifying n genes into K clusters. As mentioned in Section 2.5, every possible solution can be denoted as a label vector L. Therefore, the number of all possible individuals is m. Let L* be the set of global optimal individuals with maximum fitness value.



For an individual L that will to be mutated, according to Eqution (20), we have


Pik=P{li=k}=2dmaxi−||xi−ck||∑l=1K(2dmaxi−||xi−cl||),








where i=1,2,…,n,k=1,2,…,K, and dmaxi>||xi−ck||>0. Therefore, 2dmaxi−||xi−ck||>0, and Pik>0,i=1,2,…,n,k=1,2,…,K. We note that the number of genes and the number of clusters are finite. Therefore, Pik(i=1,2,…,n,k=1,2,…,K) has lower bound denoted by M>0. This means that every gene can be mutated into any one cluster with positive probability. In particular, L can be mutated into any other individuals with positive probability. Recall that P(t)={L1(t),L2(t),…,LN(t)} is the population at step t. Let PLj(t)→L* stand for the probability in which Lj(t) is mutated to one of the global optimal individuals. Then


PLj(t)→L*>Mn,j=1,2,…,N.



(22)







Let PMutation stand for the probability generating the optimal individual in P2(t) by mutation operation. Then,


PMutation=∑j=1NPmP(Lj(t))(PLj(t)→L*)>Pm∑j=1NP(Lj(t))Mn=PmMn>0,



(23)




where Pm>0 is the mutation probability, P(Lj(t))>0 is the selection probability defined by Equation (18), and ∑j=1NP(Lj(t))=1.



Theorem 1.

When the GEXK-Means defined in Section 2.7 is applied for the classification of a given data set, the global optimal classification result for the data set will appear and will be caught with probability 1 in an infinite evolution iteration process of the GEXK-Means.





Proof. 

Along with the evolution process, the updating operation of the super individual will keep the super individual denoted by L*(t) of every generation t=0,1,2,…. According to (22), we know that the L*(t) may become a global optimal individual with positive probability. According to the Small Probability Event Principle [37,38], the global optimum individual will appear in the super individual sequence with probability 1 when the evolution iteration process goes to infinity. This proves the global convergence of GEXK-Means. □





We remark that the global convergence stated above is of a theoretical and probabilistic nature. It does not guarantee that the convergence to a global optimum can be reached in finite number of GEXK-Means iterations.




5. Conclusions


XK-Means (eXploratory K-Means) is a popular data clustering algorithm. However, empty clusters may appear during the iteration of XK-Means, which violates the condition that the number of clusters should be K and causes damage to the efficiency of the algorithm. As a remedy, we define an empty-cluster-reassignment technique to modify XK-Means when empty clusters appear, resulting in an EXK-Means clustering algorithm. Furthermore, we combine the EXK-Means with genetic mechanism to form a GEXK-Means clustering algorithm.



Numerical simulations are carried out on the comparison of K-Means, XK-Means, EXK-Means and GXK-Means (genetic XK-Means) and GEXK-Means. The evaluation tools include the mean squared error (MSE), the Xie–Beni index (XB), the Davies–Bouldin index (DB) and the separation index (S). The Nemenyi Test for multiple comparisons is also done on MSE, S, DB and XB, respectively. Thirteen real world data sets are used for the simulation. The running times of these algorithms are also considered.



The conclusions we draw from the simulation results are as follows: first, the overall performances of EXK-Means in terms of the four indexes outperform those of XK-Means, and the overall performances of GEXK-Means outperform those of GXK-Means. This shows the effectiveness of the introduction of the empty-cluster-reassignment technique. Secondly, if we take the threshold value as 0.05 for the Nemenyi Test, then GEXK-Means shows a significant difference compared with GXK-Means for all four of the indexes. However, EXK-Means shows a significant difference compared with XK-Means only for the DB index. Thirdly, our EXK-Means and GEXK-Means take a little bit more computational time than XK-Means and GXK-Means, respectively.



The following global convergence of the GEXK-Means is also theoretically proved: the global optimum will appear and will be caught in the evolution process of GEXK-Means with probability 1.
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Figure 1. Average MSE of thirteen data sets (The value of MSE is the lower the better). 
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Figure 2. Average DB of thirteen data sets (The value of DB is the lower the better). 
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Figure 3. Average XB of thirteen data sets (The value of XB is the lower the better). 
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Figure 4. Average S of thirteen data sets (The value of S is the higher the better). 
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Figure 5. MSE curves of the algorithms for Yeast Cell Cycle (The value of MSE is the lower the better). 
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Figure 6. DB curves of the algorithms for Yeast Cell Cycle (The value of DB is the lower the better). 
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Figure 7. XB curves of the algorithms for Yeast Cell Cycle (The value of XB is the lower the better). 
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Figure 8. S curves of the algorithms for Yeast Cell Cycle (The value of S is the higher the better). 
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Table 1. Data sets used in experiments.
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	Data Sets
	No. of

Vectors

n
	No. of Vectors

with Missing

Components <20%
	No. of Vectors

with Missing

Component ≥20%
	No. of

Attributes

D
	No. of

Classes

K





	Sporulation
	6023
	413
	198
	7
	16



	Yeast Cell Cycle
	6078
	5498
	680
	77
	256



	Lymphoma
	4022
	3166
	3
	96
	150



	Yeast
	1484
	0
	0
	8
	10



	Ecoli
	336
	0
	0
	8
	7



	Dermatology
	366
	8
	0
	34
	6



	Glass Identification
	214
	0
	0
	10
	7



	Image Segmentation
	2310
	0
	0
	20
	7



	Wine Quality
	4898
	0
	0
	12
	7



	Wireless Indoor Localization
	2000
	0
	0
	7
	4



	Statlog Vehicle
	946
	0
	0
	18
	4



	Page Blocks Classification
	5473
	0
	0
	10
	6



	Wine
	178
	0
	0
	13
	3
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Table 2. Average MSE, S, DB and XB on the gene data sets.
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Data Sets

	
Algorithm

	
MSE

	
S

	
DB

	
XB




	
(Lower the

Better)

	
(Higher the

Better)

	
(Lower the

Better)

	
(Lower the Better)






	
Yeast Cell Cycle

	
K-Means

	
2.3092

	
3.1637

	
2.6990

	
5.0987×10−4




	
XK-Means

	
2.2753

	
3.1773

	
2.5595

	
4.9905×10−4




	
EXK-Means

	
2.2728

	
3.2170

	
2.0686

	
4.7811×10−4




	
GXK-Means

	
2.2623

	
3.2560

	
2.4612

	
3.8156×10−4




	
GEXK-Means

	
2.2572

	
3.2625

	
1.8070

	
3.6357×10−4




	
Sporulation

	
K-Means

	
0.8959

	
2.7612

	
1.5781

	
3.0905×10−4




	
XK-Means

	
0.8968

	
2.7556

	
1.5261

	
3.0761×10−4




	
EXK-Means

	
0.8987

	
2.7315

	
1.6226

	
2.8585×10−4




	
GXK-Means

	
0.8961

	
2.7510

	
1.5207

	
1.7465×10−4




	
GEXK-Means

	
0.8951

	
2.7674

	
1.3285

	
1.5321×10−4




	
Lymphoma

	
K-Means

	
4.8762

	
7.1725

	
2.8532

	
7.4561×10−4




	
XK-Means

	
4.7683

	
7.2998

	
2.7294

	
7.1749×10−4




	
EXK-Means

	
4.7764

	
7.2890

	
2.5627

	
5.7017×10−4




	
GXK-Means

	
4.7520

	
7.3296

	
2.3285

	
5.7929×10−4




	
GEXK-Means

	
4.7244

	
7.3787

	
2.1489

	
5.0597×10−4




	
Yeast

	
K-Means

	
0.1613

	
0.3106

	
1.6854

	
9.6311×10−4




	
XK-Means

	
0.1586

	
0.3192

	
1.3592

	
8.6864×10−4




	
EXK-Means

	
0.1607

	
0.3234

	
1.3701

	
9.0603×10−4




	
GXK-Means

	
0.1581

	
0.3194

	
1.2621

	
6.3508×10−4




	
GEXK-Means

	
0.1560

	
0.3296

	
0.9154

	
4.2514×10−4




	
Ecoli

	
K-Means

	
0.2914

	
3.3151

	
1.4452

	
7.6×10−3




	
XK-Means

	
0.2880

	
3.2775

	
1.0973

	
5.9×10−3




	
EXK-Means

	
0.2382

	
3.7191

	
0.7127

	
3.3×10−3




	
GXK-Means

	
0.2321

	
3.4022

	
0.3364

	
3.1×10−3




	
GEXK-Means

	
0.2268

	
3.7791

	
0.3021

	
1.1×10−3
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Table 3. Average MSE, S, DB and XB on the non-gene data sets.
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Data Sets

	
Algorithm

	
MSE

	
S

	
DB

	
XB




	
(Lower the

Better)

	
(Higher the

Better)

	
(Lower the

Better)

	
(Lower the Better)






	
Glass Identification

	
K-Means

	
1.2886

	
3.8306

	
2.0521

	
8.7987×10−3




	
XK-Means

	
1.1556

	
4.1060

	
1.3489

	
7.7299×10−3




	
EXK-Means

	
1.2113

	
4.1161

	
1.4594

	
8.3280×10−3




	
GXK-Means

	
1.1268

	
4.1218

	
0.9689

	
3.7220×10−3




	
GEXK-Means

	
1.0250

	
4.1293

	
0.7230

	
1.5982×10−3




	
Image Segmentation

	
K-Means

	
63.8058

	
168.3603

	
1.4437

	
3.7125×10−4




	
XK-Means

	
66.8793

	
169.0878

	
1.3625

	
4.7787×10−4




	
EXK-Means

	
59.8254

	
169.7355

	
1.2243

	
4.7210×10−4




	
GXK-Means

	
59.7865

	
186.6527

	
1.0697

	
2.9622×10−4




	
GEXK-Means

	
59.5037

	
187.7843

	
1.0269

	
2.4321×10−4




	
Page Blocks Classification

	
K-Means

	
645.1506

	
5.6031×103

	
1.3881

	
6.8264×10−4




	
XK-Means

	
643.3151

	
5.6031×103

	
1.6223

	
7.2708×10−4




	
EXK-Means

	
640.8521

	
5.6301×103

	
1.1316

	
6.7756×10−4




	
GXK-Means

	
605.8574

	
5.6896×103

	
0.8693

	
1.6157×10−4




	
GEXK-Means

	
601.7767

	
5.6964×103

	
0.7865

	
1.0283×10−4




	
Wireless Indoor Localization

	
K-Mean

	
10.2066

	
28.9495

	
1.6324

	
4.4231×10−4




	
XK-Means

	
10.1989

	
28.9495

	
1.7512

	
3.4610×10−4




	
EXK-Means

	
10.1962

	
28.9490

	
1.14556

	
5.521×10−4




	
GXK-Means

	
10.1849

	
28.9210

	
0.9275

	
2.3561×10−4




	
GEXK-Means

	
10.0854

	
28.9840

	
0.8816

	
2.2878×10−4




	
Dermatology

	
K-Mean

	
5.7441

	
20.8749

	
1.4462

	
3.3×10−3




	
XK-Means

	
5.8551

	
20.6550

	
1.2770

	
5.7×10−3




	
EXK-Means

	
5.7397

	
20.7767

	
1.2425

	
2.9×10−3




	
GXK-Means

	
5.7420

	
20.7639

	
1.2201

	
2.2×10−3




	
GEXK-Means

	
5.7252

	
20.9325

	
0.8816

	
1.6×10−3




	
Statlog (Vehicle Silhouettes)

	
K-Mean

	
53.8433

	
271.5335

	
0.8871

	
7.005×10−4




	
XK-Means

	
53.8433

	
271.5335

	
1.2066

	
8.8111×10−4




	
EXK-Means

	
53.6535

	
269.1440

	
1.0323

	
6.5618×10−4




	
GXK-Means

	
53.5880

	
270.6111

	
0.6289

	
6.3654×10−4




	
GEXK-Means

	
53.4423

	
301.5472

	
0.4893

	
5.6564×10−4




	
Wine Quality

	
K-Mean

	
14.2767

	
58.1880

	
0.9625

	
2.1481×10−4




	
XK-Means

	
14.2021

	
58.2228

	
0.9658

	
2.1777×10−4




	
EXK-Means

	
14.2090

	
58.5258

	
0.9420

	
2.5431×10−4




	
GXK-Means

	
14.1382

	
58.5540

	
0.8499

	
2.3418×10−4




	
GEXK-Means

	
14.1032

	
58.6269

	
0.6973

	
1.7011×10−4




	
Wine

	
K-Means

	
93.0094

	
470.2573

	
0.8236

	
4.1×10−3




	
XK-Means

	
93.2120

	
470.2573

	
0.5436

	
2.6×10−3




	
EXK-Means

	
93.0092

	
469.4700

	
0.6360

	
2.2×10−3




	
GXK-Means

	
92.9745

	
470.3015

	
0.5275

	
1.8×10−3




	
GEXK-Means

	
92.8682

	
504.1908

	
0.3211

	
1.5×10−3











[image: Table]





Table 4. Nemenyi Test for multiple comparisons.
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Groups for Comparison

	
Evaluation Technique

	
Pr






	
XK-Means vs. EXK-Means

	
MSE

	
0.8994




	
S

	
0.6691




	
DB

	
0.0421




	
XB

	
0.4539




	
GXK-Means vs. GEXK-Means

	
MSE

	
0.0492




	
S

	
0.0412




	
DB

	
0.0409




	
XB

	
0.0403
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Table 5. Average running times (in seconds).






Table 5. Average running times (in seconds).





	
Data Sets

	
Evaluation

Technique

	
K

-Means

	
XK

-Means

	
EXK

-Means

	
GXK

-Means

	
GEXK

-Means

	
Machine






	
Sporulation

	
MSE

	
11.368

	
11.689

	
12.56

	
289.656

	
688.552

	
M2




	
S

	
11.464

	
11.792

	
12.61

	
256.782

	
689.457

	
M2




	
DB

	
10.424

	
10.569

	
10.480

	
239.529

	
662.183

	
M2




	
XB

	
9.632

	
9.881

	
9.878

	
269.364

	
396.33

	
M2




	
Yeast

Cell Cycle

	
MSE

	
58.65

	
60.213

	
64.52

	
4867.560

	
5432.23

	
M2




	
S

	
58.87

	
60.351

	
65.11

	
4789.108

	
5433.69

	
M2




	
DB

	
69.425

	
72.37

	
73.06

	
4965.682

	
5654.75

	
M2




	
XB

	
52.584

	
56.321

	
59.66

	
4754.538

	
5014.56

	
M2




	
Lymphoma

	
MSE

	
69.425

	
70.43

	
74.332

	
4962.224

	
5321.6

	
M2




	
S

	
69.661

	
71.34

	
74.994

	
4987.300

	
5324.1

	
M2




	
DB

	
72.135

	
77.483

	
74.286

	
4753.626

	
5332.42

	
M2




	
XB

	
62.526

	
66.36

	
68.665

	
4665.186

	
5026.559

	
M2




	
Glass

Identification

	
MSE

	
0.3675

	
0.368

	
0.2975

	
19.566

	
20.824

	
M1




	
S

	
0.3678

	
0.371

	
0.2980

	
19.960

	
20.885

	
M1




	
DB

	
0.505

	
0.535

	
0.536

	
19.325

	
27.687

	
M1




	
XB

	
0.267

	
0.303

	
0.304

	
16.263

	
19.806

	
M1




	
Image

Segmentation

	
MSE

	
4.552

	
4.230

	
4.336

	
298.128

	
361.755

	
M1




	
S

	
4.578

	
4.257

	
4.402

	
296.867

	
363.455

	
M1




	
DB

	
4.564

	
4.663

	
4.718

	
286.692

	
382.924

	
M1




	
XB

	
4.565

	
4.131

	
4.183

	
263.960

	
332.092

	
M1




	
Page Blocks

Classification

	
MSE

	
4.039

	
4.078

	
4.122

	
382.663

	
395.273

	
M1




	
S

	
4.165

	
4.216

	
4.269

	
378.632

	
397.421

	
M1




	
DB

	
7.859

	
7.649

	
7.947

	
376.657

	
520.118

	
M1




	
XB

	
4.596

	
4.622

	
4.264

	
296.186

	
390.57

	
M1




	
Yeast

	
MSE

	
1.810

	
1.964

	
1.870

	
159.200

	
165.08

	
M1




	
S

	
1.914

	
1.998

	
1.978

	
161.230

	
167.1

	
M1




	
DB

	
3.630

	
3.784

	
3.800

	
163.620

	
241.346

	
M1




	
XB

	
1.718

	
1.817

	
1.847

	
148.960

	
161.346

	
M1




	
Wireless Indoor

Localization

	
MSE

	
1.428

	
1.430

	
1.433

	
119.630

	
122.278

	
M1




	
S

	
1.473

	
1.459

	
1.62

	
120.775

	
124.512

	
M1




	
DB

	
2.843

	
2.760

	
2.840

	
124.360

	
176.689

	
M1




	
XB

	
1.436

	
1.445

	
1.418

	
98.641

	
120.628

	
M1




	
Ecoli

	
MSE

	
0.408

	
0.437

	
0.437

	
29.611

	
30.494

	
M1




	
S

	
0.409

	
0.441

	
0.439

	
29.845

	
30.569

	
M1




	
DB

	
0.736

	
0.858

	
0.882

	
28.010

	
43.321

	
M1




	
XB

	
0.399

	
0.447

	
0.490

	
29.380

	
31.22

	
M1




	
Dermatology

	
MSE

	
0.634

	
0.635

	
0.710

	
23.450

	
24.829

	
M1




	
S

	
0.639

	
0.651

	
0.786

	
24.687

	
25.854

	
M1




	
DB

	
0.78

	
0.832

	
0.857

	
24.312

	
26.758

	
M1




	
XB

	
0.406

	
0.542

	
0.516

	
23.720

	
26.811

	
M1




	
Statlog

(Vehicle Silhouettes)

	
MSE

	
0.705

	
0.726

	
0.768

	
53.856

	
57.061

	
M1




	
S

	
0.712

	
0.732

	
0.798

	
55.289

	
58.067

	
M1




	
DB

	
1.298

	
1.303

	
1.351

	
58.450

	
77.966

	
M1




	
XB

	
0.590

	
0.634

	
0.642

	
43.892

	
51.137

	
M1




	
Wine Quality

	
MSE

	
4.538

	
4.658

	
4.758

	
386.680

	
444.963

	
M1




	
S

	
4.563

	
4.713

	
4.799

	
379.668

	
446.921

	
M1




	
DB

	
8.435

	
8.512

	
8.571

	
412.654

	
565.498

	
M1




	
XB

	
4.463

	
4.499

	
4.635

	
356.215

	
421.432

	
M1




	
Wine

	
MSE

	
0.159

	
0.182

	
0.179

	
10.226

	
11.133

	
M1




	
S

	
0.161

	
0.188

	
0.182

	
10.129

	
11.186

	
M1




	
DB

	
0.267

	
0.304

	
0.309

	
11.636

	
13.852

	
M1




	
XB

	
0.152

	
0.172

	
0.174

	
8.385

	
10.130

	
M1
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