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Abstract: Let G/H be a homogeneous space of a compact simple classical Lie group G. Assume that
the maximal torus TH of H is conjugate to a torus Tβ whose Lie algebra tβ is the kernel of the maximal
root β of the root system of the complexified Lie algebra gc. We prove that such homogeneous
space is formal. As an application, we give a short direct proof of the formality property of compact
homogeneous 3-Sasakian spaces of classical type. This is a complement to the work of Fernández,
Muñoz, and Sanchez which contains a full analysis of the formality property of SO(3)-bundles over
the Wolf spaces and the proof of the formality property of homogeneous 3-Sasakian manifolds as
a corollary.
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1. Introduction

Formality is an important homotopic property of topological spaces. It is often related to the
existence of particular geometric structures on manifolds. For example, Kaehler manifolds are formal
[1], and the same holds for compact Riemannian symmetric spaces [2,3]. In general, Sasakian manifolds
do not possess this property. However, their higher order Massey products vanish [4], and this can be
regarded as a “formality-like” property as well. An interesting issue is the formality of homogeneous
spaces of compact Lie groups. For example, Amann [5] found several characterizations of non-formality
of homogeneous spaces. Some homogeneous spaces determined by characters of maximal tori are
not formal [6,7]. On the other hand, compact homogeneous spaces of positive Euler characteristics
are known to be formal [3,7] and the same holds for G/H generated by a finite order automorphism
of G [8]. It should be noted that there is a general method of studying the formality property of
homogeneous spaces in terms of the Lie group-theoretic data [3,7]. However, such methods may work
for a given pair (G, H) together with the known embedding of H into G. Hence, it is still interesting
to find geometrically important classes of homogeneous spaces satisfying formality or non-formality
property. In this article, we prove the following result.

Theorem 1. Let G/H be a homogeneous space of a compact simple classical Lie group G. Assume that the
maximal torus TH of H is conjugate (in G) to the torus Tβ whose Lie algebra is the kernel Ker β of the maximal
root β of the root system ∆(gc). Then G/H is formal.

This class of homogeneous spaces has geometric significance. To show this we present the
following geometric application. In [9] the formality property of SO(3)-bundles over the Wolf spaces
was analyzed. Consequently, one obtains the formality property of any compact homogeneous
3-Sasakian manifold. In this note we show that if one restricts himself to this class of Riemannian
manifolds, then the proof can be obtained entirely in terms of the data of the 3-Sasakian homogeneous
space G/H (at least for classical Lie groups G). Thus, we give a direct proof the following result [9].
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Theorem 2. Let G be a classical compact simple Lie group. Then, any 3-Sasakian homogeneous space G/H
is formal.

Although [9] contains much stronger and more general result, the direct proof still may be of
independent interest. This is motivated by the fact that homogeneous 3-Sasakian manifolds G/H
admit a description in terms of the root systems of the complexified Lie algebra gc, and in some cases,
the formality property can be expressed via the same data [7] (see also [5,6]). It seems to make a
remark that Theorem 1 probably holds for all simple Lie groups. However, the method of proof uses
the generators of the ring of invariants of the Weyl group, which becomes computationally difficult
(compare, for example the expressions of such polynomials for the exceptional Lie groups [10]).

2. Preliminaries

2.1. Presentation and Notation

We approach the problem of formality from the point of view of the classical cohomology theory
of homogeneous spaces of compact Lie groups [7,11]. We use the basic notions and facts from the
theory of Lie groups and Lie algebras without explanations. Instead, we refer to [12]. We denote Lie
groups by capital letters G, H, . . . , and their Lie algebras by the corresponding Gothic letters g, h, . . . .
Let G be a compact semisimple Lie group. The real cohomology algebra H∗(G) is isomorphic to the
exterior algebra over the space of primitive elements PG = 〈y1, . . . , yn〉:

H∗(G) ∼= Λ PG = Λ(y1, . . . , yn), yi ∈ PG, i = 1, . . . , n = rank G.

The degrees of yi are equal to 2pi − 1, where pi are the exponents of g. We denote by SG the
ring of G-invariant polynomials on the Lie algebra g. Let T be a maximal torus of G. Consider the
Weyl group WG = NG(T)/T. It acts on t and on the polynomial algebra R[t] of all polynomials over
t. The subring SWG of WG-invariants in R[t] is generated by n = rank G polynomials F1, . . . , Fn of
degrees 2pi. The following isomorphism is well known [7,11]:

SG ∼= SWG
∼= R[t]WG ∼= R[F1, . . . , Fn].

We will use a map τG : Λ PG → SG called the transgression map [7,11]. The transgression τG maps
yi, i = 1, . . . , n onto some free generators of SWG . We follow [9] in the presentation of Sasakian and
3-Sasakian manifolds. One can also consult [13].

2.2. Formality

Here we recall some definitions and facts from the theory of minimal models and formality [14].
We consider differential graded commutative algebras, or DGAs, over the field R of real numbers.

The degree of an element a of a DGA is denoted by |a|.

Definition 1. A DGA (A, d) is minimal if:

1. A is the free algebra
∧

V over a graded vector space V =
⊕

i Vi, and
2. there is a family of generators {aτ}τ∈I indexed by some well-ordered set I, such that |aµ| ≤ |aτ | if

µ < τ and each daτ is expressed in terms of preceding aµ, µ < τ. Thus, daτ does not have a linear part.

An important example of DGA is the de Rham algebra (Ω∗(M), d) of a differentiable manifold
M, where d is the exterior differential. This DGA will be used in this article.

Given a differential graded commutative algebra (A, d), we denote its cohomology by H∗(A).
The cohomology of a differential graded algebra H∗(A) is also a DGA with the multiplication inherited
from that on A and with zero differential. The DGA (A, d) is connected if H0(A) = R, and A is
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1-connected if, in addition, H1(A) = 0. Morphisms between DGAs are required to preserve the degree
and to commute with the differential.

Definition 2. A free graded differential algebra (
∧

V, d) is called a minimal model of the differential graded
commutative algebra (A, d) if (

∧
V, d) is minimal and there exists a morphism of differential graded algebras

ρ : (
∧

V, d) −→ (A, d)

inducing an isomorphism ρ∗ : H∗(
∧

V)
∼−→ H∗(A) of cohomologies.

Definition 3. Two DGAs (A, dA) and (B, dB) are quasi-isomorphic, if there is a sequence of DGA algebras
(Ai, di) and a sequence of morphisms between (Ai, di) and (Ai+1, di+1) with (A1, d1) = (A, dA) and
(An, dn) = (B, dB) such that these morphisms induce isomorphisms of the corresponding cohomology algebras
(the morphisms may be directed arbitrarily).

It is known [14] that any connected differential graded algebra (A, d) has a minimal model which
is unique up to isomorphism.

Definition 4. A minimal model of a connected differentiable manifold M is a minimal model (
∧

V, d) for the
de Rham complex (Ω∗(M), d) of differential forms on M.

If M is a simply connected manifold, then the dual (πi(M)⊗R)∗ of the vector space πi(M)⊗R
is isomorphic to Vi for any i. This duality shows the relation between minimal models and homotopy
groups. The same result is valid when i > 1, the fundamental group π1(M) is nilpotent and its action
on πj(M) is nilpotent for all j > 1.

Definition 5. A minimal algebra (
∧

V, d) is called formal if there exists a morphism of differential algebras
ψ : (

∧
V, d) −→ (H∗(

∧
V), 0) inducing the identity map on cohomology.

A smooth manifold M is called formal if its minimal model is formal. Examples of formal
manifolds are ubiquitous: spheres, projective spaces, compact Lie groups, some homogeneous spaces,
flag manifolds, and all compact Kaehler manifolds [1,3,5,8,14].

It is important to note that quasi-isomorphic minimal algebras have isomorphic minimal models.
Therefore, to study formality of manifolds, one can use other “algebraic models”. This means that one
may take any DGAs (A, dA) which are quasi-isomorphic to the de Rham algebra. This will be used in
our analysis of formality of homogeneous spaces.

2.3. Quaternionic-Kaehler and 3-Sasakian Manifolds

A Riemannian 4n-dimensional manifold (X, h) is called quaternionic-Kaehler, if the holonomy
group Hol(X, h) is contained in Sp(n)Sp(1).

An odd dimensional Riemannian manifold (M, g) is Sasakian if its cone (M×R+, gc = t2g + dt2)

is Kaehler. This means that there is a compatible integrable almost complex structure J so that
(M×R+, gc, J) is a Kaehler manifold. In this case, the vector field ξ = J ∂

∂t is a Killing vector field
of unit length. The 1-form η defined by η(X) = g(ξ, X) for any vector field X on M is a contact
form, whose Reeb vector field is ξ. Let ∇ denote the Levi-Civita connection of g. The (1, 1)-tensor
φ(X) = ∇Xξ satisfies the identities

φ2 = − id+η ⊗ ξ, g(φ(X), φ(Y)) = g(X, Y)− η(X)η(Y),

dη(X, Y) = 2g(φ(X), Y),

for any vector fields X, Y.
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A Riemannian manifold (M, g) of dimension 4n + 3 is called 3-Sasakian, if the cone (M×R+, gc)

admits three compatible integrable almost complex structures J1, J2, J3 such that

J1 J2 = −J2 J1 = J3,

and such that (M×R+, gc, J1, J2, J3) is a hyperkaehler manifold. Thus, (M, g) admits three Sasakian
structures with Reeb vector fields ξ1, ξ2, ξ3 of the contact forms η1, η2, η3, and three tensors φ1, φ2, φ3.
The following relations are satisfied:

ηi(ξ j) = g(ξi, ξ j) = δij, φi(ξ j) = −φj(ξi) = ξk,

ηi ◦ φj = −ηj ◦ φi = ηk

φi ◦ φj − ηj ⊗ ξi = −φj ◦ φi + ηi ⊗ ξ j = φk,

[ξi, ξ j] = 2ξk,

for any cyclic permutation of (i, j, k) of (1, 2, 3).
Let (M, g) be a Riemannian manifold carrying a 3-Sasakian structure. Denote by Aut(M, g)

the subgroup of the isometry group Iso(M, g) consisting of all isometries preserving the
3-Sasakian structure

(g, ξs, ηs, φs, s = 1, 2, 3).

By definition, a 3-Sasakian manifold (M, g) is called homogeneous, if Aut(M, g) acts transitively
on M.

By definition, a Wolf space is a homogeneous quaternionic-Kaehler manifold of positive scalar
curvature. The classification of the Wolf spaces is known [15,16] and can be reproduced as follows:

HPn = Sp(n + 1)/(Sp(n)× Sp(1)), Gr2(Cn+2), G̃r4(Rn+4),

GI = G2/SO(4), FI = F4/Sp(3) · Sp(1), EII = E6/SU(6) · Sp(1),

EVI = E7/Spin(12) · Spin(1), EIX = E8/E7 · Sp(1).

Here G̃r4(Rn+4) denotes the Grassmannian of oriented real 4-planes. It follows that the
classification of homogeneous 3-Sasakian manifolds is given by the following result (see [9], Section 2).

Theorem 3. Let (M, g) be a 3-Sasakian homogeneous space. Then M is the total space of the fiber bundle

F → M→W

over a Wolf space W. The fiber F is Sp(1) for M = S4n+3 and it equals SO(3) in all other cases. Moreover,
M is the one of the following homogeneous spaces:

Sp(n + 1)/Sp(n) ∼= S4n+3, Sp(n + 1)/(Sp(n)×Z2),

SU(n + 2)/S(U(n)×U(1)), SO(m + 4)/SO(m)× Sp(1),

G2/Sp(1), F4/Sp(3), E6/SU(6), E7/Spin(12), E8/E7,

where k ≥ 0, n ≥ 1, m ≥ 3. For the first two cases Sp(0) means the trivial group.
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3. Proof of Theorem 1

3.1. A Theorem on Formality of Homogeneous Spaces

Theorem 4 ([5]). Let G/H be a homogeneous space of a compact semisimple Lie group G and let TH be a
maximal torus in H. Then G/H is formal if and only G/TH is formal.

3.2. Cartan Algebras

The material of this subsection is presented following [7]. It is well known that a homogeneous
space G/H of a compact semisimple Lie group G has an algebraic model (which is called the Cartan
algebra) of the form

(C(g, h), d) = (SH ⊗ΛPG, d)

where
d(q⊗ 1) = 0, ∀q ∈ SH

d(1⊗ p) = j∗(τG(p)), ∀p ∈ ΛPG.

Here τG : ΛPG → SG is the transgression, j∗ : SG → SH is a restriction map, and SG, SH are the
algebras of invariant polynomials on g and h, respectively. In particular, if H = T for some torus in G,
then j∗ is a restriction of any invariant polynomial in SG onto the Lie algebra t. Please note that T need
not be maximal.

More generally, consider the DGA algebra of the form

(C, d) = (R[x1, . . . , xm]⊗Λ(y1, . . . , yn), d)

with the differential d vanishing on xi, i = 1, . . . , m and

d(yj) = Fj(x1, . . . , xm).

We assume that yj have some odd degrees 2lj − 1. Let H∗(C) be the cohomology algebra of (C, d).
We will also use the notation

H∗(C) = H(F1, . . . , Fn)

to stress the role of the ideal I = (F1, . . . , Fn) (in the polynomial ring R[x1, . . . , xm]).
Recall the following definition. Let A be any commutative ring. A sequence a1, . . . , ak of elements

in A is called regular, if ai is not a zero divisor in A/(a1, . . . , ai−1).
The following characterization of formality of a general Cartan algebra (C, d) is well known [7].

Theorem 5. A general Cartan algebra (C, d) is formal if and only if the ideal (F1, . . . , Fn) has the following
property: the minimal system of generators is regular. The number of such generators cannot exceed m.

Finally, recall the following isomorphism

SG ∼= SWG
∼= R[t]WG ,

where SWG denotes the ring of polynomials on t which are invariant with respect to the action of the
Weyl group WG of G. Also, there is a commutative diagram

SG −→ SWG

j∗ ↓ j∗ ↓
SH −→ SWH
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which shows that the Cartan algebra (C(g, h) is isomorphic to the general Cartan algebra of the form

(C, d) = R[tH ]
WH ⊗Λ(y1, . . . , yn)

d(yk) = j∗(Fk), k = 1, . . . , n, Fk ∈ R[t]WG .

Here Fk are free generators of the ring of invariants R[t]WG determined by the transgression.
Please note that in the sequel we will use the particular choices of free invariant generators of

polynomial algebras R[t]WG for each simple compact Lie group. These can be found in many sources,
we use [7], Example 1 on page 186.

3.3. Formality of G/Tβ

Proposition 1. Let G/Tβ be a homogeneous space of a compact classical Lie group G and a torus Tβ whose Lie
algebra is the kernel of the maximal root. Then G/Tβ is formal.

Proof. The proof is based on the checking of the conditions of Theorem 5 for G/Tβ in each case
An, Bn, Cn, Dn separately (although the calculations are very similar). Also, due to the final remark in
the previous section, we can consider the algebraic model of G/Tβ in the form

(R[tβ]⊗Λ(y1, . . . , yn), d)

with
d(yi) = Fi|tβ

, i = 1, . . . , n.

In the proof we use the description of the maximal roots of the root systems of classical type [15].

Case 1 (Cn). In this case, in the coordinates x1, . . . , xn in t, the maximal root β has the form β = 2x1.
Thus, tβ is determined by the equation x1 = 0, and the restrictions of Fi on tβ have the form
Fi|tβ

= Fi(0, x2, . . . , xn). Please note that the ring of invariants R[t]WG may have different sets of
generators, and in general we cannot take them arbitrarily, because they are determined by the
transgression. However, by Theorem 5, the formality property is determined not by the particular polynomials,
but by the whole ideal (F1, . . . , Fn). It follows that one can work with any set of generators. In case of Cn

we can take
Fi(x1, . . . , xn) = x2i

1 + · · ·+ x2i
n , i = 1, . . . , n.

The restrictions onto tβ have the form
Fi(0, x2, . . . , xn),

this sequence is obviously regular for i = 1, . . . , n− 1. Since the number of variables is also n− 1,
the result follows.

Case 2 (Bn). Here β = x1 + x2. We make the same argument to the previous case. Again, one may
choose the invariant generators in the form Fi = ∑n

k=1 x2i
k ,i = 1, . . . , n. This time the restrictions will

take the form
Fi|tβ

= Fi(−x2, x2, x3..., xn) = 2x2i
2 + x2i

3 + · · ·+ x2i
n .

Again, this sequence is obviously regular for i = 1, . . . , n− 1 and the result follows from Theorem 5.

Case 3 (Dn). In this case, again, β = x1 + x2. However, the invariant generators are different. One of
the possible choices is

Fi(x1, . . . , xn) =
n

∑
k=1

x2i
k , i = 1, . . . , n− 1, Fn = x1 · · · xn.
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Thus,
Fi|tβ

= Fi(−x2, x2, . . . , xn), i < n, Fn|tβ
= x2

2x3 · · · xn.

Since Fi(−x2, x2, . . . , xn) for i < n obviously constitute a regular sequence, and the number of variables
is n− 1, necessarily Fn|tβ

∈ (F1|tβ
, . . . , Fn−1|tβ

). The formality property follows.

Case 4 (An). Here the standard coordinates in t satisfy the equality

x1 + · · ·+ xn+1 = 0.

In these coordinates β = x1 − xl+1. One can choose the generating invariant polynomials in the form

Fi(x1, . . . , xn+1) =
n+1

∑
k=1

xi
k, i = 2, . . . , n + 1.

The restrictions have the form

Fi(x1, . . . , xn, x1), i = 2, . . . , n + 1.

These polynomials form a regular sequence for i = 2, . . . , n, as required. The proof is complete.

3.4. Completion of Proof of Theorem 1

The proof of Theorem 1 follows from Theorem 4 and Proposition 1.

4. Application: Formality of 3-Sasakian Homogeneous Manifolds of Classical Type

4.1. Quaternionic-Kaehler Symmetric Spaces (Wolf Spaces)

In this subsection we present a version of Theorem 3 in terms of the root systems
(see Theorems 6 and 7). Let g be a compact simple Lie algebra and t be its maximal abelian subalgebra.
Consider the complexifications gc and tc. Thus, tc is a Cartan subalgebra of gc. Let ∆ = ∆(gc, tc) denote
the root system determined by tc. Choose the maximal root β ∈ ∆ with respect to some fixed ordering
of ∆. As usual, gα denotes the root space of α ∈ ∆. Define

l1 = {H ∈ t | β(H) = 0}+ ∑
α>0,〈α,β〉=0

g∩ (gα + g−α). (1)

Put
a1 = g∩ ({Hβ}+ gβ + g−β), (2)

and
k = l1 + a1. (3)

Theorem 6 (Wolf, [16]). If G/K is a quaternionic-Kaehler symmetric space, then K = L1 · A1, where the Lie
algebras l1 and a1 are determined by Equations (1)–(3).

Theorem 7 ([9], Section 2). Let G/K = G/L1 · A1 be the quaternionic symmetric space. Then the
homogeneous space G/L1 is 3-Sasakian. All compact homogeneous Sasakian manifolds are obtained in this way.

Remark 1. Theorem 7 follows from the description of 3-Sasakian manifolds in [9] together with
Theorem 6.
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4.2. Proof of Theorem 2

By Theorem 7, any compact homogeneous 3-Sasakian manifold G/H has the form G/L1 with L1

given by Theorem 6. One can easily notice that the maximal torus TL1 in L1 has the Lie algebra of the
form tβ = ker β for the maximal root β. By Theorem 1 the formality property of G/L1 follows.

5. Conclusions

We have proved that if G is a classical compact Lie group, then the quotient of G by a torus
determined by a maximal root, is formal. This result may have important applications in geometry of
homogeneous spaces. As an example of such application we present a direct short proof of a result
of Fernández, Muñoz and Sanchez about the formality property of some homogeneous 3-Sasakian
manifolds.
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