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Abstract: The aim of this paper is to show the existence and attainability of Karush–Kuhn–Tucker
optimality conditions for weakly efficient Pareto points for vector equilibrium problems with the
addition of constraints in the novel context of Hadamard manifolds, as opposed to the classical
examples of Banach, normed or Hausdorff spaces. More specifically, classical necessary and sufficient
conditions for weakly efficient Pareto points to the constrained vector optimization problem are
presented. The results described in this article generalize results obtained by Gong (2008) and Wei
and Gong (2010) and Feng and Qiu (2014) from Hausdorff topological vector spaces, real normed
spaces, and real Banach spaces to Hadamard manifolds, respectively. This is done using a notion of
Riemannian symmetric spaces of a noncompact type as special Hadarmard manifolds.

Keywords: vector equilibrium problem; generalized convexity; hadamard manifolds; weakly efficient
pareto points

1. Introduction

The pursuit of equilibrium is a ubiquitous horizon in practically all areas of human activity.
For example, in economics, the dynamics of offer and demand are typically described as equilibrium
problems. In the same way, physical or social phenomena such as the distribution of particles in
a container, traffic flow or telecommunication networks can be accurately conceptualized in terms
of equilibrium.

However, it was not until Fan [1] that equilibrium theory was applied in the context of Euclidean
spaces. Mathematically, the simplest definition of a equilibrium problem consists in finding x ∈ S
such that

F(x, y) ≥ 0, ∀y ∈ S

where S ⊆ Rp is a nonempty closed set and F : Rp × Rp → R is an equilibrium bifunction, i.e.,
F(x, x) = 0 for all x ∈ S.

Some of the main mathematical problems that can be phrased as equilibrium problems are:
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• The weak minimum point of a multiobjective function f = ( f1, . . . , fp) over a closed set S ⊆ Rp is
any x̄ ∈ S such that for any y ∈ S, ∃i such that fi(y)− fi(x̄) ≥ 0. Finding a weak minimum point
can be reduced to solving an equilibrium problem by virtue of setting

F(x, y) = max
i=1,...,p

[ fi(y)− fi(x)].

• The Stampacchia variational inequality problem demands finding x̄ ∈ S such that

< G(x̄), y− x̄ >≥ 0, ∀y ∈ S

where G : Rp → Rp and S ⊆ Rp is a closed set. This problem is also an equilibrium problem where

F(x, y) =< G(x), y− x > .

• Nash equilibrium problems in a non-cooperative game with p players where each player i has a set
of possible strategies Ki ⊆ Rni aim to minimize a loss function fi : K → R with K = K1 × . . .× Kp.
Thus, a Nash equilibrium point is any x̄ ∈ K such that no player can reduce its loss by unilaterally
changing their strategy, i.e., any x̄ ∈ K such that

fi(x̄) ≤ fi(x̄(yi))

holds for any yi ∈ Ki for any i = 1, . . . , p, with x̄(yi)) denoting the vector obtained from x̄ by
replacing x̄i with yi. Therefore, this problem amounts to solving an equilibrium problem with

F(x, y) =
p

∑
i=1

[ fi(x(yi))− fi(x)].

Despite their apparent diversity, all the above-mentioned problems can be framed as particular
cases of the vector equilibrium problem and thus can all be encompassed in a single mathematical
picture. Due to the power of this formulation, it is of great interest to obtain and study the
Karush–Kuhn–Tucker (KKT) optimality conditions for the solution of such, more general problems.

Thanks to their capacity to provide such a fundamental insight, vector equilibrium problems
are an active branch of non-linear analysis with plenty of publications being made up to this date.
For example, in 2003, authors such as Iusem and Sosa [2] studied the relation between equilibrium
problems and some auxiliary convex problems. In addition, over the past century, the field of physics
departed from euclidean geometry as a space in which to allocate its theories, opting instead for
more complex spaces also known as manifolds. A historical landmark that illustrates this example is
Einstein’s theory of gravity that revolves around the concept of space-time curvature on a Riemannian
manifold. Other less known but equally fundamental applications in the fields of physics involve the
appearance of symplectic manifolds in the treatment of Hamiltonian vector fields or Noether’s theorem.

Smooth Riemannian manifolds are spaces that contain curvature, as opposed to Euclidean spaces
which are flat everywhere. This can be mathematically expressed as ax + by /∈ M, ∀x, y ∈ M, a, b ∈ R,
where M is a Riemannian manifold. Nonetheless, Riemannian geometry constitutes a generalization of
the Euclidean case. This can be easily understood by introducing the notion of tangent planes. For any
point of a smooth curved space, say a 2-Sphere, it is always possible to define a flat tangent plane
to that point; i.e., a Euclidean space. We can think of this in the same way we think of the Earth to
be flat at local scales while overall being spherical. Indeed, all curved manifolds locally resemble
Euclidean space, which is a vital property for our understanding of them. However, cartography
can empirically tell us that flat projections of curved surfaces onto planes fails to faithfully represent
the real dimensions of the objects that live on the original curved surface especially at large scales
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where the locality condition starts weakening. Thus, metricity is no longer trivial and measurements
of distances need to account for such curvature.

At this point, we can already see how Euclidean spaces are simply Riemannian manifolds for
which the tangent plane to any of its points is identical to the plane itself. Thus, in Euclidean spaces,
vectors living of the surface are equivalent to vectors living on its tangent space. It is this key feature of
Euclidean geometry that allows for the simple definition of distance as the dot product. Thus, given a
vector u, if allocated in an Euclidean space, its length is given by |u|2 =< u, u >. On the other
hand, in non-flat spaces it is necessary to account for the distortion of the distances when projected
to the tangent space. Riemannian manifolds are those equipped with a so called “metric tensor”;
commonly denoted kij, that allows us to adequately define distances; i.e., |u|2 = kijuiuj. (see Section 2
for more details).

This new definition of length has direct short comings in minimization and equilibrium.
The Euclidean line element, the shortest connection between two points on a flat surface, is replaced on
manifolds by a geodesic equation which plays the role of straight lines in non-flat spaces. This can be
seen from the fact that geodesic curves are solutions to the Euler–Lagrange equations which minimize
the functional of the Lagrangian given by the metric of such space, L = kijdxidxj, and as such describe
the trajectories that minimize the action necessary to move from A to B. For example, the orbits of
planets obey geodesics despite clearly not being straight in a Euclidean sense.

A Hadamard manifold is a simply connected complete Riemannian manifold of non-positive
sectional curvature. The motivation of the study of Hadamard spaces is that they share some properties
with Euclidean spaces. One of them is the separation theorem (see Ferreira and Oliveira [3]).

In addition, for any two points in M, there exists a minimal geodesic joining these two points.
In a Hadamard manifold, the geodesic between any two points is unique and the exponential map at
each point of M is a global diffeomorphism. Moreover, the exp map is defined on the whole tangent
space ([4]).

However, the minimization of functions on a Hadamard manifold is locally equivalent to the
smoothly constrained optimization problem on a Euclidean space, due to the fact that every C∞

Hadamard manifold can be isometrically embedded in an Euclidean space by virtue of John Nash’s
embedding theorem. This is consistent with the intuition we previously laid out.

The study of optimization problems on Hadamard manifolds is a powerful tool. This is due to
the fact that, generally, solving nonconvex constrained problems in Rn with the Euclidean metric can
be also framed as solving the unconstrained convex minimization problem in the Hadamard manifold
feasible set with the affine metric (see [5]). In Colao et al. [5] the existence of solutions for equilibrium
problems under some suitable conditions on Hadamard manifolds and their applications to Nash
equilibrium for non-cooperative games was studied. In the same way, in Németh [6] the existence and
uniqueness results for variational inequality problems on Hadamard manifolds were obtained.

Moreover, many optimization problems cannot be solved in linear spaces, for example,
controlled thermonuclear fusion research (see [7]), signal processing, numerical analysis and computer
vision (see [8,9]) require Hadamard manifold structures for their modeling. Also, geometrical structures
hidden in data sets of machine learning problems are studied in terms of manifolds. In the field of
medicine, Hadamard manifolds have been used in the analysis of magnetic resonances to quantify the
growth of tumors and consequently deduce their state of progression, as shown by Fletcher et al. [10].
The geometry necessary to understand and perform these techniques is best understood through
the use of manifolds and symmetric structures. For example, the set of symmetric positive definite
matrices used in magnetic resonance imaging to study Alzheimer’s disease [11] is one case in which
this translation to manifolds is necessary. In addition, other problems in computer vision, signal
processing or learning algorithms employ geodesic curves when addressing optimization problems.
Finally, in economics, the search of Nash–Stampacchia equilibria points using Hadamard manifolds
has been used by Kristály [12].
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It is known that a convex environment has good properties for the search of optimal points.
In Ferreira [13], the author gives necessary and sufficient conditions for convex functions on Hadamard
manifolds. A significant generalization of the convex functions are the invex functions, introduced
by Hanson [14], where the x-y vector is replaced by any function η(x, y). The main result of
invex functions states that a scalar function is invex if and only if every critical point is a global
minimum solution. This property is essential to obtain optimal points through algorithms, due to
the coincidence of critical points and solutions being always assured. In Barani and Pouryayeli [15]
and Hosseini and Pouryayevali [16], the relation between invexity and monotonicity using the mean
value theorem is studied. Ruiz-Garzón et al. [17] showed that invexity can be characterized in the
context of Riemannian manifolds for both scalar and vector cases, in a similar way to Euclidean spaces.
Recently, in Ahmad et al. [18] the authors introduced the log-preinvex and log-invex functions on
Riemannian manifolds and the mean value theorem on Cartan-Hadamard manifolds.

In the same way, several authors have studied vector equilibrium problems. Ansari and
Flores-Bazán [19] were capable of providing a theorem of existence of solutions to vector
quasi-equilibrium problems. Furthermore, a characterization for a weakly efficient Pareto point for the
vector equilibrium problems with constraints under convexity conditions on real Hausdorff topological
vector spaces were presented by Gong [20]. In the following years, scalarization results for the solutions
to the vector equilibrium problems were also given by Gong [21]. Later, optimality conditions for
weakly efficient Pareto points to vector equilibrium problems with constraints in real normed spaces
were investigated by Wei and Gong [22]. Also, sufficient conditions of weakly efficient Pareto points
on real Banach spaces for vector equilibrium and vector optimization problems with constraints under
generalized invexity were obtained by Feng and Qiu [23].

Motivated by Gong’s works mentioned above, our objective will focus on extending the KKT
necessary and sufficient conditions for constrained vector equilibrium problems obtained in topological
or normed spaces to other environments like the Hadamard manifolds, not present in the literature up
to date of publication. Hence, we propose a generalization that extends the linear space definition to
Hadamard manifolds, by virtue of substituting line segments by geodesic arcs. We will see that the
KKT classic conditions for constrained vector optimization are a particular case of the ones obtained
for constrained vector equilibrium problem.

The organization of the paper is as follows: In Section 2, we discuss notation, differentials and
invex function concepts on Hadamard manifolds. Section 3 is devoted to proving the main results
obtained in this paper, and studying the necessary and sufficient optimality conditions for weakly
efficient points of the constrained vector equilibrium problem. Section 4 dwells on how the previous
results can be reduced to classical KKT conditions for constrained vector optimization problems,
first obtained by William Karush [24] and rediscovered by Harold Kuhn and Albert Tucker [25].
Finally, an example is presented as well as the final conclusions.

2. Preliminaries

Let M be a C∞-manifold modeled on a Hilbert space H endowed with a Riemannian metric gx on
a tangent space Tx M. We denote by Tx M the tangent space of M at x, by TM =

⋃
x∈M Tx M the tangent

bundle of M, by T̄M an open neighborhood of the submanifold M of TM. The corresponding norm is
denoted by ‖.‖x and the length of a piecewise C1 curve α : [a, b]→ M is defined by

L(α) =
∫ b

a
‖α′(t)‖α(t)dt.

We define d as the distance which induces the original topology on M such that

d(x, y) = inf{L(α)| α is a piecewise C1 curve joining x and y ∀x, y ∈ M}.
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If d is the distance induced by the Riemannian metric kij then any Riemannian manifold (M, kij) can
be converted into a metric space (M, d). The derivatives of the curves at a point x on the manifold lies
in a vector space Tx M. Whatever path α joining x and y in M such that L(α) = d(x, y) is a geodesic.

Let exp : T̄M → M be the Riemannian exponential map defined as expx(V) = αV(1) for every
V ∈ T̄M, where αV is the geodesic starting at x with velocity V (i.e., α(0) = x, α′(0) = V).

Assume now that η is a map η : M×M→ TM defined on the product manifold such that

η(x, y) ∈ Ty M, ∀x, y ∈ M.

Definition 1. [26] A subset S1 of M is considered totally convex if S1 contains every geodesic αx,y of M whose
endpoints x and y belong to S1.

On a Hadamard manifold M, we can define the function η as η(x, y) = α′x,y(0) for all x, y ∈ M.
This function plays the same role of x− y ∈ Rn. Here αx,y is the unique minimal geodesic joining y to
x as follows

αx,y = expy(λexp−1
y x) ∀λ ∈ [0, 1].

Example 1. Let M = R++ = {y ∈ R : y > 0} endowed with the Riemannian metric defined by g(y) = y−2

be a Hadamard manifold. Hyperbolic spaces and geodesic spaces, more precisely, a Busemann non-positive
curvature (NPC) space are examples of Hadarmard manifolds.

We will need an adequate concept of the differential:

Definition 2. [27] A mapping fi : M→ R is said to be a differential map along the geodesic αx,y at y ∈ M if
and only if the limit

f ′i (y) = lim
λ→0

fi(expy(λη(x, y)))− fi(y)
λ‖η(x, y)‖

exists.
The gradient of a real-valued C∞ function f = ( f1, . . . fp) : S1 ⊆ M → Rn on M in x, denoted by

grad fx = ( f ′1(x), f ′2(x), . . . , f ′n(x)), is the unique vector in Tx M such that d fx(X) = 〈grad fx, X〉 for all X in
Tx M is the differential of f at x̄ of X.

Remark 1. The differential of f at x̄ of X is similar to the definition of directional derivative in the
Euclidean space.

Let S1 ⊂ M be a nonempty open totally convex subset and let F : S1 × S1 → Rp, g : S1 → Rp

be mappings.

Definition 3. We define the constraint set S = {x ∈ S1 : g(x) ∈ −Rp
+} and consider the vector equilibrium

problem with constraints (VEPC): find x ∈ S such that

F(x, y) /∈ −Rp
+ \ {0}, ∀y ∈ S

where Rp
+ is the non-negative orthant of Rp.

We recall the classical concept:

Definition 4. A vector x ∈ S satisfying F(x, y) /∈ −int Rp
+, ∀y ∈ S is called a weakly efficient Pareto point

to the VEPC.

Notation 1. We denote as Hx(y) = F(x, y), ∀y ∈ S1, given x ∈ S, where H : S1 → Rp is a mapping.
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Inspired by the concept of convexity on a linear space, the notion of invexity function concept on
Hadamard manifolds has become a successful tool in vector optimization. This generalized definition
was notably provided by Hanson in [14].

Definition 5. Let S1 be a nonempty open totally convex subset of a Hadamard manifold M. A differentiable
h : S1 → Rp function is said to be a Rp

+-invex at x̄ ∈ S1 respect to η : M × M → TM if there exist
η(x, x̄) ∈ Tx̄ M such that

h(x)− h(x̄)− dhx̄(η(x, x̄)) ∈ Rp
+.

Using the previously stated definitions, we can obtain the sufficient conditions for optimality by
virtue of the assumption of invexity of the functions of the problem.

3. Main Results

Next, we will obtain a characterization for the weakly efficient points of VEPC through the
application of necessary and sufficient optimality conditions. We start with the necessary conditions:

Theorem 1. [Necessary KKT-conditions] Let S1 be a nonempty open totally convex subset of a Hadamard
manifold M and let F : S1 × S1 → Rp, g : S1 → Rp, η : M × M → TM be mappings. Let F(x̄, x̄) =

Hx̄(x̄) = 0. Assume that H and g are differentiable at x̄ ∈ S. Furthermore, assume that there exists x1 ∈ S1

such that g(x̄) + dgx̄(η(x1, x̄)) ∈ −int Rp
+. If x̄ is a weakly efficient Pareto point to the VEPC, then there

exists v ∈ Rp
+ \ {0}, u ∈ Rp

+ such that

vdHx̄(η(x, x̄)) + udgx̄(η(x, x̄)) ≥ 0, ∀x ∈ S1 (1)

ug(x̄) = 0. (2)

Proof. Let there be x̄ ∈ S as a weakly efficient Pareto point to the VEPC. We denote by

W = {(y, z) ∈ Rp ×Rp : there exists x ∈ S1, such that y− dHx̄(η(x, x̄)) ∈ int Rp
+,

z− [g(x̄) + dgx̄(η(x, x̄))] ∈ int Rp
+}.

It may be noted that W is a nonempty open totally convex set. This proof can be divided into
five steps:

Step 1. We have to prove that (0, 0) /∈W. By reduction ad absurdum, if (0, 0) ∈W ⇒ ∃x0 ∈ S1,
such that

dHx̄(η(x0, x̄)) ∈ −int Rp
+, g(x̄) + dgx̄(η(x0, x̄)) ∈ −int Rp

+. (3)

From the differentiability we obtain that

dHx̄(η(x0, x̄)) = lim
λ→0

1
λ
[Hx̄(expx̄(λη(x0, x̄))− Hx̄(x̄)] ∈ −int Rp

+ (4)

g(x̄) + dgx̄(η(x0, x̄)) = g(x̄) + lim
λ→0

1
λ
[g(expx̄(λη(x0, x̄)))− g(x̄)] ∈ −int Rp

+. (5)

As −int Rp
+ is an open set, then ∃λ0, 0 < λ0 < 1 such that

1
λ0

[Hx̄(expx̄(λ0η(x0, x̄)))− Hx̄(x̄)] ∈ −int Rp
+ (6)

g(x̄) +
1

λ0
[g(expx̄(λ0η(x0, x̄)))− g(x̄)] ∈ −int Rp

+. (7)
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By hypothesis, from g(x̄) ∈ −Rp
+, F(x̄, x̄) = Hx̄(x̄) = 0, and 1

λ0
> 1, then

Hx̄[expx̄(λ0η(x0, x̄))] ∈ −int Rp
+ and g (expx̄(λ0η(x0, x̄))) ∈ −int Rp

+. (8)

As S1 is a totally convex set we have that

expx̄(λ0η(x0, x̄)) ∈ S1, F (x̄, expx̄(λ0η(x0, x̄))) ∈ −int Rp
+ (9)

and
g (expx̄(λ0η(x0, x̄))) ∈ −int Rp

+ (10)

stands in contradiction with x̄ ∈ S as a weakly efficient Pareto point to the VEPC, consequently
(0, 0) /∈W.

Step 2. We will prove that there exists a multiplier v ∈ Rp
+. As W is an open set and the separation

theorem holds (see Theorem 2.13 and Remark 2.14 in [28]) or [3]), there exists (v, u) 6= (0, 0) ∈ Rp ×Rp

such that
vy + uz > 0, ∀(y, z) ∈W. (11)

Let (y, z) ∈W be a point then ∃x ∈ S1 such that

y− dHx̄(η(x, x̄)) ∈ int Rp
+, z− [g(x̄) + dgx̄(η(x, x̄))] ∈ int Rp

+. (12)

For any r ∈ int Rp
+, s ∈ int Rp

+, t′, t′′ > 0, we have (y + t′r, z) ∈W and (y, z + t′′s) ∈W.
From Equation (11) we have that

v(y + t′r) + u(z) > 0, ∀r ∈ int Rp
+, t′ > 0. (13)

Then
vr >

−uz− vy
t′

. (14)

Letting t′ → ∞ we get vr ≥ 0, ∀r ∈ int Rp
+ and therefore vr ≥ 0 for all r ∈ Rp

+, that is v ∈ Rp
+.

In the same way, we can show that u ∈ Rp
+.

Step 3. We will prove that v 6= 0, thus is, v ∈ Rp
+ \ {0}. By reduction ad absurdum, if v = 0,

from Equation (11) we get
uz > 0, ∀(y, z) ∈W. (15)

According to the hypothesis, ∃x1 ∈ S1 such that g(x̄) + dgx̄(η(x1, x̄)) ∈ −int Rp
+; then, we obtain

(dHx̄(η(x1, x̄)) + r, g(x̄) + dgx̄(η(x1, x̄)) + s) ∈W, ∀r ∈ int Rp
+ ∀s ∈ int Rp

+. (16)

Therefore, from Equation (11) we have that

u[g(x̄) + dgx̄(η(x1, x̄)) + s] > 0, ∀s ∈ int Rp
+ (17)

us > −u[g(x̄) + dgx̄(η(x1, x̄))]. (18)

As [g(x̄) + dgx̄(η(x1, x̄))] ∈ −int Rp
+, and if s = 0, we get u · 0 = 0 > 0, which implies a

contradiction, thus v 6= 0.
Step 4. We will prove the first KKT condition.
Since

(dHx̄(η(x, x̄)) + r, g(x̄) + dgx̄(η(x, x̄)) + s) ∈W, x ∈ S1, r ∈ int Rp
+, s ∈ int Rp

+. (19)
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From Equation (11) we get

v[dHx̄(η(x, x̄)) + r] + u[g(x̄) + dgx̄(η(x, x̄)) + s] > 0, ∀x ∈ S1, r ∈ int Rp
+, s ∈ int Rp

+. (20)

Letting r → 0, s→ 0, we obtain

vdHx̄(η(x, x̄)) + u[g(x̄) + dgx̄(η(x, x̄))] ≥ 0, ∀x ∈ S1. (21)

Step 5. We will prove the second KKT condition. As(
dHx̄(η(x̄, x̄)) + t′r, g(x̄) + dgx̄(η(x̄, x̄)) + t′s

)
∈W, ∀r ∈ int Rp

+, s ∈ int Rp
+, t′ > 0. (22)

From Equation (11) we have that

v[dHx̄(η(x̄, x̄)) + t′r] + u[g(x̄) + dgx̄(η(x̄, x̄)) + t′s] = t′vr + ug(x̄) + t′us > 0. (23)

Letting t′ → 0, we obtain ug(x̄) ≥ 0. Noting that g(x̄) ∈ −Rp
+ and u ∈ Rp

+, we have that
ug(x̄) ≤ 0, in consequence

ug(x̄) = 0 (24)

and therefore ∃v ∈ Rp
+ \ {0}, u ∈ Rp

+ such that KKT conditions

vdHx̄(η(x, x̄)) + udgx̄(η(x, x̄)) ≥ 0, ∀x ∈ S1 (25)

ug(x̄) = 0 (26)

hold.

Let us see now the reciprocal of the previous theorem. To obtain it we first need conditions
of invexity.

Theorem 2. [Sufficient KKT-conditions] Let S1 be a nonempty open totally convex subset of Hadamard manifold
M and let F : S1 × S1 → Rp, g : S1 → Rp be mappings. Let F(x̄, x̄) = H(x̄) = 0. Assume that H and g are
differentiable at x̄ ∈ S. H and g are Rp

+-invex at x̄ respect to η on S1. If there exist v ∈ Rp
+ \ {0} and u ∈ Rp

+

such that
vdHx̄(η(x, x̄)) + udgx̄(η(x, x̄)) ≥ 0, ∀x ∈ S1 (27)

ug(x̄) = 0 (28)

then x̄ is a weakly efficient Pareto point to the VEPC.

Proof. On the assumption that H and g are Rp
+-invex at x̄ respect to η on S1 then

dHx̄(η(x, x̄)) ∈ Hx̄(x)− Hx̄(x̄)−Rp
+ = Hx̄(x)−Rp

+, ∀x ∈ S1 (29)

dgx̄(η(x, x̄)) ∈ g(x)− g(x̄)−Rp
+, ∀x ∈ S1. (30)

From v ∈ Rp
+ \ {0}, u ∈ Rp

+ and (27) we obtain that

vHx̄(x) + u(g(x)− g(x̄)) = vdHx̄(η(x, x̄)) + udgx̄(η(x, x̄)) ≥ 0, ∀x ∈ S1. (31)

From hypothesis (28), we get on the one hand that:

vHx̄(x) + ug(x) ≥ 0, ∀x ∈ S1. (32)
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On the other hand, we will show that x̄ is a weakly efficient Pareto point to the VEPC. If not,
consequently by definition ∃y0 ∈ S such that

F(x̄, y0) ∈ −int Rp
+. (33)

From v ∈ Rp
+ \ {0} ⇒ vF(x̄, y0) < 0.

Since y0 ∈ S, we have g(y0) ∈ −R
p
+, so ug(y0) ≤ 0 because of u ∈ Rp

+ and then

vF(x̄, y0) + ug(y0) < 0 (34)

stands in contradiction with (32) and therefore x̄ is a weakly efficient Pareto point to the VEPC.

Remark 2. Theorem 3.1 in [20] on real Hausdorff topological vector spaces and Theorem 3.2 and Theorem 3.4
in [22] on real normed spaces are particular cases of Theorems 1 and 2 obtained in this paper on Hadamard
manifolds. The same is true for Theorems 3.1 and 3.3 in [23] on real Banach spaces.

To sum up, we obtain the KKT optimality conditions for weakly efficient Pareto points to the
vector equilibrium problems with constraints. These results are not only necessary but also sufficient.

4. Application

As a particular case of the results obtained in the previous section, we will obtain the optimality
conditions of KKT for constrained vector optimization problems.

Let us consider the constrained multiobjective programming (CVOP) defined as:

(CVOP) min f (x)
subject to:

g(x)≤0
x ∈ X ⊆ M

where f = ( f1, . . . fp) : X ⊆ M → Rp, g = (g1, . . . , gm) : X ⊆ M → Rm are differentiable
multiobjective functions on the open set X ⊆ M and let M be a Hadamard manifold.

As a consequence of the previous theorems and considering CVOP as a particular case of VEPC
we have the KKT classical conditions.

Corollary 1. Let S1 be a nonempty open totally convex subset of Hadamard manifold M and let f , g : S1 → Rp

be mappings. Assume that f and g are differentiable at x̄ ∈ S. Furthermore, assume that there exists x1 ∈ S1

such that g(x̄) + dgx̄(η(x1, x̄)) ∈ −int Rp
+. If x̄ is a weakly efficient Pareto point to the CVOP, then there exist

v ∈ Rp
+ \ {0}, u ∈ Rp

+ such that

vd f x̄(η(x, x̄)) + udgx̄(η(x, x̄)) ≥ 0, ∀x ∈ S1 (35)

ug(x̄) = 0. (36)

Corollary 2. Let S1 be a nonempty open totally convex subset of Hadamard manifold M and let f , g : S1 → Rp

be mappings. Assume that f and g are differentiable at x̄ ∈ S. Assume that f and g are differentiable at x̄ ∈ S
and f and g are Rp

+-invex respect at x̄ to η on S1. If there exist v ∈ Rp
+ \ {0}, u ∈ Rp

+ such that

vd f x̄(η(x, x̄)) + udgx̄(η(x, x̄)) ≥ 0, ∀x ∈ S1 (37)

ug(x̄) = 0 (38)

then x̄ is a weakly efficient Pareto point to the CVOP.
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Proof. The proofs are similar to those already shown without further considering CVOP as particular
cases of VEPC just by taking F(x, y) = maxi=1,...,p[ fi(y)− fi(x)], ∀x, y ∈ M.

Remark 3. Theorem 4.4 in [20] on real Hausdorff topological vector spaces and Corollary 3.3 in [23] on
real Banach spaces are particular cases of Corollaries 1 and 2 obtained in this paper on Hadamard manifolds.
Moreover, these results also coincide with Corollary 3.8 given by Ruiz-Garzón et al. [17].

We illustrate the previous results with another example:

Example 2. Let us consider the set Ω = {p = (p1, p2) ∈ R2 : p2 > 0}. Let K be a 2x2 matrix defined by
K(p) = (kij(p)) with

k11(p) = k22(p) =
1
p2

2
, k12(p) = k21(p) = 0.

Endowing Ω with the Riemannian metric� u, v�=< K(p)u, v >, we obtain a complete Riemannian
manifold H2, namely, the upper half-plane model of a hyperbolic space and grad f (p) = K(p)−1∇ f (p).

Consider the CVOP:

(CVOP) Min f (p) = ( f1, f2)(p) = (p1, ln p2)

subject to:

g1(p) = 2p1 − 2 ≥ 0

g2(p) = p2 − 1 ≥ 0

Given p = (1, 1) using the Riemannian metric k and f , g is R2
+-invex at p̄ respect to η(p, p) = 2p− p

and there exists q = η(p, p) = (0, 1) we have that

d f1(p)(q) =<

(
p2

2 0
0 p2

2

)(
1
0

)
,

(
0
1

)
>= (p2

2, 0)

(
0
1

)
= 0

d f2(p)(q) =<

(
p2

2 0
0 p2

2

)(
0

p−1
2

)
,

(
0
1

)
>= (0, p2)

(
0
1

)
= p2.

The

dg1(p)(q) =<

(
p2

2 0
0 p2

2

)(
2
0

)
,

(
0
1

)
>= (2p2

2, 0)

(
0
1

)
= 0

dg2(p)(q) =<

(
p2

2 0
0 p2

2

)(
0
1

)
,

(
0
1

)
>= (0, p2

2)

(
0
1

)
= p2

2.

We have
d f p̄(q) = (d f1(p)(q), d f2(p)(q)) = (0, p2)

dgp̄(q) = (dg1(p)(q), dg2(p)(q)) = (0, p2
2)

and therefore there exists v = u = (1, 0)such that

vd f x̄(q) + udgx̄(q) = 0

ug(x̄) = 0

and then p is a weakly efficient Pareto point to the CVOP.
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5. Conclusions

In conclusion, we have shown the existence of KKT optimality conditions for weakly efficient
Pareto points to the equilibrium vector problems with constraints on Hadamard manifolds,
in particular, to constrained vector optimization problems. The main requirement we present for
such characterization is the substitution of the segments by geodesics due to the introduction of
non-euclidean spaces. This has proven to entail:

• The need for an extension of the concept of convex set to that of totally convex.
• The use of an adequate definition of differential functions in similar terms to those of directional

derivatives in Euclidean space using an exponential Riemannian map.
• Generalizing the invexity definition by extending its classical definition given by Hanson [14] in

order to obtain sufficient optimality conditions.

Thus, our study provides evidence of the logical continuity of the KKT formulation when extended
to other contexts different from Banach spaces or norms, given in the literature by Gong [20] and Wei
and Gong [22] and Feng and Qiu [23].

The strength of our method lays on the fact that it allows us to transform non-convex problems in
Euclidean spaces to convex problems on Hadamard spaces in which the known properties of convexity
can be safely applied. On the other hand, the weakness is that the method requires the manifold to
have a nonpositive sectional curvature which limits the cases in which it can be employed. In addition,
the dimensions of the Euclidean space tend to be larger than the manifold dimensions, making this
approach sometimes not convenient.

The principal contribution of this paper is to obtain the classical KKT optimality conditions for
vector equilibrium problems on Hadamard spaces, an unexplored field up to this date.

Finally, it would be interesting to continue studies in this line of research by virtue of considering
other types of solutions to the vector equilibrium problem with constraints to which similar
generalization have yet not been proposed.
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