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Abstract: The revised Buongiorno’s nanofluid model with the effect of induced magnetic field on
steady magnetohydrodynamics (MHD) stagnation-point flow of nanofluid over a stretching or
shrinking sheet is investigated. The effects of zero mass flux and suction are taken into account.
A similarity transformation with symmetry variables are introduced in order to alter from the
governing nonlinear partial differential equations into a nonlinear ordinary differential equations.
These governing equations are numerically solved using the bvp4c function in Matlab solver, a very
adequate finite difference method. The influences of considered parameters (Pr, M, χ, Le, Nb, Nt,
S, and λ) on velocity, induced magnetic, temperature, and concentration profiles together with the
reduced skin friction and heat transfer rate are discussed. Results from these criterion exposed the
existence of dual solutions when magnetic field and suction are applied for a specific range of λ. The
stability of the solutions obtained is carried out by performing a stability analysis.

Keywords: boundary layer; dual solutions; stagnation-point flow; nanoparticles; stability analysis

1. Introduction

In preceding decades, a very active topic of studies continues to be the study of fluid flow
and heat transfer past a stretching/shrinking surface. Although a large sum of works have made
remarkable contributions to the development of the theory, a proportionally good amount of efforts
have also been dedicated to daily engineering applications that include electronic equipment, thermal
energy storage systems, glass-fiber manufacturing, wire drawing, paper milling, and extraction of
polymer sheets (see Fisher [1]). As a matter of fact, stretching confers a unidirectional orientation
to the extrudate, thereby improving its mechanical properties as the features of the end product are
substantially influenced by the rate of cooling. Correspondingly, it is crucial to meticulously control
the fluid and heat transfer mechanism as the desired quality of the final product relies heavily on the
cooling procedure. Following the famous works of Tsou et al. [2], Sakiadis [3], and that of Crane [4] in
spearheading the stretching sheet problem with boundary layer approximation, several similar studies
have arose, emphasizing on the shrinking sheets aspect (see Miklavčič and Wang [5] and Wang [6]).
The general deduction in previously reported manuscripts suggested that the shrinking/stretching is
linearly proportional to the axial distance. The solution approach somehow leaves behind uncertainties
pertaining the uniqueness of the solution.

The concept of magnetohydrodynamics (MHD), which analyses the performance of magnetically
induced nanofluids in various boundary-layer flow control systems can be integral in the theoretical

Symmetry 2019, 11, 1078; doi:10.3390/sym11091078 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-3805-4974
http://dx.doi.org/10.3390/sym11091078
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/9/1078?type=check_update&version=2


Symmetry 2019, 11, 1078 2 of 18

and experimental studies of fluid flow and heat transfer. Several instances where MHD concept is
fundamentally applicable encompass nuclear reactor engineering, plasma studies, geothermal energy
harvesting, polymer development, metallurgy, and MHD heat/mass transfer systems of which the
details can be found in the books by [7–9], and in the classical papers such as [10–13]. Gul et al. [14] has
stressed that the polarization is very powerful and the process persists even when the magnetic flux was
eliminated entirely. Stimulus in the research of MHD stems contribute to diverse profitable applications
in oil and gas sectors, solving geophysical problems, and agricultural engineering. In addition,
the effects of magnetic flux on electrically conducting liquid consequently influences the efficiency of
industrial equipment like bearings, MHD generators, and pumps. The versatility of MHD concept
also means that it can be implemented in medical sector such as in tumors ablation, wound treatment,
gastric medications, and sanitization of apparatus [15–17]. Tashtoush and Magableh [18] studied the
blood flow in multi-stenosis arteries and discovered that the introduction of magnetic flux could alter
the flow patterns. Mukhopadhyay [19] investigated MHD boundary layer flow in the presence of
thermal stratification and concluded that the higher magnetic parameter suppressed the velocity field
and can enhance the skin friction coefficient over some period of time. A similar output was acquired
by Tian et al. [20], who explored the effects of radiation optical properties and Lorentz force on MHD
boundary layer flow over a stretching plate. They explained that the magnetic force repressed the
fluid flow to a significant magnitude, hence, the convective heat transfer was eliminated effectively.
An equally notable paper by Ali et al. [21] presented a study of dual solutions in MHD flow on a
nonlinear porous shrinking sheet in a viscous fluid, while another distinct paper by Jusoh et al. [22]
emphasized the MHD rotating flow and permeable stretching/shrinking sheet. On the other hand,
it should be mentioned that in these papers, Ali et al. [23,24] has studied the effect of induced magnetic
field on the MHD flow of an incompressible, viscous, and electrically conducting fluid over horizontal
and vertical flat plates.

Nanotechnology has been broadly applied in varying industries since nanomaterials possess
distinctive physicochemical properties. It is regarded by many as one of the prominent forces
that catalyze the forth industrial revolution, especially in this century. It appears that Choi
and Eastman [25] are probably the first authors to describe the term nanofluid, referring to the
colloid-containing suspended nanoparticles with a length scale on the order of 1–100 nm which
specializes at manipulating the structure of the matter at a molecular level. For applications in thermal
engineering, heat conductivity can be powered up by mixing a minute quantity of nanoparticles
to a fluid. Several experimental studies [26–30] have shown that the enhancement is greater than
that computed from the conventional models for composites, such as the Maxwell-Garnett (MG)
model. However, the mechanism that contributes to the improvement is not thoroughly perceived,
henceforth, a large number of analytical and numerical investigations have been put into motion
to better comprehend the phenomena. These next-generation nanofluids can be implemented in
various heat transfer applications such as automotive cooling systems, solar collector panels, and heat
exchangers. Titanium oxide, aluminum oxide, and copper are among the archetypal nanoparticles
used in nanofluid-centered research. Additionally, ethylene glycol, water, and mineral oil are often
used as a base fluid in nanofluids formulation. For example, Bondareva et al. [31] have considered
alumina-water nanofluid in their study. A detailed review on the application of nanofluids can be
found in Saidur et al. [32]. References on nanofluids can be found in the book by [33–36] and in the
review papers by [37–43]. These reviews discuss in detail the development of nanofluids, theoretical
and experimental investigations of rheological properties (thermal conductivity and viscosity) of
nanofluids, and the work done on convective transport in nanofluids. It would also be interesting
to mention the study of hybrid nanofluid, which is one of the new classifications of nanofluid by
Sheikholeslami et al. [44].

Over the past few decades, an impressive number of studies have demonstrated the presence of
dual solutions in the boundary layer flow problems. There are few considerations that contribute to
dual solutions such as a moving, stretching, or shrinking plate, mixed convection, permeable surface,
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where suction is an existent and unsteady case. For those interested in engineering analysis, the idea
of discovering dual solutions and defining stability is of practical significance, as it offers a way to
determine if a steady state solution is physically relevant [45]. This kind of research is therefore very
useful in determining the dual solutions of fluid flow problems. Here, the work of Hussaini and
Lakin [46] is worth mentioning among the pioneering researchers who discovered the uniqueness
of solutions in the boundary layer problems. Magyari et al. [47] has presented dual solutions in
homogenous boundary layer flows caused by continuous surface stretching with rapidly decreasing
power-law and exponential velocities. Subsequently, in unsteady cases, Merrill et al. [48] studied
the mixed stagnation-point convection flow on a vertical surface in a fluid-saturated porous medium
and discovered that there exist dual solutions for certain buoyancy parameter values. By conducting
a stability analysis by Merkin [49], Merrill et al. [48] demonstrated that the solutions of the upper
branch are stable and therefore asymptotically available solutions. Very recently, the effect of induced
magnetic field on MHD stagnation-point flow of nanofluids towards stretching/shrinking sheet was
analyzed by Junoh et al. [50]. Since the existence of dual solutions for a certain range of shrinking rate,
a stability analysis has been performed and the result showed that only the upper branch solution is
stable and physically acceptable.

The purpose of this present paper is to extend the work by Junoh et al. [50] by considering
the presence of suction on MHD stagnation-point flow of heat and mass transfer over a permeable
stretching/shrinking sheet in a nanofluid. The effect of induced magnetic field is also taken into
account. In this study, the new boundary condition proposed by Kuznetsov and Nield [51] will be
implemented. This work also highlights the stability of the solutions obtained. Therefore, we presume
the findings are new and original, which all those interested in stretching/shrinking sheet problems in
nanofluids can use with strong confidence.

2. Problem Formulation

We consider a steady two-dimensional MHD stagnation-point flow of heat and mass transfer over
a permeable stretching/shrinking sheet in a nanofluid with induced magnetic field. The coordinate
system is selected, in which the x–axis is in horizontal direction and the y-axis is in vertical direction.
u and v represents the velocity and H1 and H2 are the magnetic components along the x– and
y–axes, respectively. ue is the velocity at the edge of the boundary layer while uw and vw are,
respectively, the velocity and mass flux velocity at the surface. At the plate, y = 0, and the temperature
T and concentration C take constant values Tw and Cw. The ambient values as y → ∞, temperature
and concentration, respectively, are T∞ and C∞. The physical flow model and coordinate system are
shown in Figure 1.

Figure 1. A sketch of physical model and coordinate system.
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Following the mathematical nanofluid model proposed by Davies [52] and Kuznetsov and
Nield [53], the governing equations of this problem can be derived as follows:

∂u
∂x

+
∂v
∂y

= 0, (1)

∂H1

∂x
+

∂H2

∂y
= 0, (2)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 + ue

due

dx
+

µ

4πρ

(
H1

∂H1

∂x
+ H2

∂H1

∂y

)
− µHe

4πρ

dHe

dx
, (3)

u
∂H1

∂x
+ v

∂H1

∂y
− H1

∂u
∂x
− H2

∂u
∂y

= µe
∂2H1

∂y2 , (4)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + ε

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2]
, (5)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 , (6)

along with their boundary conditions:

u = λuw(x), v = vw(x),
∂H1

∂y
= 0, H2 = 0, T = Tw, DB

∂C
∂y

+
DT
T∞

∂T
∂y

= 0 at y = 0,

u = ue → ax, H1 = He(x)→ H0(x), T → T∞, C → C∞ as y→ ∞,
(7)

where ε =
(ρCp)p

(ρCp) f
is defined as the ratio of nanoparticle heat capacity to the base fluid heat capacity.

The boundary conditions DB
∂C
∂y

+
DT
T∞

∂T
∂y

= 0 at y = 0 in Equation (7) states that the normal flux

of nanoparticles is zero at the boundary when the thermophoresis is considered (Kuznetsov and
Nield [51]).

Following Kuznetsov and Nield [53], we introduce symmetry variables

η =

(
a
α

)1/2

y, u = ax f
′
(η), v = −(aα)1/2 f (η), H1 = H0xh′(η),

H2 = −
(

α

a

)1/2

H0h(η), θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C− C∞

C∞
,

(8)

where primes denote differentiation with respect to η.
After substitution Equation (8) into Equations (1)–(6), we get the following reduced form:

Pr f
′′′
+ f f

′′ − f
′2
+ 1 + M(h

′2 − hh
′′ − 1) = 0, (9)

χh
′′′
+ f h

′′ − f
′′
h = 0, (10)

θ
′′
+ f θ

′
+ Nbφ

′
θ
′
+ Ntθ

′2
= 0, (11)

φ
′′
+ Le f φ

′
+

Nt
Nb

θ
′′
= 0, (12)

subjected to the new boundary conditions:

f (0) = S, f
′
(0) = λ, h(0) = 0, h

′′
(0) = 0, θ(0) = 1, Nbφ

′
+ Ntθ

′
= 0,

f
′
(∞)→ 1, h

′
(∞)→ 1, θ(∞)→ 0, φ(∞)→ 0.

(13)
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In the above equations, Pr is the Prandtl number, M is the magnetic parameter, χ is the reciprocal
magnetic parameter, Nb is the Brownian motion parameter, Nt is the thermophoresis parameter, Le is
the Lewis number, S is the suction/injection parameter which is defined as

Pr =
ν

α
, M =

µH2
0

4πρa2 , χ =
µe

ν
, Nb =

εDBCw

α
,

Nt =
εDT(T − T∞)

αT∞
, Le =

α

DB
, S = − v0

(aα)1/2 ,
(14)

and λ stands for stretching/shrinking parameter. Here, λ > 0 indicates that the plate is stretched;
while when λ < 0 the plate is shrunk. It should be highlighted that the use of the variables (8) will
change the position of the Pr from the energy Equation (11) to the momentum Equation (9), which is a
new fact for stretching/shrinking sheet problems.

The physical quantities of interest in this study are the skin friction or shear stress coefficient C f
and the local Nusselt number Nux are

C f =
τw

ρu2
e

, Nux =
xqw

k(Tw − T∞)
. (15)

Here τw is the surface shear stress and qw is the surface heat flux given by

τw = µ

(
∂u
∂y

)
y=0

, qw = −k
(

∂T
∂y

)
y=0

. (16)

Then, applying the symmetry variables (8), we obtain

C f Re1/2
x Pr−1/2 = f

′′
(0), NuxRe−1/2

x Pr−1/2 = −θ
′
(0), (17)

where Rex = uex/ν is the local Reynolds number. However, the local Sherwood number Shx can be

derived from the boundary conditions (13) as φ
′
(0) = − Nt

Nb
θ
′
(0).

3. Stability Analysis

To conduct the stability analysis of the solutions, we consider this problem in unsteady form.
The continuity in Equations (1) and (2) hold, in the time Equations (3)–(6) are redressed by

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 + ue

due

dx
+

µ

4πρ

(
H1

∂H1

∂x
+ H1

∂H2

∂y

)
− µHe

4πρ

dHe

dx
, (18)

∂H1

∂t
+ u

∂H1

∂x
+ v

∂H1

∂y
− H1

∂u
∂x
− H2

∂u
∂y

= µe
∂2H1

∂y2 , (19)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + ε

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2]
, (20)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 , (21)

where t denotes the time. The following new dimensionless variables are introduced:

η =

(
a
α

)1/2

y, τ = at, u = ax f
′
(η, τ), v = −(aα)1/2 f (η, τ), H1 = H0xh′(η, τ),

H2 = −
(

α

a

)1/2

H0h(η, τ), θ(η, τ) =
T − T∞

Tw − T∞
, φ(η, τ) =

C− C∞

C∞
,

(22)
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thus, Equations (18)–(21) can be composed as

Pr
∂3 f
∂η3 −

(
∂ f
∂η

)2

+ f
∂2 f
∂η2 + 1 + M

[(
∂h
∂η

)2

− h
(

∂2h
∂η2

)
− 1

]
− ∂2 f

∂η∂τ
= 0, (23)

χ
∂3h
∂η3 + f

∂2h
∂η2 − h

∂2 f
∂η2 −

∂2h
∂η∂τ

= 0, (24)

∂2θ

∂η2 + f
∂θ

∂η
+ Nb

∂φ

∂η

∂θ

∂η
+ Nt

(
∂θ

∂η

)2

− ∂θ

∂τ
= 0, (25)

∂2φ

∂η2 + Le f
∂θ

∂η
+

Nt
Nb

∂2φ

∂η2 −
∂φ

∂τ
= 0, (26)

along with the boundary conditions:

f (0, τ) = S,
∂ f
∂η

(0, τ) = λ, h(0, τ) = 0,
∂2h
∂η2 (0, τ) = 0, θ(0, τ) = 1,

Nb
∂φ

∂η
(0, τ) + Nt

∂θ

∂η
(0, τ) = 0,

∂ f
∂η

(η, τ)→ 1,
∂h
∂η

(η, τ)→ 0, θ(η, τ)→ 0, φ(η, τ)→ 0 as η → ∞.

(27)

To check the stability of the solution f (η) = f0(η), h(η) = h0(η), θ(η) = θ0(η), and φ(η) = φ0(η)

attaining the boundary value problem (9)–(12), we write

f (η, τ) = f0(η) + e−γτ F(η, τ), h(η, τ) = h0(η) + e−γτ H(η, τ),

θ(η, τ) = θ0(η) + e−γτT(η, τ), φ(η, τ) = φ0(η) + e−γτ P(η, τ),
(28)

where F(η, τ), H(η, τ), T(η, τ), and P(η, τ) are small relative to f0(η), h0(η), θ0(η), φ0(η), respectively,
and γ is an unknown eigenvalue. Introducing (28) into Equations (23)–(27), we get the following
linearized problem:

Pr
∂3F
∂η3 + f0

∂2F
∂η2 −

(
2 f
′
0 − γ

)∂F
∂η

+ f
′′
0 F + M

[
2h
′
0

∂H
∂η
− h0

∂2H
∂η2 − h

′′
0 H

]
− ∂2F

∂η∂τ
= 0, (29)

χ
∂3H
∂η3 + f0

∂2H
∂η2 − h0

∂2F
∂η2 + h

′′
0 F− f

′′
0 H + γ

∂H
∂η
− ∂2H

∂η∂τ
= 0, (30)

∂2T
∂η2 + f0

∂T
∂η

+ θ
′
0F + Nt

(
2θ
′
0

∂T
∂η

)
+ Nb

(
φ
′
0

∂T
∂η

+ θ
′
0

∂P
∂η

)
+ γT − ∂T

∂τ
= 0, (31)

∂2P
∂η2 + Le

(
f0

∂P
∂η

+ φ
′
0F

)
+

Nt
Nb

∂2T
∂η2 + γP− ∂P

∂τ
= 0, (32)

the boundary conditions in Equation (27) are now reduced to

F(0, τ) = 0,
∂F
∂η

(0, τ) = 0, H(0, τ) = 0,
∂2H
∂η2 (0, τ) = 0, T(0, τ) = 0,

Nb
∂P
∂η

(0, τ) + Nt
∂T
∂η

(0, τ) = 0,

∂F
∂η

(η, τ)→ 0, H(η, τ)→ 0, T(η, τ)→ 0, P(η, τ)→ 0 as η → ∞.

(33)
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The solutions f (η) = f0(η), h(η) = h0(η), and θ(η) = θ0(η) of the steady flow Equations (9)–(13)
are obtained by setting τ = 0. Accordingly, F(η) = F0(η), H(η) = H0(η), and T(η) = T0(η) in
Equations (29)–(32) pinpoint the initial growth or decay of perturbation of the solution (28). In this
regard, we need to work out the following linear eigenvalue problem:

PrF
′′′
0 + f

′′
0 F0 + f0F

′′
0 −

(
2 f
′
0 − γ

)
F
′
0 + M

(
2h
′
0H

′
0 − h0H

′′
0 − h

′′
0 H

)
= 0, (34)

χH
′′′
0 + f0H

′′
0 + h

′′
0 F0 − f

′′
0 H0 − h0F

′′
0 + γH

′
0 = 0, (35)

T
′′
0 + f0T

′
0 + θ

′
0F0 + Nt

(
2θ
′
0T
′
0

)
+ Nb

(
φ
′
0T
′
0 + θ

′
0P
′
0

)
+ γT0 = 0, (36)

P
′′
0 + Le

(
f0T

′
0 + φ

′
0F0

)
+

Nt
Nb

T
′′
0 + γP0 = 0, (37)

along with the boundary conditions:

F0(0) = 0, F
′
0(0) = 0, H0(0) = 0, H

′′
0 (0) = 0, T0(0) = 0, NbP

′
0(0) + NtT

′
0(0) = 0,

F
′
0(η)→ 0, H

′
0(η)→ 0, T0(η)→ 0, P0(η)→ 0 as η → ∞.

(38)

The smallest eigenvalue γ1 obtained delineates the stability of this dual solution of the steady-state
flow. Consequently, as recommended by Harris et al. [54], the boundary condition F

′
0(η), H

′
0(η), T0(η),

and P0(η) can be put at rest in order to demonstrate the range of possible eigenvalue. In this problem,
the condition F

′
0(η) as η → ∞ is chosen to be relaxed and, for a fixed value of γ, the following system

of Equations (34)–(38) will be solved by introducing a new boundary condition which is F
′′
0 (0) = 1.

4. Results and Discussion

The governing Equations (9)–(12) together with the boundary conditions (13) have been
numerically-solved adopting bvp4c function in Matlab solver. It should be emphasized that
the parameters used in this study are the Pr(0.72–3), M(0.0–0.5), χ(1–3), Le(1–5), Nb(0.01–0.05),
Nt(0.01–0.05), S(0–3), and λ(≤ 2). We fix Pr = 0.72, M = 0.5, χ = 1, Le = 1, Nb = 0.01, Nt = 0.01,
and S = 3 into our computation procedure, modifying one parameter at a time. We take η∞ = 10
as our far-field boundary condition. All the profiles presented in the form of figures (Figures 2–10)
satisfy the boundary condition (13) and produce asymptotic graph. A comparison of the results for
some values of f ′′(0) has been carried out with the results in the existing literature [55,56] in order
to validate this study. This comparison data is shown in Table 1 and shows a positive agreement.
Consequently, we are assured that the numerical values obtained in this study are veritable.

Table 1. Comparison values of the skin friction coefficient f ′′(0) for some values of λ when M = 0.

λ
Present Result Aman et al. [55] Bhattacharyya et. al [56]

Upper Branch Lower Branch Upper Branch Lower Branch Upper Branch Lower Branch

−0.25 1.40224 1.4022 1.40224051
−0.3 1.42758 1.4276
−0.4 1.46861 1.4686
−0.5 1.49567 1.4957 1.49566948
−0.615 1.50724 1.5072 1.50724089
−0.75 1.48929 1.4893 1.48929834
−1.0 1.32881 0 1.3288 0 1.32881689 0
−1.15 1.08223 0.11670 1.0822 0.1167 1.08223164 0.11667340
−1.18 1.00045 0.17836 1.0004 0.1784
−1.2465 0.55430 0.55430 0.5543 0.5543 0.55428565 0.55428565
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Figures 2 and 3 show the velocity profiles with the effects of M and Pr, respectively. It is seen
that as the value of M and Pr increases, the boundary layer thickness of these profiles also increase.
Figures 4–6 portray the impact of M, χ, and Pr on the induced magnetic profiles. As the value of these
parameters increase, the boundary layer thickness become thicker. Figure 7 illustrates the influence of
the Pr on temperature profile. It is noticed that the thermal boundary layer thickness increases as the
Pr increase.

Figure 2. Velocity profile for various values of M.

Figure 3. Velocity profile for various values of Pr.
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Figure 4. Induced magnetic profile for various values of M.

Figure 5. Induced magnetic profile for various values of χ.
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Figure 6. Induced magnetic profile for various values of Pr.

Figure 7. Temperature profile for various values of Pr.

Figures 8–10 demonstrate the concentration profile with respect to the changes of Le, Nt, and Nb,
respectively. Figure 8 exhibits the influence of Le on concentration graph profile. The concentration
boundary layer thickness decreases as Lewis number increases. This is likely due to the fact that mass
transfer rate increases parallel to Le. Likewise divulges that the concentration gradient at the plate
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surface is also increasing. As can be seen in Figure 9, increasing values of Nt leads to an increase in the
thickness of concentration graph profile. A different behavior is shown in Figure 10, the concentration
graph profile is decreasing when the value of Nb increasing. Thus, the concentration boundary layer
also decreases. From these figures it may very well be seen that the boundary layer thickness for the
upper solution is slightly slimmer contrasted with that of the lower branch solution.

Figure 8. Concentration profile for various values of Le.

Figure 9. Concentration profile for various values of Nt.
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Figure 10. Concentration profile for various values of Nb.

Figures 11–14 illustrate the dual solutions for the skin friction coefficient f ′′(0) and the local
Nusselt number −θ′(0). Based on the observation, dual solutions of Equations (9)–(12) can be obtained
both for shrinking (λ < 0) and stretching (λ > 0) cases. Figure 11 exhibits the variation of the f ′′(0)
increasing as the value of S increases. The presence of suction will escalate the skin friction at the
surface of sheet. Thereupon, the flow speed will decrease and as a result increase the velocity gradient
at the surface of the sheet. The variation of the −θ′(0), as shown in Figure 12, indicates that when
S increases, the heat transfer rate at the surface also increases. The heat flux becomes larger when
suction is applied in the flow. Hence, it will also increase the magnitude of the temperature gradient at
the surface of the sheet. Based on the critical value λc in these figures, the influence of suction S also
causes a delaying of the boundary layer separation. From Figures 13 and 14, we can observe that as
the values of M increase, the f ′′(0) and −θ′(0) decrease. In magnetohydrodynamics problems, it is
a fact that the presence of transverse magnetic field sets in Lorentz force, which exudes a retarding
force on the velocity field. The existing of this force has the urgency to decelerate the fluid motion in
the boundary layer. As a result, the boundary layer separation occurs faster when the magnetic field
is adapted.

Based on all these figures, the existence of nonunique solutions (dual solutions) are clearly
shown. The stability of these solutions are tested to analyze which solutions are stable and physically
realizable in practice. It is also intended to find out which solutions are not suitable as well. Therefore,
the eigenvalue problem (34)–(38) is solved for the smallest eigenvalues γ1 regarding the upper and
lower solution branches. These calculations are presented in Table 2 for some values of λ when
S = 1, 2, 3. From the table, it can be noticed that the smallest eigenvalue γ1 gives a positive value
for the first solution and a negative value for the second solution. Hence, a conclusion is drawn that
only the upper branch solutions are physically significant; whilst the lower branch solutions are not.
Furthermore, as the value of λ approaches the critical point λc, the smallest eigenvalue γ1 converges
to 0 for both upper and lower branches, as discovered by Merkin [49].
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Figure 11. Variation of skin friction for various values of S.

Figure 12. Variation of local Nusselt number for various values of S.
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Figure 13. Variation of skin friction for various values of M.

Figure 14. Variation of local Nusselt number for various values of M.

Table 2. Smallest eigenvalue γ1 for some values of λ with different S.

S λ First Solution Second Solution

1
−1.8 0.40484 −0.39610
−1.82 0.12550 −0.12458
−1.822 0.03052 −0.03049

2
−2.8 0.73421 −0.71159
−2.85 0.28333 −0.27970
−2.858 0.08134 −0.08104

3
−4.3 0.42854 −0.42058
−4.31 0.25712 −0.25423
−4.315 0.08807 −0.08773
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5. Conclusions

A numerical study is carried out for the revised model of the steady MHD stagnation-point flow of
nanofluid over a stretching or shrinking sheet with induced magnetic field. The effect of all parameters
are studied numerically and graphically. The suction detains the boundary layer separation, however,
the magnetic parameter enhances the boundary layer separation. Non-unique (dual) solutions are
found to exist for both stretching and shrinking cases. Therefore, a stability analysis is done via bvp4c
function in MATLAB software, and their results found that the first solution (upper branch) is stable
and valid physically; while the second solution (lower branch) is not stable.
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Abbreviations

The following abbreviations are used in this manuscript:

Roman Letters
a constant variable
C nanoparticle volume fraction
C f skin friction coefficient
Cp specific heat capacity
DB Brownian diffusion coefficient
DT thermophoresis diffusion coefficient
f (η) dimensionless stream function
h(η) dimensionless induced magnetic field
H0(x) applied magnetic field
He(x) magnetic field at the edge
H1, H2 induced magnetic field components along the x and y directions, respectively
k thermal conductivity
Le Lewis number
M magnetic parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Nux local Nusselt number
Pr Prandtl number
qw surface heat flux
Rex local Reynolds number
S suction/injection parameter
Shx local Sherwood number
t time
T temperature of the nanofluid
ue(x) velocity at the edge of the boundary layer
u, v velocity components along the x and y directions, respectively
v0 constant mass velocity
x, y Cartesian coordinates
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Greek Symbols
α thermal diffusivity of the nanofluid
γ eigenvalue
γ1 smallest eigenvalue
ε ratio of nanoparticle heat capacity to the base fluid heat capacity
η similarity variable
θ(η) dimensionless temperature
λ stretching/shrinking parameter
µ magnetic permeability
µe magnetic diffusivity
ν kinematic viscosity
ρ density
τ dimensionless time
τw surface shear stress
φ(η) dimensionless nanoparticle volume fraction
χ reciprocal of the magnetic Prandtl number
Subscripts
w condition at the surface
∞ condition outside of boundary layer
c critical value
f base fluid
p nanoparticle
Superscripts
′ differentiation with respect to η
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