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Abstract: A useful family of fractional derivative and integral operators plays a crucial role on the
study of mathematics and applied science. In this paper, we introduce an operator defined on the
family of analytic functions in the open unit disk by using the generalized fractional derivative
and integral operator with convolution. For this operator, we study the subordination-preserving
properties and their dual problems. Differential sandwich-type results for this operator are
also investigated.
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1. Introduction
Let H (D) be the family of analytic functions inID = {z € C : |z| < 1} and H|[c, n] be the subfamily
of H (D) consisting of functions of the form:

f(z) = c4bpz" + by 4+ (ceCneN={1,2,---1}).

Let A(p) denote the family of analytic functionsin D = {z € C : |z| < 1} of the form:

f2)=2"+ ) by’ (p €N; fPHD(0) £0). @
n=1
For f,F € H(D), the function f(z) is said to be subordinate to F(z) or F(z) is superordinate
to f(z), written f < F or f(z) < F(z), if there exists a Schwarz function w(z) for z € D such that
f(z) = F(w(z)). If F(z) is univalent, then f(z) < F(z) if and only if f(0) = F(0) and f(D) C F(D)
(see [1,2]).
Let ¢ : C?> x D — C and k (z) be univalent in D. If p (z) is analytic in D and satisfies

¢ (pr(2),2p' (2);2) < h(2), €

then p (z) is solution Relation (2). The univalent function 4 (z) is called a dominant of the solutions of
Relation (2) if p (z) < ¢q (z) for all p (z) satisfying Relation (2). A univalent dominant 7 that satisfies
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g < ¢ for all dominants of Relation (2) is called the best dominant. If p (z) and ¢ (p (z) ,zp’ (z) ;z) are
univalent in D and if p(z) satisfies

h(z) <9 (p(2),2p' (2);2), ®)

then p (z) is a solution of Relation (3). An analytic function g (z) is called a subordinant of the solutions
of Relation (3) if g (z) < p(z) for all p (z) satisfying Relation (3). A univalent subordinant § that
satisfies g < § for all subordinants of Relation (3) is called the best subordinant (see [1,2]).

We now introduce the operator 56\/,214 P due to Goyal and Prajapat [3] (see also [4]) as follows:

Tp+1-wl(p+1-A+n) A
0<A<y+p+1zeD),
L(p+DI(p+1—p+n) f&) Trr )

Sp2 " f(2) = ( . 5 “
I'p+1—-u)'(p+1—-A+y —Mﬂ . '
T(p+)I(p+1—p+n) f(z) (w0 <A <0;zED),

where ]0 T and I " are the generalized fractional derivative and integral operators, respectively,
due to Srivastava et al. [5] (see also [6,7]). For f € A(p) of form Equation (1), we have

SyMf(z) = BB+ pl4pty—mltp—pl+p+n—2Az)*f(z)

_ L (PADulp+1—ptmn ;  pin
: +Z:P+l—#)@+1—A+Wn”“Z

reN; uneR u<p+1l;, —co<A<ny+p+1), (5)

where 4F; (9 <s+1; q,5s € Ng = NU {0}) is the well-known generalized hypergeometric function
(for details, see [8,9]), the symbol * stands for convolution of two analytic functions [1] and (v), is the
Pochhammer symbol [8,10].

Setting
T Du(p+1—p 1)
G/\ — 14 P p+n
(%) Z_%Z:P+1—V)W+1—A+W%Z
reN; uneR, u<min{p+1,p+1+n}; —co<A<ny+p+1) (6)
and

G;\UH( ) {G%y( )} = (1_25)(”;7 (5> —p; ZE]D)),

Tang et al. [11] (see also [12]) defined the operator H;‘,’,‘;,y : A(p) — A(p) by
Hyb uf(2) = [Gyhu(2)] + £(2).

Then, for f € A(p), we have

: o~ O Pu(p 1= pa(pt1=A+m)n n
il @ = L et e ?

It is easy to verify that
/
2 (H3,uf(2)) = (6 + )AL (2) — YD £ (2), ®)

and

2 (HISRF(@)) = (p+ 1= DH,f () = (= DHAS A F(2). )
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Making use of the hypergeometric function in the kernel, Saigo [13] proposed generalizations of
fractional calculus of both Riemann-Liouville and Weyl types. The general theory of fractional calculus
thus developed was applied to the study for several multiplication properties of fractional integrals [14].
In particular, Owa et al. [15] and Srivastava et al. [5] investigated some distortion theorems involving
fractional integrals, and sufficient conditions for fractional integrals of analytic functions in the open
unit disk to be starlike or convex. Moreover, the theory of fractional calculus is widely applied to not
only pure mathematics but also applied science. For some interesting developments in applied science
such as bioengineering and applied physics, the readers may be referred to the works of (for examples)
Hassan et al. [16], Magin [17], Martinez-Garcia et al. [18] and Othman and Marin [19].

By using the principle of subordination, Miller et al. [20] investigated subordinations-preserving
properties for certain integral operators. In addition, Miller and Mocanu [2] studied some important
properties on superordinations as the dual problem of subordinations. Furthermore, the study of the
subordinaton-preserving properties and their dual problems for various operators is a significant role
in pure and applied mathematics. The aim of the present paper, motivated by the works mentioned
above, is to systematically investigate the subordination- and superordination-preserving results
of the generalized fractional differintegral operator defined Equation (7) with certain differential
sandwich-type theorems as consequences of the results presented here. Our results give interesting
new properties, and together with other papers that appeared in the last years could emphasize the
perspective of the importance of differential subordinations and generalized fractional differintegral
operators. We also note that, in recent years, several authors obtained many interesting results
involving various linear and nonlinear operators associated with differential subordinations and their
dual problrms (for details, see [21-28]).

For the proofs of our main results, we shall need some definitions and lemmas stated below.

Definition 1 ([1]). We denote by Q the set of all functions q(z) that are analytic and injective on D\E(q),
where

() = {¢ € 9D lima(a) =
and are q'({) # 0 for { € dD\E(q).

Definition 2 ([2]). A function T (z,t) (z € D, t > 0) is a subordination chain if Z (.,t) is analytic and
univalent in D forall t > 0, I (z,.) is continuously differentiable on [0, 00) forallz € Dand T (z,s) < I (z,t)
forall0 <s < t.

Lemma 1 ([29]). Let H : C*> — C satisfy
R{H (ic;7)} <0

forall real o, T witht < —n (1+0?) /2andn € N. If p(z) = 1+ ppz" + py1z" Tt + - - - is analytic in D
and

R{H (p(2);20'(2))} >0 (z€D),
then R {p(z)} > 0 forz € D.

Lemma 2 ([30]). Let «,y € Cwithx # 0and let h € H(D) with h(0) = c. If R {xh(z) + v} >0(z € D),
then the solution of the differential equation:

q<z>+mzh<z> (zeD; 4(0) = )

is analytic in D and satisfies R {xq(z) +} > 0 forz € D.
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Lemma 3 ([1]). Suppose that p € Q with q(0) = aand q(z) = a+ qnz" + g, 12" 1 + - - - is analytic in D
with q (z) # aand n > 1. If q(z) is not subordinate to p(z), then there exists two points zg = rge’® € D and
¢o € 0D\ E(q) such that

q(z,) = p(&o) and zoq' (zo) = m&op' (Zo) (m > n).

Lemma 4 ([2]). Let q € Hlc,1] and ¢ : C> — C. In addition, let ¢ (q(z),zq' (z)) = h(2).If L (z,t) =
¢ (q(2),tzq' (z)) is a subordination chain and q € H[c,1] N Q, then

h(z)<¢(p(z),zr' (2)),

implies that q (z) < p (z). Moreover, if ¢ (9 (z),zq" (z)) = h (z) has a univalent solution g € Q, then q is the
best subordinant.

Lemma 5 ([31]). The function T (z,t) : D x [0,00) — C of the form
IZ(zt)=ay(t)z+---(a1(t) #0;, t > 0)

and tlim |a (t)| = oo is a subordination chain if and only if
— 00

ZBI(z,t)
%{E)z} >0 (zeD; t>0)

0Z(z,t)
ot

and
|Z (z,t)] < Kolar (t)] (t=0)

for constants Ky > 0and rg (|z| < rg < 1).

2. Main Results

Throughout this paper, we assume thatp € N, a, >0, 6 > —p, p, 7 € R, p <min{p+1,p+
1+7n}, —0o<A<n+p+1, HFA,,’,‘;IM (z)/zP # 0 for f € A(p) and all the powers are understood as

principal values.

Theorem 1. Suppose that f,g € A(p) and

20/ (2)
%{1+¢%@ }>p (10)
B B
0= (1—a) |Ponas@ " [Hinils@) ] THys@) )"
z¥ Hy u8(2) 2 ' ’

where p is given by

@B+ p) a2 =R+ )|

P 4B+ p) (th

Then, ; ;

H/\,{5 (Z) H)\,(5+l (Z) H/\,(5 f(z)
71— P P P 12
(1—a) [Z,, ] +a [Hﬁ‘:g,yf(Z) ] [ = ] < ¢(z) (12)
implies that
AS B AS B

[Hp Ué};f(z)] - Hm;;g(z)] 13)
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16 B
and [H”’g;,g(z)] is the best dominant.

Proof. We define two functions ®(z) and ¥(z) by

M B 208 B
¢@):l“wJ¢91;de@):l nmﬁﬁw (zeD). (14)
zP zP
Firstly, we will show that, if
B z9" (z)
g(z) =1+ ¥ (2) (zeD), (15)

then
R{g(z)} >0 (zeD).

From the definitions of ¥(z) and ¢(z) with Equation (8), we have

L
B(o+p)

Differentiation both sides of Equation (16) with respect to z yields

¢ (z) =% (z) + z¥' (z). (16)

w29 (z) + ¥/ (2)]

¥ (@)= () + S 7)
From Equations (15) and (17), we easily obtain
z¢" (z) zq' (2)
1+ — =q(z)+ 5 =h(z) (zeD). (18)
V) )+ BOET)
It follows from Relations (10) and (18) that
%{h(z)+W}>0(zeD). (19)

Furthermore, by means of Lemma 2, we deduce that Equation (18) has a solution g € H (D) with
h(0) =g(0) =1. Let

H(u,0) =u+ +p, (20)

v
A Ch)
o

where p is given by Equation (11). From Equations (18) and (19), we have

R{H (q(2);29'(z))} >0 (z € D).

Now, we will show that

(21)

2
%gﬂmnn<o(aeRr<—1+”>.
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From Equation (20), we obtain

T

x
plo+p)t £, (o)
RTINS
’p+ia 2‘p+ia
% x
e B(G+p) 2 L (B@E+p)\*  B(+p)

For p given by Equation (11), since the coefficient of ¢ in E, (") of Equation (22) is positive or equal to
zero and E, (¢) > 0, we obtain that % {H (ic;7)} < O0forallc € Rand 7 < —#. Thus, by applying
Lemma 1, we obtain that

R{g(z)} >0 (zeD).

Moreover, ¥/ (0) # 0 since (Pt (0) # 0. Hence, ¥(z) defined by Equation (14) is convex (univalent)
in D. Next, we verify that the Condition (12) implies that

P(z) <Y (2)

for ®(z) and ¥ (z) given by Equation (14). Without loss of generality, we assume that ¥(z) is analytic,
univalent on D and

¥ (&) £0 (jg =1).

Let us consider the function Z (z, t) defined by

a(141)

Then, we see easily that
97 (z,t) y ( o )
=Y 0)[(1+———04+1) ) #A0(0<t<o0; z€D).
3z | (0) [3(5+p)( ) ( )
This shows that

Z(z,t)=m(t)z+---

satisfies the restrictions tlim lay (t)| = 0 and ay (t) #0 (0 < t < 00). In addition, we obtain
—00

(=) o+ z¥" (z
) - st (o3
t

(0<t<oo;z€D),

B(

since ¥ (z) is convex and R (JTJFP)) > 0. Moreover, we have

Y@+ 5 ()
a(l

¥O) (1+ 5535

(24)
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and also the function ¥ (z) may be written by
Y(z) =Y¥(0) +¥Y'(0)y(z) (zeD), (25)

where (z) is a normalized univalent function in . We note that, for the function 1(z), we have the
following sharp growth and distortion results [32]:

A ShEls g (El=r<y) 26)
and L, L
(EE <y'(z) < e (|z] =7 < 1). 27)

Hence, by applying Equations (25), (26) and (27) to Equation (24), we can find easily an upper bound
for the right-hand side of Equation (24). Thus, the function Z(z, t) satisfies the second condition of
Lemma 5, which proves that Z(z, t) is a subordination chain. From the definition of subordination

chain, we note that N

WZ‘I’ (z) =Z(z0)

¢(2) =¥ (2) +

and
Z(z,0) <Z(zt) (0<t<o00),

which implies that
Z(C,t)¢Z(D0)=¢(D) (0<t<oo; D). (28)

If ®(z) is not subordinate to ¥(z), by Lemma 3, we see that there exist two points zop € D) and
Go € 0D satisfying

¢ (20) =¥ (o) and z9®' (z0) = (1+1t)&¥' (o) (0 <t < 00). (29)

Hence, by using Relations (12), (14), (23) and (29), we obtain

It = Y@+ g5, 1+00Y @)
= q’(Zo)JrﬁZo‘D/(zo)
— (| P Co) (ZO)V H’%’?ﬂzﬂ [H’A’"g’”f (Z°>re¢<m).
Z Hynyuf(z0) Z

This Contradicts (28). Thus, we conclude that ®(z) < ¥(z). If we consider ® = ¥, then we know that
Y is the best dominant. Therefore, we complete the proof of Theorem 1. [

Remark 1. The function ¥'(z) # 0 for z € D in Theorem 1 under the assumption

R{q(z)} =1+ %{Z‘;f,ﬂ(g) } >0 (zeD). (30)

In fact, if Y'(z) has a zero of order m at z = z1 € D\{0}, then we may write
¥(z) = (z—21)"Y¥1(z) (meN),
where ¥1(z) is analytic in D\{0} and ¥1(z1) # 0. Then, we have

B 2% (z) mz z¥(z)
g(z) =1+ ¥z) —1+Z_Z1 )

(31)
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Thus, choosing z — zq suitably, the real part of the right-hand side of Equation (31) can take any negative
infinite values, which contradicts hypothesis Equation (30). In addition, it is obvious that ¥’ (0) # 0 since

g () #0.
Using similar methods given in the proof of Theorem 1, we have the following result.

Theorem 2. Suppose that f,¢ € A(p) and

2y (2)
§R{1+ ) }> —r (32)
H/\,+,1,5 2(2) B H)\,,é, 2(2) H/\’+,1,¢5 2(2) B
[rer=nn [ [ [REC ).

where o is given by
02+ B2 (p+n =AY = [a2 = B (p+1 - A)’|

o= (33)
4ap(p+1—A)
Then,
HA+1,5f(Z) B HO (2) HA+1,5f(Z) B
(1) [WP b | Mo HAIC] 9
Hp i f(2)
implies that
p p
i)’ i) -
zP zP
H/\+1,(5g(z) AB . .
and [”Z"p} is the best dominant.
Next, we derive the dual result of Theorem 1.
Theorem 3. Suppose that f,g € A(p) and
z¢" (z)
R {1 + 7 2) > —p
g 2(2) B HA,5+1g(Z) M 2(2) B
¢(z) = (1—a) || +a | HEE . ;zeD],
z Hpy,u8(2) z
where p is given by Equation (11). If
W) B Ao+1 AS B
(1—a) [prwf(z)] ta [Hrbﬁ (2)1 [prwf(z)]
zP H]?rtysyf(z) zP
) B
is univalent in D and [H’”’Z’;ﬂz)} € H[1,1] N Q, then
200 7(2) p gAMoL (2) M £(2) B
pz) < (1—a) [P0 g | EOE il (36)
2 Hpyuf (2) Z



Symmetry 2019, 11, 1083 9of 14

implies that

lH;J\fg/ug(z)l f - lH;}fg/ﬂf(Z)l ¢

o — (37)
and [W] ’ is the best subordinant.
Proof. By using the functions ®(z), ¥(z) and q(z) given by Equations (14) and (15), we have
$(z) =Y (z) + ﬁz‘l” (z) = ¢ (¥ (2),2¥ (2)) (38)

and

R{q(z)} >0 (zeD).

Next, we will show that ¥(z) < ®(z). To derive this, we consider the function Z (z, t) defined by

I(z,t):‘I’(z)—l—mtz‘P’(z) (0<t<oo;zeD).
Then, we see that
0T (z,t) y < o )
=Y 0)(1+-——t 0(0<t<o;zeD),
0z z=0 () 5(‘5+P) 7& ( )

which shows that
Z(z,t)=am(t)z+---

satisfies tlim lay (t)| = ocand ay (t) # 0 (0 < t < o0). Furthermore, we obtain
— 00
9Z(z,t) 7
SN L a(ssin ()

0Z(z,t !
gi ) Y (z)

(0<t<oo; zeD).

By using a similar method as in the proof of Theorem 1, we can prove the second inequality of Lemma 5.
Hence, Z (z,t) is a subordination chain. Therefore, by means of Lemma 4, we see that Relation (36)
must imply given by Relation (37). Moreover, since Equation (38) has a univalent solution ¥, it is the
best subordinant. Therefore, we complete the proof. [

Using similar techniques given in the proof of Theorem 3, we have the following result.

Theorem 4. Suppose that f,¢ € A(p) and

e

¥ (2)
HAM g (2) B HM o(2) | [HM P g(2) B
() = (12 [P'ﬂgp | o HE RIS
paii 8(2)
where o is given by Equation (33). If
A+1,0 B Ad A+1,0 B
(1—a) Hyu i f(2) L Hyyuf (2) | | Hypsi f (2)
“ Huif@] L &
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A+L6 B
is univalent in D and {H””Z"/(z)} € H[1,1] N Q, then

Ao B 200y A Lo B
P(z) < (1—n) [M’Hp 2) + o fff}f('z) p,wp @) (39)
z Hp i f(2) z
implies that
B B

Hyi'8(2) Hpiil' f(2)

e e (40)
zP zP

A+1,0 B
and [H””;pg(z)} is the best subordinant.

If we combine Theorems 1 and 3, and Theorems 2 and 4, then we have the unified sandwich-type
results, respectively.

Theorem 5. Suppose that f,g; € A(p) (j =1, 2) and

R {1 + ZZ;{ ((Zj) } > —p (41)
]
B B
#1(2) = (1—a) [H?MU i H?:ﬁlg]«z)] [Hﬁ:i,ygﬂz)] e
/ Zp /\,5 . Zp 7 7
Hy,18j(2)

where p is given by Equation (11). If

1) HM]Z [Hz:,?;l <z>] [Hs;mz)r
) p
Hp,ri,yf(z) z

zP

16 18
is univalent in D and {W € H[1,1] N Q, then

B
< ¢ (2) (42)

$1(z) < (1—a)

‘Hﬁ:é,yf<z>r+a [H <z>] [H%wz)

Y
z Hyyuf(2) zF

implies that

B B B
[Hé,ﬁ,ygl(z)] . lH?;:i?, f(z)] . lH?;:;?,ygz(z)]
Zpnpdiie) : Zpnpd2\Z) |

zP Z zp (43)
@ ]P  TH ]
Moreover, [”’72",,1] and [‘”7;,] are the best subordinant and the best dominant, respectively.
Theorem 6. Suppose that f,g; € A(p) (j =1, 2) and
zp! (2)
R+ — > —0 (44)
{ e
gALo (2) B g (2) gL (2) B
i (z) = (1—a) | 22 8j\% Ta P8\ pam i\Z) | 2eD
: ZF Hp1i°8j(2) ZF
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where o is given by Equation (33). If

+u

(1) [ Hyif()]"

zP

HYS  f (2 >1 [Héﬂéf(z)r

A+1,0
Hp;y f(z) zP

A+1 0

is univalent in D and { pAH f(z)} € H[1,1]N Q, then

Ao 18 HMO A+1,6 B
B pﬂyf() 'iyyf() Hpﬂyf(z)
P1(z) < (1—a) [ P | ta Hﬁrlff(z)] [ 2P < 2(z) (45)
implies that
[Hﬁz‘;g (Z)r L [maise )1 lHﬁ‘@gﬁz)V »

/\+1 5g1(z) H)t+1 582( ) . . .
Moreover, % and L are the best subordinant and the best dominant, respectively.

We note that the assumption of Theorem 5, which states that
A0+1 A0 P
Hy; rz ﬂf( ) Hpyi £(2) | | Hynuf (2) P uf (2 )
(1—a) ta | —% and
Hyjyf(2) 2 2

needs to be univalent in I, may be exchanged by a different condition.

Corollary 1. Suppose that f,g; € A(p) (j =1, 2) and

297 (2)
%{1—1— 4’]{(2) } > —p

B Ad+1 Ad B
_ pu8i(2) Hpip 8i(2) | | Honu8i(2) |
(‘PJ(Z)(l ) [ o +a ez )] [ - ] ,zeD)
and ,
ey A @
A6 B AS+1 A6 B
oo ] [ o)
where p is given by Equation (11). Then,
@) [BAE)] [Hi ) '
o< [ [HES] [T <

implies that

[HAwgl( )r< [Hﬁ\gu (z)

B B
< HAW ugz( z)
zP zP .

zP

Proof. To derive Corollary 1, we need to show that the Restriction (47) implies the univalence of x (z).
Noting that 0 < p < 1/2, it follows that x (z) is close-to-convex function in ID (see [33]) and so x (z)
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is univalent in . In addition, by applying the similar methods given in the proof of Theorem 1, we
see that the function ®(z) defined by Equation (14) is convex (univalent) in . Therefore, by using
Theorem 5, we get the desired result. [

Using similar methods given in the proof of Corollary 1 with Theorem 6, we obtain the
following corollary.

Corollary 2. Suppose that f,g; € A(p) (j =1, 2) and

J _
§R{1—|— 1/2]-()}> o

A+1,6 B A, A, B
P (z) = (1 —a) [Hp%g](z) +a ng](z)] [H ng()] ., eD
] zp . zP /
P/'ng](z)
and Y (2)
z z
S
H/\+15f( ) 1B H)\§ lf( ) H/\+15f(z)'ﬁ
Y(z)=(1—n) pnyp +a A+1Fz5 pnyp ;zeD |,
| Z | | Hpppi* f(2) ] z |
where o is given by (33). Then,
[ AL éf( ) 18 [ M f(2) 1 [gAL 5f(z)_ B
B Hpnp J\=) P P
lPl (Z) = (1 “) 2P ta Hé;\;lyéf(Z) 2P = 1702 (Z)

implies that

lH;\:g,ygl(Z)lﬁ < [H;)alr‘]syf(z)]ﬁ < [H)\nygﬂ )]ﬁ

zP zP zP

3. Conclusions

Various applications of fractional calculus have an immense impact on the study of pure
mathematic and applied science. In the present paper, we obtain new results on subordinations and
superordinations for a wide class of operators defined by generalized fractional derivative operators
and generalized fractional integral operators. Furthermore, the differential sandwich-type theorems
are also discussed for these operators.
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