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Abstract: This paper aims to investigate how to determine the basic parameters of the helical
compression spring which supports a symmetrical cable-driven hybrid joint (CDHJ) towards the
elbow joint of wheelchair-mounted robotic manipulator. The joint design of wheelchair-mounted
robotic manipulator needs to consider lightweight but robust, workspace requirements, and variable
stiffness elements, so we propose a CDHJ which becomes a variable stiffness joint due the spring
under bending and compression provides nonlinear stiffness characteristics. Intuitively, different
springs will make the workspace and stiffness of CDHJ different, so we focus on studying the spring
effects on workspace and stiffness of CDHJ for its preliminary design. The key to workspace and
stiffness analysis of CDHJ is the cable tension, the key to calculate the cable tension is the lateral
bending and compression spring model. The spring model is based on Castigliano’s theorem to
obtain the relationship between spring force and displacement. The simulation results verify the
correctness of the proposed spring model, and show that the spring, with properly chosen parameters,
can increase the workspace of CDHJ whose stiffness also can be adjusted to meet the specified design
requirements. Then, the modelling method can be extended to other cable-driven mechanism with a
flexible compression spring.

Keywords: cable-driven hybrid joint; spring; lateral bending and compression; workspace; stiffness

1. Introduction

Wheelchair-mounted robotic manipulator is a typical type of the service robot which can help
users with motor impairments to perform activities of daily living [1–4], such as feeding, drinking,
dressing, and retrieval of daily objects. The research of wheelchair-mounted robotic manipulator has
been going on for nearly 55 years [1,4]. In the past, there are nearly a dozen wheelchair-mounted
robotic manipulators which have been developed. However, due to its poor usability, low payload,
and high cost, it is not widely used in the market [3,4]. Specifically, for example, the manipulator
is heavy, the joints are bulky, and the flexible motion is limited [5]. These problems may be solved
by the cable-driven mechanism (CDM), owing to its following remarkable characteristics: small
inertia, large workspace, high payload, good transportability, fully remote actuation, and ideal
reconfigurability [5–9]. Based on these characteristics, CDM is widely applied in engineering [6].
Several applications are listed as follows. Chen et al. [10] proposed a cable-driven parallel waist
rehabilitation robot; Liu et al. [11] proposed a spatial serpentine tail which used a cable-driven circular
shape joint; Eftychios et al. [12] proposed a reconfigurable articulated structure considered the structural
concept for reconfigurable buildings; Qiao et al. [13] presented the self-adaptive grasp process of a
finger which has three degrees of freedom and under actuated cable truss.
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Meanwhile, a wheelchair-mounted robotic manipulator as a collaborative robot [14] must perform
compliant motion in order to realize physical human-robot interaction [15], because in the field of
collaborative robotics to realize physical human-robot interaction, impact mitigation is a core issue [14].
That is to say, in the mechanical structure it needs used variable stiffness elements. So far, a number
of variable stiffness elements have been developed. One of them is CDM which is considered to
be antagonistic variable stiffness mechanism [16,17] inspired by the musculoskeletal system [18,19].
CDM can generate variable stiffness very effectively with large stiffness variations and it need not
modify the equilibrium configuration [16]. Yeo et al. [20] proposed cable-driven manipulators with
variable stiffness; Xu et al. [21] proposed a cable-driven soft robot arm in the underwater environment;
Liu et al. [22] used the mechanism structure of the human arm for reference, proposed a cable-driven
manipulator with a high-payload capacity, assembled physical prototype and tested the payload
capacity. Besides, the spring is usually used in most of the variable stiffness designs [23–25]. Seriani
et al. [14] investigated the preloaded structures for impact mitigation used the fundamental preloaded
element, a spring; However, Wu et al. [26] proposed the linear variable-stiffness mechanisms used
the preloaded element, a curved beam. López-Martínez et al. [27] proposed a passive mechanical
system which consists in a flexible linkage used a preloaded compression spring. Azadi et al. [16]
pointed out that changing the geometry of the system can change the stiffness, such as controlling
the active coils number of a coil spring, using regulable pitching stiffness, and changing the gap
between two leaf springs. Overall, CDM coupled with stiffness adjustability may address some issues
of wheelchair-mounted robotic manipulator joint design with relatively low energy consumption and
low cost.

As is known to all, cables must remain in tension while performing tasks. Therefore, the study of
the CDM workspace must consider the cable tension. There are some different workspaces which have
been identified like static equilibrium workspace, wrench-closure workspace, and wrench-feasible
workspace [28,29]. Analysis of these workspace generally starts from static equilibrium equations.
Static equilibrium workspace and wrench-closure workspace are essentially the same, which are the
set of poses where the end-effector can physically maintain equilibrium and all cables are in tension;
nevertheless, wrench-feasible workspace is defined as the set of poses where cables tension remains
within a prescribed range, the range is usually from the allowable minimum cable tension value to the
maximum cable tension value [28–31]. In addition, many applications require the end-effector to bear
certain force/moment combinations in the workspace. Accordingly, the wrench-feasible workspace
is considered as the most appropriate workspace [31], which is able to connect with the physical
world, and is the most practical workspace for CDM [29]. In this paper, the mentioned workspace is
wrench-feasible workspace.

CDM stiffness analysis can be divided into static stiffness analysis and dynamic stiffness
analysis [32,33]. Yuan et al. [32] and Nguyen et al. [34] pointed out that analysis and improvement
of the static positioning accuracy is the purpose of static stiffness analysis of CDM, especially in
the pick-and-place application. In this paper, the mentioned stiffness is static stiffness. However,
the vibration analysis is the purpose of dynamic stiffness analysis of CDM in those applications [32,33],
requiring high performances [35], especially dynamic performances [36]. Most researchers took
cables as massless springs which just considered axial stiffness of cables when CDM is with the
light-weighted [34], low speed [33], and small size [37,38], and used the Jacobian-based stiffness
analysis method [32,39–42] to make static stiffness analysis to describe the Cartesian stiffness matrix
which is the function of the manipulator’s configuration and mechanism stiffness values. However,
it needs to consider transversal stiffness when the cable profile is a sagging curve, the Jacobian-based
stiffness analysis method is not applicable [32]. Amare et al. [33] made dynamic stiffness analysis of
the CDM in three-dimensional inclined plane with external forces exerted by hydraulic cylinder on
the system. Yuan et al. [43] solved the vibration problems of structures used dynamic stiffness matrix
method which is used to identify the system natural frequencies.
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Spring, as a common component, has been applied in various fields. Although the helical
compression spring is commonly used to increase the performance of CDM, only a few studies
attempted to systematically analyze springs effects on the workspace and stiffness of CDM. Duan
et al. just analyzed the effects on the workspace of CDM with springs which are parallel to the cable,
and had no detailed analysis of the effects of spring basic parameters [44]. Similarly, in [45,46], they also
took spring as spring cable. Mustafa and Agrawal studied spring placement effects on altering the
cable tension required and increasing the feasible workspace [45]. Taghavi et al. [46] investigated
adding springs in between the links to improve the wrench-feasible workspace of a two-link CDM.
Essentially Duan et al. [44], Mustafa and Agrawal [45], and Taghavi et al. [46] treat springs as passive
cables in a straight line shape. During the whole CDM movement, the spring stiffness did not change.
In [5,36,47,48], they proposed a CDM with a linear compression spring spine which presents the
nonlinear stiffness characteristics under bending and compression, but they did not analyze the impact
of adding springs on the workspace and stiffness of CDM in detail. Gao et al. [47], Zhang et al. [5],
and Zhang et al. [36] treated the helical spring as a spatially curved bar. This concept of an equivalent
column of helical spring is in most engineering applications in [49]. Yigit et al. analyzed helical spring
using Castigliano’s Theorem [48]. The same idea is used for helical spring analysis as in [50].

This paper focuses on the spring effects on workspace and stiffness of a symmetrical cable-driven
hybrid joint (CDHJ) towards the elbow joint of wheelchair-mounted robotic manipulator for its
preliminary design in detail. That is to say, though the spring effects analysis, the basic parameters
of the helical compression spring of CDHJ can be determined, which makes preparations for the
next assembly prototype. Using Castigliano’s Theorem, which is proposed in [48,50], the helical
spring is analyzed to obtain the relationship between spring force and spring displacement. On the
basis the statics, the Cartesian stiffness matrix is derived by the Jacobian-based stiffness analysis
method [32,39–42] to deduce static stiffness analysis index of CDHJ. Intuitively, a spring, with properly
chosen parameters, can help in keeping cables taut resulting in larger workspace and adjusting CDHJ
stiffness to satisfy the specified design requirements.

This paper aims to investigate how to determine the basic parameters of the helical compression
spring. Used Castigliano’s theorem the relationship between spring force and displacement is obtained,
which is determined by the spring configuration, the geometry, and material properties. The spring
parameters are determined by the spring effects on workspace and stiffness of CDHJ. This study is
a first step in the CDHJ design. Hence, this research method can guide the design of other CDM
with a flexible compression spring with workspace and stiffness requirements. With relatively large
workspace, smooth motion, and light structure, the proposed CDHJ might have potential use for
wheelchair-mounted robotic manipulator elbow joint.

This paper is organized as follows. The concept of CDHJ and the kinematic modeling is presented
in Section 2; next, the modeling of spring lateral bending and compression is given in Section 3;
the workspace and stiffness index of CDHJ is given in Section 4; the springs effects on the workspace
and stiffness of CDHJ are studied in Section 5; and finally, discussions obtained from the results are
presented in the last section.

2. CDHJ Description and Kinematic Analysis

2.1. CDHJ Description

The muscles which control the movement of the human elbow joint are the triceps and the biceps.
The elbow joint movement are the antagonistic movement. Flexion occurs when the biceps contracts
and the triceps relaxes, while extension occurs when the biceps relaxes and the triceps contracts.
Hence, the musculoskeletal mechanism of the human elbow joint reflects symmetry. Based on the
mechanism, in order to realize the symmetry of motion, an elbow joint driven by 2 cables and
supported by a compression spring in the central position has been designed for the elbow joint
of the wheelchair-mounted robotic manipulator. As shown in Figure 1a, cable 1 and cable 2 drive
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the upper platform (moving platform), and imitate biceps brachii and triceps brachii, respectively.
The two platforms are supported by a compression spring, which is the parallel part; two rigid shafts
with a rotating pair are in the center of the spring, and rigid shaft 1 passes through the moving
platform, forming the series part. Overall, this elbow joint is a symmetrical cable-driven hybrid joint.
This symmetry is reflected not only in structure but also in motion, in other words, the upper platform
motion of the spring clockwise bend as Figure 1b is the same as the spring counter clockwise bend, so
in the next analysis, only the clockwise motion shown in Figure 1b will be analyzed.
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Figure 1. Diagram of the cable-driven hybrid joint (CDHJ). (a) 3-D joint mechanism. (b) 2-D
joint diagram.

Due under bending and compression linear helical compression spring provides nonlinear stiffness
characteristics, the CDHJ is a variable stiffness joint. Rigid shaft 1 passes through the upper platform,
therefore the CDHJ stiffness can be adjusted by translational motion of the upper platform. Due to the
limitation of the intermediate rigid shaft, the CDHJ has a total of two degrees of freedom. Therefore,
CDHJ is the simplification of variable stiffness mechanism. That is to say, the CDHJ with stiffness
adjustability towards wheelchair-mounted robotic manipulator elbow joint may ameliorate some
safety issues in the physical human-robot interaction due to its relatively low energy consumption and
low cost.

2.2. Kinematic Analysis

The cables whose profile is a straight line are assumed to have negligible mass. The diagram
of the CDHJ is illustrated in Figure 1b. {O1 × 1y1} is the global coordinate system, {O2x2y2} is a local
coordinate frame, all the coordinate origins are at the center of the platform. The upper and lower
platforms are thin round plates, their radii are b and a, respectively. Denote A1, B1, A2, and B2 as the
connecting points of cables 1 and 2, respectively; and the distance from O1 to the rotating pair center as
d. The spring is simplified and drawn as an arc.

As mentioned in the previous section, the CDHJ has a total of 2 degrees of freedom: the rotation
around the z-axis, and the translational motion on the x-y plane. According to the right hand rule,
when the bend direction is clockwise as shown in Figure 1b, θ is negative. Under the rigid restraint of
the rotating pair in the center of the spring, the relationship between translational component along
the x-axis and that along the y-axis in the global coordinate system can be expressed as:

x = − (y − d) tanθ (1)
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Denote Lm as the vector defining the mth cable, (m = 1,2), in the global coordinate system; LO1O2 is
→

O1O2, LO1Am is
→

O1A m , in the global coordinate system; LO2
O2Bm

is
→

O2Bm, in the local coordinate system.

The input of CDHJ is (l1, l2), the output is (y, θ). The kinematic relationship between the input
and output can be obtained used the closed loop vector method:

LM = LO1O2 +
O1
O2

RLO2
O2Bm

− LO1Am (2)

where O1
O2

R =


cosθ − sinθ 0
sinθ cosθ 0

0 0 1

 .

Since m = 1, 2, Equation (2) can be expanded as L1 =


x − b cosθ + a

y − b sinθ
0

 and

L2 =


x + b cosθ − a

y + b sinθ
0

. Hence, the cable lengths is l =

[
l1
l2

]
, l1 = ‖L1‖, and l2 = ‖L2‖.

Equation (1) differentiates time, and we obtain:

.
x = −

.
ytan(θ) − (y− d) sec2 θ

.
θ (3)

The dot product of Lm is as follows.

lm2 =
(
LO1O2 +

O1
O2

RLO2
O2Bm

− LO1Am

)T(
LO1O2 +

O1
O2

RLO2
O2Bm

− LO1Am

)
(4)

Equation (4) differentiates time, using a·(b × c) = b·(c × a) = (c × a)·b, and substitute
Equation (3) into it and simplify it, and we obtain:

B
.
q = A

.
X (5)

where B2×2 =

[
l1 0
0 l2

]
;

.
q2×1 =

 .
l1.
l2

; A2 × 2 =

 − L1xtanθ+ L1y − L1x(y − d) sec2θ − b cosθL1y + b sinθL1x

− L2xtanθ+ L2y − L2x(y − d) sec2θ + b cosθL2y − b sinθL2x

;
.
X2×1 =

 .
y1.
θ2

.
Hence, .

X = J
.
q (6)

where J = A−1B. Thus, the velocity Jacobian matrix J is obtained. It is the nonlinear mapping between
the position change of the upper platform and the length change of the cable, and it is necessary for the
analysis of CDHJ stiffness.

3. Modeling of Spring Lateral Bending and Compression

The spring in this CDHJ is subjected to bending and compression effects. The key to cable tension
analysis and CDHJ stiffness is spring lateral bending and compression model. In most engineering
applications, the coil spring under lateral buckling could be treated as an elastic beam [5,36,47,49,51].
Based this concept of an equivalent beam of helical spring, although wrenches of the spring exerted
on the moving platform can be calculated, the influence of different springs on the performance
of the mechanism cannot be analyzed by using this model. Therefore, in this paper, spring lateral
bending and compression analysis uses the idea in [48,50] to study the effects of different spring
parameters on the joint workspace and stiffness in detail. The essence of this modelling idea is to
obtain the relationship between spring force and spring displacement based on Castigliano’s theorem.
This modeling is developed based each coil of the spring analyzed separately, but the concept of an
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equivalent beam of helical spring is to simply crumple all the coils into one beam. Hence, according
to this idea, the helical spring lateral bending and compression model diagram is shown in Figure 2.
Figure 2a is the spring force analysis of the CDHJ. Cable forces T1 and T2 acting on the upper plate are
equivalent to generalized forces F1e, F2e, and Me. The frame {Okxkykzk} is attached to the center of the
helix section corresponding to the helix end point of each coil. The variable k is the index number of
the active coils. Two Cartesian coordinate systems {O0x0y0z0} and {Oxyz} are fixed to the lower and
upper platforms, respectively, with {O0x0y0z0} being the global coordinate system coincident on the
center of helix section corresponding to helix initiation point of the first coil. The number of spring
active coils is n. Each coil frame is rotated around its z-axes in equally, finally yn-axis and y-axis are
tangent. In order to use Castigliano’s theorem, Figure 2b shows the infinitesimal elements defined
in the helical spring as. The infinitesimal element angular position on k-th coil is defined as α on
xk-zk plane. Two forces exert on each spring coil infinitesimal element. One is on tangential direction
coincident on εz, the other is on normal direction coincident on εx.Symmetry 2020, 11, x FOR PEER REVIEW 6 of 20 
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Figure 2. Helical spring lateral bending and compression model diagram. (a) Spring force analysis
diagram on x-y plane. (b) Infinitesimal element on x-z plane from top view.

The position vector OPk is with respect to the local frame {Okxkykzk}. Obviously, OPk= OOk
k

+ OkPk. OkPkis denoted as the position of the infinitesimal element in the particular coil frame
{Okxkykzk}. In the deformed configurations of the spring bend, it is desired that it is the shape of
a circular arc. Meanwhile, due the platform motion is symmetric, the analysis only discusses the
clockwise bend as shown in Figure 1b. Hence, θ is negative. OkPk= [R cosα,−R cθα/ 2nπ, R sinα]T,
where Rc = −y/sinθ, R is radius of the helical spring, and n is the active coils number.

The position vector OOk is with respect to the global coordinate system. And OOk =.
[R c(1 − cos kθ/n) − x, −Rcsin kθ/ n − y, 0]T, so OOk

k= Rotz(− kθ/ n)OOk
The generalized forces vectors F1e, F2e, and Me are with respect to the global coordinate system.

So, F1e = [0,−F 1e , 0]T, F2e = [F 2e , 0, 0]T, and Me = [0, 0,−M e]
T. Then, F1e

k = Rotz(−kθ/ n)F1e,
F2e

k= Rotz(−kθ/ n)F2e, and Me
k = Rotz(−kθ/ n)Me. So far, Mk can be obtained as follows, which is

the total moment acting on the infinitesimal element.

Mk = M1e
k + M2e

k + Me
k (7)

where, M1e
k= OPk

×F1e
k, which is the moment acting on the element resulting from the equivalent

force vector F1e. Similarly, M2e
k = OPk

× F2e
k.

According to the Castigliano’s theorem, it should be defined in the element specific frame {εxεyεz}.
The moment vector Mε = Roty(α)M

k.
The strain energy in k-th coil, due to each element of moment vector Mε is given by

Ub1,k =

∫ 2π

0

(M ε
x

)2

2EI
Rdα (8a)
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Ub2,k =

∫ 2π

0

(M ε
y

)2

2EI
Rdα (8b)

Ut,k =

∫ 2π

0

(M ε
z

)2

2GJ
Rdα (8c)

where the modulus of elasticity is E, the shear modulus is G, the moment inertia is I, the polar moment
inertia is J. So, strain energy in the k-th coil is the summation of three strain energies.

Uk = Ub1,k + Ub2,k + Ut,k (9)

The spring total strain energy is the summation of all the coil strain energies.

U = Σk
1Uk (10)

Castigliano’s theorem is now invoked to determine the relationship between spring force and
spring displacement.

∆x =
∂U
∂F2e

(11a)

∆y =
∂U
∂F1e

(11b)

θ =
∂U
∂Me

(11c)

Equations (11a), (11b), and (11c) can be written in given form in Equation (12).
∆x
∆y
θ

 = D


F2e

F1e

Me

 (12)

where D is a 3 × 3 matrix. Let Kp be D−1, then the important relationship becomes:
F1e

F2e

Me

 = Kp


∆y
∆x
θ

 (13)

where Kp =


K11 K12 K13

K21 K22 K23

K31 K32 K33

. From Equation (1), ∆x = −(y − d) sec2θ∆θ − tanθ∆y, substitute it

into Kp and simplify, Equation (13) can become:
F1e

F2e

Me

 = K
[

∆y
θ

]
(14)

where K =


K11 − K12tanθ − K12(y − d) sec2θ + K13

K21 − K22tanθ − K22(y − d) sec2θ + K23

K31 − K32tanθ − K32(y − d) sec2θ + K33

.
Equation (14) reveals the nonlinear force-deformation relation or stiffness equation of the spring.

Wrenches of the spring exerted on the moving platform can be calculated by Equation (14), and then
through the static analysis of the moving platform, the cable tension can be obtained. Matrix K is
a more complex form of proportionality factor, which is determined by the spring configuration,
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the geometry and material properties and is not a constant. That is to say, the linear helical compression
spring became a nonlinear stiffness spring under the bending and compression effects. So, CDHJ is
a variable stiffness joint. Through translational motion, the stiffness of the spring is adjusted which
determines the joint system stiffness.

4. Workspace and Stiffness Index of CDHJ

4.1. Workspace Index

The workspace for CDHJ shows the set of poses for which the joint can be satisfied with
positive cable tension within the specified actuation cable limits. This workspace is generated by the
following conditions.

Wrench-feasible condition:

0 < Tmin ≤ Ti ≤ Tmax, i = 1, 2 (15)

The cable length should meet the following condition.

0 < lmin ≤ li, i = 1, 2 (16)

The translational should be restricted. From Equation (1), the translation component along
the x-axis is limited by (y, θ). Meanwhile, the translation motion is restricted by structural size of
CDHJ. Hence,

xmin ≤ x ≤ xmax (17)

The constant orientation workspace when θ is fixed, is defined as:

Wc =

 y ∈ R : f
(
θfix, y, l

)
= 0; Tmin ≤ Ti ≤ Tmax, lmin ≤ li, i = 1, 2,

xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax

 (18)

The total workspace should be the intersection of all constant orientation workspaces in the range
between θmin and θmax [52], is defined as:

W =

{
y ∈ R : f(y,θ, l) = 0; Tmin ≤ Ti ≤ Tmax, lmin ≤ li, i = 1, 2,
θmin ≤ θ ≤ θmax, xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax

}
(19)

In order to evaluate and compare the different spring effects on the CDHJ workspace, the authors
need to develop workspace index Aw, which is the area of joint workspace and is used to assess the size
of the workspace. The boundary values in arbitrary units, corresponding to that showed in Equations
(15)–(17) for the following numerical examples, are given in Table 1.

Table 1. Boundary values of variables.

Parameters Value

Tmin (N) 1
Tmax (N) 300
lmin (m) 0.01
xmin (m) 0
xmax (m) 0.08
θmin (rad) −1.48
θmax (rad) 0
ymin (m) 0.035
ymax (m) 0.095
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4.2. CDHJ Stiffness Index

This section focuses on analyzing static stiffness analysis of CDHJ. For a massless cable
whose profile is a straight line, static stiffness analysis generally uses the Jacobian-based stiffness
analysis method [32,39–42] to describe the Cartesian stiffness matrix which is the function of the
manipulator’s configuration and mechanism stiffness values. For CDHJ, the Cartesian stiffness matrix
KJ, the relationship between the incremental displacement δX i, and the incremental wrench δW [39,42]
are as follows:

δW = KJδX (20)

KJ = −
[
∂S
∂y T ∂S

∂θT
]
− SKlJ−1 (21)

where Kl =

[
k1 0
0 k2

]
, k1 and k2 are rigidity of cable 1 and cable 2, respectively; S3×2 = −


l̂1x l̂2x

l̂1y l̂2y

r1z r2z

,
l̂m = lm

lm
, m = 1, 2; O1

O2
RLO2

O2Bm
× l̂1 as r1, and O1

O2
RLO2

O2Bm
× l̂2 as r2; T2×1 =

[
T1

T2

]
, T1 and T2 are the

tension of cable1 and cable 2, respectively.
In order to evaluate and compare the different spring effect on the CDHJ stiffness, the stiffness

indices based on the stiffness matrix should be developed. Due the previous Cartesian stiffness matrix
namely Equation (21) is inhomogeneous.

Fx(N)

Fy(N)

Mz(N·m)


3×1

=


[
KJ11(N/m)

]
2×1

[
KJ12(N)

]
2×1[

KJ21(N)
]
1×1

[
KJ22(N·m)

]
1×1


3×2

[
y(m)

θ(rad)

]
2×1

(22)

The Cartesian stiffness matrix needs to be homogenized first. This paper adopts the method
introduced in [40,42], which divides the unit-inconsistent matrix into unit-consistent translational and
rotational components.

DenoteλJt1 andλJt2 as the eigenvalues of GJFGT
JF, andλJr is GJMGT

JM, where GJF =
[

KJ11 KJ12

]
2×2

is a dimensionally homogeneous matrix in N; GJM =
[

KJ21 KJ22

]
1×2

is a dimensionally homogeneous
matrix in N·m. The directions of maximum and minimum translational stiffness are the eigenvectors
of GJFGT

JF, and the stiffness magnitudes in these directions are the corresponding eigenvalues λJt1

and λJt2. GJMGT
JM represents the rotational part of the stiffness, which is reduced to a scalar value.

Therefore, denote kJt = min(
√
λJt1,

√
λJt2

)
as the translational stiffness index. Similarly, denote the

rotational stiffness index as, kJr =
√
λJr. The two performance indices kJt and kJr indicate the joint

stiffness behaviors, and a higher index means higher rigidity [40,42]. In order to evaluate the CDHJ
stiffness, the index fJ is defined as:

fJ = kJtkJr (23)

In order to evaluate and compare the different spring effects on the spring stiffness, spring stiffness
matrix K also uses the above method to be homogenized. Thus, denote the translational stiffness index
as kt. Similarly, denote the rotational stiffness index as kr. The index f is used to evaluate the helical
spring stiffness, and f = ktkr.

5. Numerical Simulation

5.1. Cable Parameters

In this paper, we recommend that this cable-driven hybrid joint will be applied to the elbow joint
of wheelchair-mounted robotic manipulator. The manipulator’s service object is the special group of
the elderly and the disabled, so the speed and acceleration need low; the working objects are daily
necessities such as water cups, toothbrushes, books, etc., so the manipulator is lightweight robot;



Symmetry 2020, 12, 101 10 of 20

the manipulator is mounted on wheelchair, and its working environment is home or office, so it has small
size. According to the application characteristics (light-weighted, small size, low speed, pick-and-place
application) of wheelchair-mounted robotic manipulator, cables are modeled as a massless spring.
Spring cable model is suitable for the robots with the light-weighted [34], low speed [33], and small
size [37,38], whose profile is a straight line. For the cable actuators, 6 × 7 wire rope is considered. dc is
diameter of steel wire, 2 mm. According to the method utilized in [42], the stiffness of the ith cable is
formulated as:

ki =
ECAC

li+lcw
(24)

where EC denotes the modulus of elasticity of the cable, 68 Gpa; AC denotes the cross-sectional area of
the cable, 5.28 mm2; lcw denotes the length of the actuating winch, which is assumed to be constant,
30 mm.

5.2. Numerical Analysis of Spring Effects on CDHJ Workspace and Stiffness

Helical compression spring basic parameters are the radius of the spring R, the radius of the
spring wire r, the modulus of elasticity of the spring material E, the shear modulus of that material G,
and the active coils number n. Different parameters determine different helical compression springs.
In order to use Castigliano’s theorem to derive the nonlinear force-deformation relation of the spring,
the total strain energy of the spring should be calculated using the above values, and then calculate the
cable tension. This section analyses these spring parameters effects on CDHJ workspace and stiffness.
Furthermore, the basic parameters of the compression spring of CDHJ can be determined. Structural
parameters a, b, and d are 0.08 m, 0.0623 m, and 0.025 m, respectively.

5.2.1. Spring Parameters (n, E/G) on CDHJ Workspace and Stiffness

Spring as a common part, its parameters are discrete. In this section, spring materials are selected
as carbon spring steel wire, oil quenched-tempered spring steel wire, alloy spring steel wire, stainless
steel wire for spring, copper and copper alloy wire, beryllium bronze wire, spring steel. The modulus
of elasticity and the shear modulus, namely E/G of these materials are in Table 2. Due to structural
size restriction, compression spring free height is 105 mm, active coils numbers are 5, 8, 10, 13, 16,
20, and 25. In order to make a clear explanation of spring parameters (n, E/G) effects, the other
parameters of spring are selected primarily, namely R = 0.02 m, r = 0.0015 m. Figure 3 shows spring
parameters on CDHJ workspace. The horizontal coordinate is spring material marked as shown in
Table 2. Figure 4 shows spring parameters on CDHJ stiffness. Every pose point of the joint stiffness
calculation is all in the workspace. The longitudinal coordinate is the minimum value of joint stiffness
under this configuration.

Table 2. E/G of spring materials.

Spring Materials Mark E (Gpa) G (Gpa)

carbon spring steel wire, oil
quenched-tempered spring steel wire, alloy

spring steel wire, spring steel
1 206 78.5

stainless steel wire for spring (A) 2 185 70
stainless steel wire for spring (B), (C) 3 195 73

copper and copper alloy wire 4 93.1 40.2
beryllium bronze wire 5 129.4 42.1
spring-tempered steel 6 195 81.5
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Figure 4. Spring parameters (n, E/G) on CDHJ stiffness. (a) min( fJ) at n = 5; (b) min( fJ) at n = 8;
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As shown in Figure 3, the minimum of CDHJ workspace area Aw is all at No. 5 material,
the maximum of Aw is all the same at n = 8 for No. 4 material and No. 6 material, n = 10 for No. 4
material and No. 6 material, n = 13 for No. 6 material, and n = 16 for No. 6 material. When CDHJ
is the same material, Aw is all the minimum at n = 5. Contrarily, when CDHJ is the same material,
the minimum value of joint stiffness min( fJ) is the maximum at n = 5 as shown in Figure 4. If n = 5 is
removed, min( fJ) under No. 1, No. 2, No. 3, No. 4, and No. 6 material increases with the increase of n.

In conclusion, if the larger CDHJ workspace is firstly considered, and the larger joint stiffness
is secondly considered, then the selection of n and E/G is 10 and 93.1/40.2 Gpa (No. 4 material). So,
the next analysis is based on this.

5.2.2. Variable Stiffness Spring Effects on the CDHJ Stiffness

Linear helical compression spring became a nonlinear stiffness spring under combined bending
and compression effects as shown in Figure 5. Spring stiffness f increases with the increase of θ,
and decreases with the increase of compression ∆y as shown in Figure 6a,c. Therefore, CDHJ is the
simplification of nonlinear stiffness mechanism, and CDHJ stiffness adjustment is achieved by the
additional translation motion as shown in Figure 6a,c. From Figure 5, when θ is zero, the change of
spring stiffness is not affected by the translational motion. Thus, it can be called as a singular position
for stiffness [48]. In fact, at θ = 0◦, the compression spring is a linear spring, which meets Hooke’s law.
That is to say, no matter how y is adjusted, the spring stiffness remains unchanged. From Figure 6a,c,
obviously, spring stiffness f is smaller at n = 10 for No. 4 material than at n = 5 for No. 1 material.

From Figure 6b,d, intuitively, the tension of one cable increases, the tension of other cable decreases,
and the antagonistic characteristics of two cables are in line with the antagonistic characteristics of
CDM, which verifies the correctness of the spring lateral bending and compression model. Meanwhile,
comparing Figure 6a,b with Figure 6c,d, when the spring stiffness f is large, the corresponding
cable tension is also large, which also verifies the correctness of the spring lateral bending and
compression model.

In summary, the spring stiffness under lateral bending and compression is changing, which makes
CDHJ stiffness variable, and when CDHJ is at work, its stiffness can be adjusted by the additional
translation motion. In addition, when spring stiffness is large, the cable tension is also required to be
large, which agrees with the rule of thumb.
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at n = 10 for No. 4 material.

5.2.3. Spring Parameters (R, r) on CDHJ Workspace and Stiffness

Alike the idea of the last section, the spring radius R is 0.015 m, 0.0175 m, 0.02 m, 0.0225 m, 0.025 m,
0.0275 m, and 0.0325 m. The spring wire radius r is 0.00075 m, 0.001 m, 0.00125 m, 0.0015 m, 0.00175 m,
and 0.002 m. Figure 7 shows spring parameters (R, r) on CDHJ workspace. The horizontal coordinate
is spring radius R. Figure 8 shows spring parameters (R, r) on CDHJ stiffness fJ. The longitudinal
coordinate is the minimum value of joint stiffness under this configuration.

As shown in Figure 7, except r = 0.002 m, CDHJ workspace area Aw decreases with the increase
of R. Except R = 0.015 m, CDHJ workspace area Aw increases with the increase of r. Whether how
much r is, the maximum of Aw is at R = 0.015 m. The Aw maximum is at r = 0.0015 m, and 0.00175 m.
Aw approaches 0 at r = 0.00075 m, R = 0.0225 m, and r = 0.001 m, R = 0.0325 m. The minimum of Aw is
0 at r = 0.00075 m, R = 0.025 m, 0.0275 m, and 0.0325 m.

As shown in Figure 8, CDHJ stiffness min( fJ) increases with the increase of R. CDHJ stiffness
min( fJ) decreases with the increase of r. Contrarily with the effects on joint workspace, the maximum
of min( fJ) is at r = 0.00075 m, R = 0.025 m, 0.0275 m, and 0.0325 m. When Aw approaches 0 at r =

0.00075 m, R = 0.0225 m, and r = 0.001 m, R = 0.0325 m, min( fJ) is relatively large. The difference is too
large, therefore the value of min( fJ) approaches 0 at Figure 8a,b. In fact, they are 1.054 × 108 and 1.0432
× 108 and are relatively large compared with other cases.

Comprehensive comparison of Figures 7 and 8, it can be inferred that when the workspace is
large, stiffness is relatively small. Obviously this is in accord with common sense. We always hope that
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the workspace is larger, and there is a certain degree of stiffness. So the selection of R and r is 0.015 m
and 0.0015 m.
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6. Discussion

In order to determine the spring basic parameters, this paper puts forward spring effects on CDHJ.
After introducing the symmetry design, the kinematic analysis of the joint is carried out to calculate the
velocity Jacobian matrix. Then, in order to calculate the cable tension, it analyzes lateral bending and
compression modeling of the spring based on Castigliano’s theorem. This method may be applied to
other CDM with spring spines. Finally, it analyzes spring effects on CDHJ workspace and stiffness with
Matlab. This is actually similar to the stiffness feasible workspace mentioned in [53], which can provide
ideas for the optimal design of other CDM. First, because the linear helical compression spring became
a nonlinear stiffness spring under the bending and compression effects as shown in Figure 5, the CDHJ
is a variable stiffness mechanism, whose stiffness adjustment can be realized by the translational motion
of the upper platform as shown in Figure 6a,c. From Figure 6, when spring stiffness is relatively large,
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the cable tension is also required to be large, this can verify the correctness of the spring lateral bending
and compression model. Second, when the spring is different, workspace and stiffness of CDHJ is
different. Comparing Figure 3 with Figure 4, and Figure 7 with Figure 8, when the CDHJ workspace
is relatively large, the stiffness is relatively small. This agrees with the rule of thumb, and indirectly
verifies the correctness of the spring lateral bending and compression model. Due spring as a common
part, its parameters are discrete. After analyzing the spring basic parameters (n, E/G, R, r) selected in
the paper, it can be inferred that joint workspace is larger, and there is a certain degree of stiffness at n
= 10, E/G = 93.1/40.2 Gpa, R = 0.015 m, r = 0.0015 m, whose workspace is as shown in Figure 9. Due the
upper platform motion being symmetric, Figure 9 only shows the workspace of the spring clockwise
bend as shown in Figure 1b. From Figure 9, the larger the rotation angle, the smaller the translation
range, this shows that the larger the rotation angle, the smaller the adjustable range of CDHJ stiffness.
In addition, due to the restriction of the intermediate spring, the CDHJ rotation angle will not exceed
70◦, but the CDHJ will be an elbow joint for wheelchair-mounted robotic manipulator to perform
activities of daily living which is needed elbow range of motion of 110◦ [54], so the proposed CDHJ
may be of the potential use for wheelchair-mounted robotic manipulator elbow joint featured with
stiffness adjustability, large workspace, smooth motion, and light structure. Therefore, the next work is
to assemble the CDHJ prototype based on the spring basic parameters determined by the simulation
results. The future research will study the shoulder and wrist joints (3 or 4 cables driven) and assemble
them into a wheelchair-mounted robotic manipulator.
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