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Abstract: We consider an anomaly free extension of the standard model gauge group GSM by an
abelian group to GSM ⊗U(1)Z. The condition of anomaly cancellation is known to fix the Z-charges
of the particles, but two. We fix one remaining charge by allowing for all possible Yukawa interactions
of the known left-handed neutrinos and new right-handed ones that obtain their masses through
interaction with a new scalar field with spontaneously broken vacuum. We discuss some of the
possible consequences of the model.
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1. Introduction

The remarkable experimental success of the standard model of elementary particle interactions [1]
leaves very little room for the explanation of the observed deviations from it. This success story has
culminated in the discovery of the Higgs particle [2,3], which could not have happened without the
immense theoretical input to the design of the accelerator and the experiments. With this discovery,
a new era of particle physics has also arrived as there is no established model that can guide us to
new discoveries. Therefore, theories that might incorporate the existing deviations from the standard
model are desirable.

The most outstanding experimental observations that cannot be explained by the standard
model are the (i) abundance of dark matter in the universe; (ii) non-vanishing neutrino masses;
(iii) leptogenesis (Baryogenesis can be explained in the standard model provided leptogenesis occurs,
which is called lepto-baryogenesis); (iv) accelerating expansion of the universe, signaling the existence
of dark energy [4] (There are numerous other deviations of experimental results from precision
predictions, but to date none has reached the significance of discovery). In addition to (i)–(iv),
(v) inflation in the early universe is also considered a fairly established fact, although there is no direct
proof for it. All these facts have to be explained by such an extension of the standard model that
respects (a) the high precision confirmation of the standard model at collider experiments (b) and the
lack of finding new particles beyond the Higgs boson by the LHC experiments [5,6]. There is one more
feature of the standard model, the metastability of a vacuum [7,8] that does not necessarily require
new physics, but, if new physics exist, it should not worsen the stability, but possibly push the vacuum
to the stability region.

In addition to the experimental success of the standard model, it is also highly efficient being
based on the concepts of local gauge invariance and spontaneous symmetry breaking [9,10]. The only
exception of economical description is the relatively large number of Yukawa couplings of the fermions
needed to explain their masses. The generation of the fermion masses, however, is also highly efficient
in the sense that it uses the same spontaneous symmetry breaking of the scalar field to which all
other particles owe their masses. In this spirit, it is reasonable to expect that the non-vanishing
masses of the neutrinos should be explained by Yukawa couplings too. In addition, the choice of the
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gauge groups and number of family replications look arbitrary and presently these are determined by
phenomenology only.

Clearly, the neutrino masses must play a fundamental role in the possible extensions of the
standard model. As the gauge and mass eigenstates of the neutrinos differ, they must feel a second
force to the gauge interaction. The second force can be a Yukawa coupling to a scalar. Such explanation
of neutrino masses in general requires the assumption of the existence of right-handed neutrinos and
perhaps a new scalar field.

In the spirit of economy and level of arbitrariness explained above, in this article, we propose
an extension of the zoo of particles in the standard model with three right-handed neutrinos and the
gauge symmetry of the standard model Lagrangian GSM = SU(3)c⊗ SU(2)L⊗U(1)Y to GSM⊗U(1)Z.
Such extensions have already been considered in the literature extensively (for an incomplete set
of popular examples and their studies, see [11–13]). In particular, it was shown that the charge
assignment of the matter fields is constrained by the requirement of anomaly cancellations up to two
free charges [14]. To define the model completely, one has to take a specific choice for these remaining
free charges. In this article, we propose that the mechanism for the generation of neutrino masses fixes
the values of the U(1)Z charges up to an overall scale that can be embedded in the U(1)Z coupling.

The difference between our proposal and existing studies is two-fold. The model proposed here
introduces a new force along the same principles as the known forces are included in the standard
model: all renormalizable terms that are allowed by the underlying gauge symmetry are present,
but no other symmetry than the extra U(1)Z is assumed. Our primary goal is not the prediction of new
observable phenomena at collider experiments, but first focus only on the unexplained phenomena
(i–iv), with respecting the observations (a) and (b). As the deviations from the standard model
are related to the intensity and cosmic frontiers of particle physics, we assume that the new U(1)Z
interaction is secluded from the standard model by a small coupling. Thus, we propose the model in a
region of the parameter space that has received little attention before.

2. Definition of the Model

2.1. Fermion Sector

We consider the usual three fermion families of the standard model extended with one
right-handed Dirac neutrino in each family (We find it natural to assume one extra neutrino in each
family although known observations do not exclude other possibilities). We introduce the notation

ψ
f
q,1 =

(
U f

D f

)
L

ψ
f
q,2 = U f

R ψ
f
q,3 = D f

R ; ψ
f
l,1 =

(
ν f

` f

)
L

ψ
f
l,2 = ν

f
R ψ

f
l,3 = `

f
R (1)

for the chiral quark fields ψq and chiral lepton fields ψl . In Equation (1), L and R denote the left
and right-handed projections of the same field (The Weyl spinors of νL and νR can be embedded
into different Dirac spinors, leading to Majorana neutrinos, without essential changes in the model.
However, the negative results of the experiments searching for neutrinoless double β-decay make the
Majorana nature of neutrinos increasingly unlikely),

ψL/R ≡ ψ∓ =
1
2
(1∓ γ5)ψ ≡ PL/Rψ . (2)

Then, the field content in family f ( f = 1, 2 or 3) consists of two quarks, U f , D f , a neutrino ν f and
a charged lepton ` f , where U f is the generic notation for the u-type quarks U1 = u, U2 = c, U3 = t,
while D f is that for d-type quarks, D1 = d, D2 = s, and D3 = b. The charged leptons ` f can be `1 = e,
`2 = µ or `3 = τ and ν f are the corresponding neutrinos, ν1 = νe, ν2 = νµ, ν3 = ντ .
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For a matrix U ∈ GSM ⊗U(1)Z, the three generic fields in Equation (1) transform as

Uψ1 (x) = eiT ·α(x) ei y1β(x) ei z1ζ(x) ψ1(x), where T =
1
2
(τ1, τ2, τ3),

Uψj (x) = ei yj β(x)ei zjζ(x)ψj(x), where j = 2, 3,
(3)

and α = (α1, α2, α3), with αi, β, ζ ∈ R. The matrices τi are the Pauli matrices, yj is the hypercharge,
while zj denotes the Z-charge of the field ψj. There is a lot of freedom how to choose the Z-charges.
In this article, we make two assumptions that fix these completely. The first is that the charges do not
depend on the families, which is also the case in the standard model (Several recent observations hint
at violation of lepton flavor universality, which may be taken into account in our model by choosing
family dependent Z-charges. However, those results are controversial at present, so we neglect them).
With this assumption, the assignment for the Z-charges of the fermions can be expressed using two
free numbers Z1 and Z2 of the U quark fields if we want a model free of gauge and gravity anomalies.
The rest of the charges must take values as given in Table 1 [14].

Table 1. Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion and scalar
fields of the complete model. The charges yj denote the eigenvalue of Y/2, with Y being the hypercharge
operator and zj denote the supercharges of the fields ψj of Equation (1) (j = 1, 2, 3). The right-handed
Dirac neutrinos νR are sterile under the GSM group. The sixth column gives a particular realization of
the U(1)Z charges, motivated below, and the last one is added for later convenience.

field SU(3)c SU(2)L yj zj zj rj = zj/zφ − yj

UL, DL 3 2 1
6 Z1

1
6 0

UR 3 1 2
3 Z2

7
6

1
2

DR 3 1 − 1
3 2Z1 − Z2 − 5

6 − 1
2

νL, `L 1 2 − 1
2 −3Z1 − 1

2 0

νR 1 1 0 Z2 − 4Z1
1
2

1
2

`R 1 1 −1 −2Z1 − Z2 − 3
2 − 1

2

φ 1 2 1
2 zφ 1 1

2

χ 1 1 0 zχ −1 −1

The Dirac Lagrangian summed over the family replications,

LD = i
3

∑
f=1

3

∑
j=1

(
ψ

f
q,j(x) /Djψ

f
q,j(x) + ψ

f
l,j(x) /Djψ

f
l,j(x)

)
,

Dµ
j = ∂µ + igL T ·Wµ + igY yjBµ + igZ zjZµ

(4)

is invariant under local G = GSM ⊗U(1)Z gauge transformations, provided the five gauge fields
introduced in the covariant derivative transform as

T ·Wµ(x) G−→ T ·W ′µ(x) = U(x) T ·Wµ(x)U†(x) +
i

gL
[∂µ U(x)]U†(x)

Bµ G−→ B′µ(x) = Bµ(x)− 1
gY

∂µβ(x) Zµ G−→ Z′µ(x) = Zµ(x)− 1
gZ

∂µζ(x),
(5)

where U(x) = exp [iT · α (x)]. The gauge invariant kinetic term for these vector fields is

LB,Z,W = −1
4

BµνBµν − 1
4

ZµνZµν − 1
4

Wµν ·Wµν, (6)
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with Bµν = ∂µBν − ∂νBµ ≡ ∂[µBν], Zµν = ∂[µZν] and Wµν = ∂[µWν] − g Wµ ×Wν. The field strength

T ·Wµν transforms covariantly under G transformations, T ·Wµν
G−→ U(x) T ·Wµν U†(x), but Bµν and

Zµν are invariant, hence a kinetic mixing term of the U(1) fields is also allowed by gauge invariance:

− ε

2
BµνZµν . (7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation(
B′µ
Z′µ

)
=

(
1 sin θZ
0 cos θZ

)(
Bµ

Zµ

)
sin θZ = ε . (8)

In terms of the redefined fields, the covariant derivative becomes

Dµ
j = ∂µ + igL T ·Wµ + igY yjB′µ + i(g′Z zj − g′Y yj)Z′µ, (9)

where g′Y = gY tan θZ = εgY +O(ε3) and g′Z = gZ/ cos θZ = gZ +O(ε2). Thus, the effect of the kinetic
mixing is to change the couplings of the matter fields to the vector field Zµ. Note that we cannot
immediately combine the coupling factor (g′Z zj − g′Y yj) into a single product of a coupling and a
charge. We shall discuss this issue further below.

Gauge symmetry forbids mass terms for gauge bosons. Fermion masses must also be
absent because

m ψ̄ψ = m ψ̄LψR + m ψ̄RψL,

but the ψL, ψR fields transform differently under G. Thus, the G-invariant Lagrangian describes
massless fields in contradiction to observation.

2.2. Scalar Sector

To solve the puzzle of missing masses, we proceed similarly as in the standard model, but,
in addition to the usual Brout–Englert–Higgs (BEH) field φ, which is an SU(2)L-doublet

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (10)

We also introduce another complex scalar χ that transforms as a singlet under GSM
transformations. The gauge invariant Lagrangian of the scalar fields is

Lφ,χ = [Dφ µφ]∗Dµ
φφ + [Dχ µχ]∗Dµ

χχ−V(φ, χ), (11)

where the covariant derivative for the scalar s (s = φ, χ) is

Dµ
s = ∂µ + igL T ·Wµ + igY ysB′µ + i(g′Z zs − g′Y ys)Z′µ (12)

and the potential energy

V(φ, χ) = V0 − µ2
φ|φ|2 − µ2

χ|χ|2 +
(
|φ|2, |χ|2

)( λφ
λ
2

λ
2 λχ

)(
|φ|2
|χ|2

)
, (13)

in addition to the usual quartic terms, introduces a coupling term −λ|φ|2|χ|2 of the scalar fields in the
Lagrangian. For the doublet, |φ| denotes the length

√
|φ+|2 + |φ0|2. The value of the additive constant

V0 is irrelevant for particle dynamics but may be relevant for inflationary scenarios, hence we allow
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for its non-vanishing value. In order for this potential energy to be bounded from below, we have to
require the positivity of the self-couplings, λφ, λχ > 0. The eigenvalues of the coupling matrix are

λ± =
1
2

(
λφ + λχ ±

√
(λφ − λχ)2 + λ2

)
, (14)

while the corresponding un-normalized eigenvectors are

u(+) =

(
2
λ (λ+ − λχ)

1

)
and u(−) =

(
2
λ (λ− − λχ)

1

)
. (15)

As λ+ > 0 and λ− < λ+, in the physical region, the potential can be unbounded from below
only if λ− < 0 and u(−) points into the first quadrant, which may occur only when λ < 0. In this case,
to ensure that the potential is bounded from below, one also has to require that the coupling matrix be
positive definite, which translates into the condition

4λφλχ − λ2 > 0 . (16)

With these conditions satisfied, we can find the minimum of the potential energy at field values
φ = v/

√
2 and χ = w/

√
2 where the vacuum expectation values (VEVs) are

v =
√

2

√√√√2λχµ2
φ − λµ2

χ

4λφλχ − λ2 w =
√

2

√√√√2λφµ2
χ − λµ2

φ

4λφλχ − λ2 . (17)

Using the VEVs, we can express the quadratic couplings as

µ2
φ = λφv2 +

λ

2
w2 µ2

χ = λχw2 +
λ

2
v2 (18)

so those are both positive if λ > 0. If λ < 0, the constraint (16) ensures that the denominators of the
VEVs in Equation (17) are positive, so the VEVs have non-vanishing real values only if

2λχµ2
φ − λµ2

χ > 0 and 2λφµ2
χ − λµ2

φ > 0 (19)

simultaneously, which can be satisfied if at most one of the quadratic couplings is smaller than zero.
We summarize the possible cases for the signs of the couplings in Table 2.

Table 2. Possible signs of the couplings in the scalar potential V(φ, χ) in order to have two
non-vanishing real VEVs. Θ is the step function, Θ(x) = 1 if x > 0 and 0 if x < 0.

Θ(λ) Θ(λφ) Θ(λχ) Θ(4λφλχ − λ2) Θ(µ2
φ)Θ(µ2

χ) Θ(2λχµ2
φ − λµ2

χ)Θ(2λφµ2
χ − λµ2

φ)

1 1 1 unconstrained 1 unconstrained
0 1 1 1 1 unconstrained
0 1 1 1 0 1

After spontaneous symmetry breaking of G → SU(3)c ⊗U(1)Q, we use the following convenient
parametrization for the scalar fields:

φ =
1√
2

eiT ·ξ(x)/v

(
0

v + h′(x)

)
and χ(x) =

1√
2

eiη(x)/w(w + s′(x)
)

. (20)
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We can use the gauge invariance of the model to choose the unitary gauge when

φ′(x) =
1√
2

(
0

v + h′(x)

)
and χ′(x) =

1√
2

(
w + s′(x)

)
, (21)

and the vector fields are transformed according to Equation (5). With this gauge choice, the scalar
kinetic term contains quadratic terms of the gauge fields from which one can identify mass parameters
of the massive standard model gauge bosons proportional to the vacuum expectation value v of the
BEH field and also that of a massive vector boson Z′µ proportional to w. We can diagonalize the mass
matrix (quadratic terms) of the two real scalars (h′ and s′) by the rotation(

h
s

)
=

(
cos θS − sin θS
sin θS cos θS

)(
h′

s′

)
, (22)

where, for the scalar mixing angle θS ∈ (−π
4 , π

4 ), we find

sin(2θS) = −
λvw√

(λφv2 − λχw2)2 + (λvw)2
. (23)

The masses of the mass eigenstates h and s are

Mh/H =

(
λφv2 + λχw2 ∓

√
(λφv2 − λχw2)2 + (λvw)2

)1/2
, (24)

where Mh ≤ MH by convention. At this point, either h or H can be the standard model Higgs boson.
A more detailed analysis of this scalar sector but within a different U(1)Z model can be found in
Ref. [15] and for the present model in Ref. [16].

2.3. Fermion Masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⊗ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions (We
distinguish the hypercharge Y from the index referring to Yukawa terms using different type of letters)

LY = − [cDQ̄L · φ DR + cUQ̄L · φ̃ UR + c` L̄L · φ `R] + h.c., (25)

where h.c. means Hermitian conjugate terms and the parameters cD, cU , c` are called Yukawa couplings
that are matrices in family indices and summation over the families is understood implicitly. The dot
product abbreviates scalar products of SU(2) doublets:

Q̄L · φ ≡ (Ū, D̄)L

(
φ(+)

φ(0)

)
Q̄L · φ̃ ≡ (Ū, D̄)L

(
φ(0) ∗

−φ(+) ∗

)
(26)

and L̄ ≡
(
ν̄`, ¯̀). The Z-charge of the BEH field is constrained by U(1)Z invariance of the Yukawa

terms to zφ = Z2 − Z1, which works simultaneously for all three terms.
After spontaneous symmetry breaking and fixing the unitary gauge, this Yukawa

Lagrangian becomes

LY = − 1√
2
(v + h(x))

[
cD D̄LDR + cU ŪLUR + c` ¯̀L`R

]
+ h.c. (27)
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We see that there are mass terms with mass matrices Mi =
civ√

2
, where i = D, U, `:

LY = −
(

1 +
h(x)

v

) [
D̄L MD DR + ŪL MU UR + ¯̀L M` `R

]
+ h.c. (28)

The general complex matrices Mi can be diagonalized employing bi-unitary transformations.
The diagonal elements on the basis of mass eigenstates provide the mass parameters of the fermions.
Due to the bi-unitary transformation, the left- and right-handed components of the fermion field are
different linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the weak and
mass eigenstates of the left-handed neutrinos do not coincide. In principle, the charge assignment
of our model allows for the following gauge invariant Yukawa terms of dimension four operators
for the neutrinos

Lν
Y = −∑

i,j

(
(cν)ij L̄i,L · φ̃ νj,R +

1
2
(cR)ij νc

i,Rνj,R χ

)
+ h.c. (29)

for arbitrary values of Z1 and Z2 if the superscript c denotes the charge conjugate of the field,
νc = −iγ2ν∗, and the Z-charge of the right-handed neutrinos and the new scalar satisfy the relation
zχ = −2zνR . There are two natural choices to fix the Z-charges: (i) the left- and right-handed neutrinos
have the same charge; or (ii) those have opposite charges (We explain in Section 2.5 the reason for
considering this choice being natural). In the first case, we have

Z2 − 4Z1 = −3Z1, (30)

which is solved by Z1 = Z2, and it leads to the charge assignment of the U(1)B−L extension of the
standard model, studied in detail (see for instance, [17] and references therein). In the second case,

Z2 − 4Z1 = 3Z1, (31)

which is solved by Z1 = Z2/7. As the overall scale of the Z-charges depends only on the value of
the gauge coupling g′Z, we set Z2 freely. For instance, choosing Z2 = 7/6 implies Z1 = 1/6 and the
Z-charge of the BEH scalar is

zφ = 1, (32)

while that of the new scalar is
zχ = −1 = −zφ . (33)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges of the
left- and right-handed neutrinos differ, we find it natural to assume that Equation (31) is valid.
The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the vacuum of the scalar fields, Equation (29) leads
to the following mass terms for the neutrinos:

Lν
Y = −1

2 ∑
i,j

[ (
νL, νc

R

)
i

M(h, s)ij

(
νc

L
νR

)
j

+ h.c.

]
, (34)

where

M(h, s)ij =

 0 mD

(
1 + h

v

)
mD

(
1 + h

v

)
MM

(
1 + s

w
)


ij

, (35)

with complex mD and real MM being symmetric 3× 3 matrices, so M(0, 0) is a complex symmetric
6× 6 matrix. The diagonal elements of the mass matrix M(0, 0) provide Majorana mass terms for the
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left-handed and right-handed neutrinos. Thus, we conclude that the model predicts vanishing masses of
the left-handed neutrinos at the fundamental level.

The off-diagonal elements represent interaction terms that look formally like Dirac mass terms,
−∑i,j νi,L(mD)ijνj,R+ h.c. After spontaneous symmetry breaking the quantum numbers of the particles
νc

i,L and νi,R being identical, they can mix. Thus, the propagating states will be a mixture of the left-
and right-handed neutrinos, providing effective masses for the left-handed ones. Those states can
be obtained by the diagonalization of the full matrix M(0, 0), for which a possible parametrization is
given for instance in Ref. [18].

In order to understand the structure of the matrix M(0, 0) better, we first diagonalize the matrices
mD and MM separately by a unitary transformation and an orthogonal one. Defining

ν′L,i = ∑
j
(UL)ijνL,j and ν′R,i = ∑

j
(OR)ijνR,j, (36)

we can rewrite the neutrino Yukawa Lagrangian as

Lν
Y = −1

2 ∑
i,j

[ (
ν′L, ν

′c
R

)
i

M′(h, s)ij

(
ν
′c
L

ν′R

)
j

+ h.c.

]
, (37)

where

M′(h, s) =

 0 mV
(

1 + h
v

)
V†m

(
1 + h

v

)
M
(
1 + s

w
)
 . (38)

In Equation (38), m and M are real diagonal matrices, while V = UT
L OR is a unitary matrix,

VV† = 1, so M′(0, 0) is Hermitian with real eigenvalues that are the masses of the mass eigenstates
of neutrinos. In general, M′(0, 0) may have 15 independent parameters: mi and Mi (i = 1, 2, 3),
while there are three Euler angles and six phases V. Three phases can be absorbed into the definition
of ν′L.

Assuming the hierarchy mi � Mj, we can integrate out the right-handed (heavy) neutrinos and
obtain an effective higher dimensional operator with Majorana mass terms for the left-handed neutrinos

Lν
dim−5 = −1

2 ∑
i

mM,i

(
1 +

h
v

)2 (
ν
′c
i,Lν′i,L + h.c.

)
. (39)

The Majorana masses mM,i, i.e., eigenstates of the matrix m†
DM−1

M mD, are suppressed by the ratios
mi/Mi as compared to mi. The latter has a similar role in the Lagrangian as the mass parameters of the
charged leptons, so one may assume mi ∼ O(100 keV), while the masses of the right-handed neutrinos
can be naturally around O(100 GeV), so that mi/Mi ∼ O(10−6±1) and mM,i . 0.1 eV. Thus, if mi � Mi,
then the mixing between the light and heavy neutrinos will be very small, the ν′i,L can be considered as
the mass eigenstates that are mixtures of the left-handed weak eigenstates, and whose masses can be
small naturally as suggested by phenomenological observations.

As we can only observe neutrinos together with their flavors through their charged current
interactions, it is more natural to use the flavor eigenstates than the mass eigenstates. In the flavor
basis, the couplings of the leptons to the W boson are diagonal:

L(`)CC = − gL√
2

∑
f

νL
f /W†`

f
L + h.c. (40)
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with summation over the three lepton flavors f = e, µ and τ. The same charged current interactions in
mass basis νL,i = (UPMNS)i f ν

f
L, contain the Pontecorvo–Maki–Nakagawa–Sakata matrix UPMNS,

L(`)CC = − gL√
2

3

∑
i, f=1

νL,i (UPMNS)i f /W† `
f
L + h.c. (41)

just like the charged current quark interactions contain the Cabibbo–Kobayashi–Maskawa matrix.
If the heavy neutrinos are integrated out, then the matrix UL coincides with the PMNS matrix.
For propagating degrees of freedom, such as in the case of traveling neutrinos over macroscopic
distances, one should use mass eigenstates νL,i and the PMNS matrix becomes the source of neutrino
oscillations in flavor space. However, in the case of elementary particle scattering processes involving
the left-handed neutrinos, one can work using the flavor basis, i.e., with Equation (40) because the
effect of their masses can be neglected.

2.4. Re-Parametrization into Right-Handed and Mixed Couplings

Having set the Z-charges of the matter fields, we can re-parametrize the couplings to Z′ using the
new coupling

g′ZY = g′Z − g′Y =
gZ − gY sin θZ

cos θZ
= gZ − εgY + O(ε2), (42)

with ε being the strength of kinetic mixing. Then, the covariant derivative in Equation (9) becomes

Dµ
j = ∂µ + igL T ·Wµ + i yjgYB′µ + i

(
rjg′Z + yjg′ZY

)
Z′µ, (43)

where rj = zj − yj and its values are given explicitly in the last column of Table 1. Thus, if a U(1)Z
extension of GSM is free of gauge and gravity anomalies and the Z-charges of left and right-handed
fields are the opposite, then it is equivalent to a U(1)R extension with tree-level mixed coupling
g′ZY [19], related to the kinetic mixing parameter ε by Equation (42).

Particle phenomenology of the standard model suggests that the interaction of the fermions
through the Z′ vector boson must be suppressed significantly. The origin of such a suppression can be
either a small coupling to Z′ or the large mass of Z′. Usual studies in the literature focus on the latter
case. Here, we suggest to focus on the former possibility.

The complete Lagrangian is the sum of the pieces given in Equations (4), (6), (11), (25) and (29),

L = LD + LB,Z,W + Lφ,χ + LY + Lν
Y, (44)

with covariant derivative given in Equation (43), i.e., the kinetic mixing of Equation (7) is also taken
into account.

2.5. Mixing in the Neutral Gauge Sector

The neutral gauge fields of the standard model and the Z′ mix, which leads to mass eigenstates
Aµ, Zµ and Tµ (not to be confused with the isospin components Ti, i = 1, 2, 3). The mixing is described
by a 3× 3 mixing matrix asW3

µ

B′µ
Z′µ

 =

 cos θW cos θT − cos θW sin θT sin θW

− sin θW cos θT sin θW sin θT cos θW

sin θT cos θT 0


 Zµ

Tµ

Aµ

 . (45)
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For the Weinberg mixing angle θW, we have the usual value sin θW = gY/
√

g2
L + g2

Y. We introduce
the notion of reduced coupling defined by γi = gi/gL, i.e., γL = 1. Then, we have

sin θW =
γY√

1 + γ2
Y

, cos θW =
1√

1 + γ2
Y

(46)

and, for the mixing angle θT of the Z′ boson, we find

sin θT =

[
1
2

(
1− 1− κ2 − τ2√

(1 + κ2 + τ2)2 − 4τ2

)]1/2

,

cos θT =

[
1
2

(
1 +

1− κ2 − τ2√
(1 + κ2 + τ2)2 − 4τ2

)]1/2

,

(47)

so tan(2θT) = 2κ/(1− κ2 − τ2), with

κ =
γ′Y − 2γ′Z√

1 + γ2
Y

τ = 2
γ′Z tan β√

1 + γ2
Y

(48)

and
tan β =

w
v

(49)

is the ratio of the scalar vacuum expectation values (not a scalar mixing angle). For small values of the
new couplings γ′ZY and γ′Z, implying small κ, we have

θT = κ + O(τ2, κ3) . (50)

The charged current interactions remain the same as in the standard model. The neutral current
Lagrangian can be written in the form

LNC = LQED + LZ + LT , (51)

where the first term is the usual Lagrangian of QED,

LQED = −eAµ Jµ
em Jµ

em =
3

∑
f=1

3

∑
j=1

ej

(
ψ

f
q,j(x)γµψ

f
q,j(x) + ψ

f
l,j(x)γµψ

f
l,j(x)

)
. (52)

The second one is a neutral current coupled to the Z0 boson,

LZ = −eZµ

(
cos θT Jµ

Z + sin θT Jµ
T

)
= −eZµ Jµ

Z + O(θT), (53)

and the third one is the neutral current coupled to the T0 boson,

LT = −eTµ

(
− sin θT Jµ

Z + cos θT Jµ
T

)
. (54)

In Equation (52), e is the electric charge unit and ej is the electric charge of field ψj in units of e.
In Equations (53) and (54), Jµ

Z is the usual neutral current,

Jµ
Z =

3

∑
f=1

3

∑
j=1

T3 − sin2 θW ej

sin θW cos θW

(
ψ

f
q,j(x)γµψ

f
q,j(x) + ψ

f
l,j(x)γµψ

f
l,j(x)

)
, (55)
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while the new neutral current has the same dependence on fermion dynamics with different
coupling strength:

Jµ
T =

3

∑
f=1

3

∑
j=1

γ′Zrj + γ′ZYyj

sin θW

(
ψ

f
q,j(x)γµψ

f
q,j(x) + ψ

f
l,j(x)γµψ

f
l,j(x)

)
. (56)

We can rewrite these currents as vector–axialvector currents using the non-chiral fields ψ f

Jµ
X = ∑

f
ψ f (x)γµ

(
v(X)

f − a(X)
f γ5

)
ψ f (x) X = Z or T (57)

with vector couplings v(X)
f and axialvector couplings a(X)

f given in Appendix A and the summation

runs over all quark and lepton flavors. Clearly, the QED current Jµ
em can also be written using non-chiral

fields in the form of Equation (57) with v(em)
f = e f and a(em)

f = 0.
As the dependence on the couplings and charges of the neutral currents in Equations (55) and (56)

are very different for different fermion fields, the only way that the standard model phenomenology is
not violated by the extended model is if θT is small, which supports the expansion used in Equation (53).
The choice for the Z-charges made in Equation (31) leads to the current Jµ

T being chiral, which we find
natural as it mixes with the other chiral current Jµ

Z according to Equations (53) and (54).
To define the perturbation theory of this model explicitly, we present the Feynman rules in

Appendix A.

2.6. Masses of the Gauge Bosons

The photon is massless, while the masses of the massive neutral bosons are

MZ = MW
cos θT
cos θW

[
(1− κ tan θT)

2 + (τ tan θT)
2
]1/2

(58)

and

MT = MW
sin θT
cos θW

[
(1 + κ cot θT)

2 + (τ cot θT)
2
]1/2

, (59)

where MW = 1
2 vgL, and we assumed MT < MZ. Indeed, in order to have MZ within the experimental

uncertainty of the known measured value, we need θT ' 0, which justifies the expansions at κ = 0,

MZ =
MW

cos θW

(
1 + O(κ2)

)
' MW

cos θW
(60)

and
MT =

MW
cos θW

τ
(

1 + O(κ2)
)
' MZ′ , (61)

where we used Equation (50) and MZ′ = wg′Z. Thus, τ can also be written as the ratio of the masses of
the two massive neutral gauge bosons,

τ =
MZ′

MW
cos θW '

MT
MZ

, (62)

justifying our assumption on the hierarchy of masses. In fact, unless w� v, we find MT � MZ.
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2.7. Free Parameters

There are five parameters in the scalar sector, λφ, λχ, λ, v and w that has to be determined
experimentally, while the values of µφ and µχ (at tree level) are given in Equation (18). However, it is
more convenient to use parameters that can be measured more directly, for instance,

Mh MH sin θS v = (
√

2GF)
−1/2 and tan β, (63)

of which we know two from measurements: one of the scalar masses and Fermi’s constant.
In addition to the neutrino Yukawa couplings (or neutrino masses and PMNS mixing parameters),

there are five free parameters in the model that we choose as the mass of the new scalar particle Mh or
MH (the other being fixed by the mass of the Higgs boson), the scalar and vector mixing angles sin θS
and sin θT , the ratio of the vacuum expectation values tan β and τ that is essentially the new gauge
coupling. It can be shown [16] that, requiring stable vacuum up to the Planck scale, the Higgs particle
coincides with the scalar h and according to a one-loop analysis of the running scalar couplings MH
falls into the range [144,558] GeV.

The other parameters can be expressed in terms of the free ones as follows: w = v tan β,

λφ =
1

2v2

(
M2

h/H cos2 θS + M2
H/h sin2 θS

)
,

λχ =
1

2w2

(
M2

H/h cos2 θS + M2
h/H sin2 θS

)
,

λ = sin(2θS)
M2

H −M2
h

2vw

(64)

(first indices are to be used if λφv2 < λχw2, the second ones otherwise). The new parameters in the
gauge sector can be expressed as

tan θZ =
τ − κ tan β

tan β sin θW
γ′Z =

τ

2 tan β cos θW
γ′Y =

τ − κ tan β

tan β cos θW
γ′ZY =

2κ tan β− τ

2 tan β cos θW
,

κ = cot(2θT)
(√

1 + (1− τ2) tan2(2θT)− 1
)
= (1− τ2) sin θT + O(θ3

T) .

(65)

3. Discussion

Our hope in devising this model is to explain the established experimental observations listed in
the introduction. We envisage the following scenario:

• The lightest new particle is a natural candidate for WIMP dark matter if it is sufficiently stable.
• Majorana neutrino mass terms for the right-handed neutrinos and Yukawa interactions between

the left- and right-handed neutrinos and the BEH vacuum are generated by the spontaneous
symmetry breaking of the scalar fields as outlined in Section 2.3. This scenario provides a possible
origin of neutrino oscillations and effective Majorana mass terms for the left-handed neutrinos.

• The neutrino Yukawa terms provide a source for the PMNS matrix as shown in Section 2.3,
which can have a CP-violating phase yielding stronger CP violation in the lepton sector than there
is in the quark sector.

• The vacuum of the χ scalar has a charge zj = −1 (or rj = −1) that may be a source of the current
accelerated expansion of the universe.

• The second scalar together with the established BEH field can cause hybrid inflation.

At present, we consider these possible consequences of the model that need further studies to
find out if they fulfill. Before exploring that the model makes these explanations credible, we have to
find answer to the following question: Is there any region of the parameter space of the model that is not
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excluded by experimental results, both established in standard model phenomenology and elsewhere? Of course,
answering this question requires studies well beyond the scope of a single article.

4. Conclusions

In this paper, we collected the well established experimental observations that cannot be explained
by the standard model of particle interactions. We have then proposed an anomaly free extension by a
U(1)Z gauge group, which is the simplest possible model. We also assumed the existence of a new
complex scalar field with Z-charge only (i.e., neutral with respect to the standard model interactions)
and three right-handed neutrinos. In order to fix the Z-charges of the particle spectrum, we assumed
that the left- and right-handed neutrinos have opposite Z-charges. Thus, such a model predicts the
existence of (i) a massive neutral vector boson; (ii) a massive scalar particle and (iii) three massive
right-handed neutrinos. The left-handed neutrinos remain massless as in the standard model, but their
Yukawa interactions with the BEH field and the right-handed neutrinos provide a field theoretical
basis for explaining neutrino oscillations and predict effective Majorana masses for the propagating
mass eigenstates.

We have discussed how the new neutral gauge field Zµ mixes with those of the standard model
(Bµ and Wµ

3 ) and argued that the mixing results in a new vector boson T0 of a small mass related to the
small new gauge coupling and small mixing with the standard model vector fields. We also presented
the Feynman rules of the model in unitary gauge and collected the new free parameters.

In order for the predictions of the model be credible, we have to answer whether there is any
region of the parameter space that is not excluded by experimental results established in standard
model phenomenology or elsewhere. To answer such a question with satisfaction, studies well beyond
the scope of a single article are needed, which forecasts an exciting research project.
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Abbreviations

BEH Brout–Englert–Higgs
PMNS Pontecorvo–Maki–Nakagawa–Sakata
QCD quantum chromodynamics
QED quantum electrodynamics
SM standard model
SSB spontaneous symmetry breaking
UV ultra-violet
VEV vacuum expectation value

Appendix A. Feynman Rules

The Feynman rules of the model are obtained from the complete Lagrangian in Equation (44).
For studying the UV behaviour of the model, it is convenient to use the Feynman rules before SSB,
while for low energy phenomenology the rules after SSB are needed. In this paper, we present only the
latter in a unitary gauge. The propagators of the new fields are related trivially to those of the standard
fields. Thus, we present only the vertices, neglecting the rules related to QCD, which are unchanged.
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• Gauge field–fermion interactions Vα f̄i f j: −ieγα(C−P− + C+P+), where C± depends on the type
of the gauge boson participating in the interaction, the flavor f of fermions and family number i
and j as follows:

V f̄i f j C+ C−

γ f̄i f j e f δij e f δij
Z f̄i f j (g+f cos θT + h+f sin θT)δij (g−f cos θT + h−f sin θT)δij

T f̄i f j (−g+f sin θT + h+f cos θT)δij (−g−f sin θT + h−f cos θT)δij

W+ūidj 0
1√

2 sin θW
Vij

W−d̄jui 0
1√

2 sin θW
V†

ij

W+ν̄i`j 0
1√

2 sin θW
δij

W− ¯̀ jνi 0
1√

2 sin θW
δij,

where

g+f = − sin θW

cos θW
e f g−f =

T3
f − sin θ2

We f

sin θW cos θW
h±f =

γ′ZR±f + γ′ZY(e f − R∓f )

sin θW
, (A1)

where R+
f = 1/2 for U f or ν f , R+

f = −1/2 for D f or ` f and R−f = 0. The vector and axial vector

couplings of the Z0 boson read as

v(Z)
f =

1
2

(
g−f + g+f

)
cos θT +

1
2

(
h−f + h+f

)
sin θT

=

(
T3

f − 2(sin θW)2e f

)
cos θT +

(
κe f + γ′Y(R+

f − e f ) cos θW

)
sin θT

2 sin θW cos θW

=
T3

f − 2(sin θW)2e f

2 sin θW cos θW
+ O(θT),

a(Z)
f =

1
2

(
g−f − g+f

)
cos θT +

1
2

(
h−f − h+f

)
sin θT =

T3
f cos θT − κR+

f sin θT

2 sin θW cos θW

=
T3

f

2 sin θW cos θW
+ O(θT),

while those of the T0 boson are

v(T)f =

(
κe f + γ′Y(R+

f − e f ) cos θW

)
cos θT −

(
T3

f − 2(sin θW)2e f

)
sin θT

2 sin θW cos θW
,

a(T)f = −
κR+

f cos θT + T3
f sin θT

2 sin θW cos θW
.

(A2)

• H f̄i f j vertex: ieC, where

C = −δij
1

2 sin θW

m f ,i

MW
.
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• Sνc
R,iνR,j vertex: ieC, where

C = −δij
1

2 sin θW tan β

mνR,i

MW
.

• Gauge field interactions:

– The cubic gauge field interactions of fields V1,α, V2,β and V3,γ with all-incoming kinematics,
pµ + qµ + rµ = 0 are Γα, β, γ (p, q, r) = ieCVα, β, γ (p, q, r) , where

Vα, β, γ (p, q, r) = (p− q)γ gαβ + (q− r)α gβγ + (r− p)β gαγ,

while C depends on the type of the gauge bosons participating in the interaction as follows:

V1V2V3 C

γW+W− 1

ZW+W−
cos θW

sin θW
cos θT

TW+W− −cos θW

sin θW
sin θT

– The quartic gauge field interactions of fields V1,α, V2,β, V3,γ and V4,δ are
Γα, β, γ, δ = ie2C

[
2gαβgγδ − gαγgβδ − gαδgβγ

]
, where C again depends on the type of the

gauge bosons participating in the interaction as follows:

V1V2V3V4 C

W+W−γγ −1

W+W−γZ −cos θW

sin θW
cos θT

W+W−γT
cos θW

sin θW
sin θT

W+W−ZZ −
(

cos θW

sin θW
cos θT

)2

W+W−TZ
(

cos θW

sin θW

)2
cos θT sin θT

W+W−TT −
(

cos θW

sin θW
sin θT

)2

W+W+W−W−
1

(sin θW)2

• Scalar interactions: We denote the standard model Higgs boson byH, while the new one by S .

– Cubic scalar interactions can be either of the form ie C
3! S

3 where C depends on the type of the
scalar boson participating in the interaction:

SSS C

HHH −3
2

M2
h cos2 θS + M2

H sin2 θS

sin θWMW

SSS −3
2

M2
h sin2 θS + M2

H cos2 θS

sin θWMW tan β
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or of the form ie C
2! SSS′, where C depends on the type of the S boson participating in the

interaction:
SSS′ C

HHS − sin θS cos θS
M2

H −M2
h

2 sin θWMW

SSH − sin θS cos θS
M2

H −M2
h

2 sin θWMW tan β
.

Recall that MH/h is the mass of the heavier/lighter scalar.
– The quartic scalar interactions are either of the form ie2 C

4! S
4, where C depends on the type of

the scalar bosons participating in the interaction as follows:

SSSS C

HHHH −3
4

M2
h cos2 θS + M2

H sin2 θS

(sin θWMW)2

SSSS −3
4

M2
h sin2 θS + M2

h cos2 θS

(sin θWMW tan β)2

or of the form ie2 C
2! 2!H2S2, where

C = −3
4

M2
h −M2

h
(sin θWMW)2 tan β

.

• Mixed gauge field-scalar interactions:

– The cubic gauge field-scalar interactions of fields V1,α, V2,β and S are iegαβC, where C
depends on the types of the fields participating in the interaction as follows:

V1V2S C

W+W−H MW
sin θW

ZZH MW
sin θW

(cos θT − κ sin θT)
2

(cos θW)2

TTH MW
sin θW

(sin θT + κ cos θT)
2

(cos θW)2

TZH MW
sin θW

(sin θT + κ cos θT)(κ sin θT − cos θT)

(cos θW)2

ZZS MW
sin θW tan β

(τ sin θT)
2

(cos θW)2

TTS MW
sin θW tan β

(τ cos θT)
2

(cos θW)2

TZS MW
sin θW

τ2 sin θT cos θT

(cos θW)2 .
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– Quartic gauge field-scalar interactions VαVβSS : ie2gαβC, where C depends on the type of the
gauge boson participating in the interaction as follows:

V1V2SS C

W+W−HH 1
2(sin θW)2

ZZHH (cos θT − κ sin θT)
2

2(cos θW sin θW)2

TTHH (sin θT + κ cos θT)
2

2(cos θW sin θW)2

TZHH (sin θT + κ cos θT)(κ sin θT − cos θT)

2(cos θW sin θW)2

ZZSS (τ sin θT)
2

2(cos θW sin θW tan β)2

TTSS (τ cos θT)
2

2(cos θW sin θW tan β)2

TZSS τ2 sin θT cos θT

2(cos θW sin θW tan β)2
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