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Abstract: Our aim in the present paper is to employ the Riccatti transformation which differs from
those reported in some literature and comparison principles with the second-order differential
equations, to establish some new conditions for the oscillation of all solutions of fourth-order
differential equations. Moreover, we establish some new criterion for oscillation by using an integral
averages condition of Philos-type, also Hille and Nehari-type. Some examples are provided to
illustrate the main results.
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1. Introduction

In this work, we study the fourth-order nonlinear differential equation(
r (`)

(
y′′′ (`)

)α
)′

+ q (`) f (y (τ (`))) = 0, ` ≥ `0, (1)

where α is a quotient of odd positive integers, r ∈ C1 ([`0, ∞),R) , r (`) > 0, r′ (`) > 0, q, τ ∈
C ([`0, ∞),R) , q (`) ≥ 0, τ (`) ≤ `, lim

`→∞
τ (`) = ∞, f ∈ C (R,R) such that

f (u) /uα ≥ k > 0, for u 6= 0 (2)

and under the condition ∫ ∞

`0

1
r1/α (u)

du = ∞. (3)

By a solution of Equation (1) we mean a function y ∈ C3[`y, ∞), `y ≥ `0, which has the property
r (`) (y′′′ (`))α ∈ C1[`y, ∞), and satisfies Equation (1) on [`y, ∞). We consider only those solutions y of
Equation (1) which satisfy sup{|y (`)| : ` ≥ `0} > 0, for all ` > `y. A solution of Equation (1) is called
oscillatory if it has arbitrarily large zeros on [`y, ∞); otherwise, it is called nonoscillatory. Equation (1)
is said to be oscillatory if all of its solutions are oscillatory.

One of the main reasons for this lies in the fact that differential and functional differential equations
arise in many applied problems in natural sciences and engineering, see [1].

Fourth-order differential equations are quite often encountered in mathematical models of various
physical, biological, and chemical phenomena. Applications include, for instance, problems of elasticity,
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deformation of structures, or soil settlement; see [2]. In mechanical and engineering problems,
questions related to the existence of oscillatory and nonoscillatory solutions play an important role.

During the last years, significant efforts have been devoted to investigate the oscillatory behavior
of fourth-order differential equations. For treatments on this subject, we refer the reader to the
texts [3–29]. In what follows, we review some results that have provided the background and the
motivation, for the present work.

In our paper, by careful observation and employing some inequalities of a different type,
we provide a new criterion for the oscillation of differential Equation (1). Here, we offer different
criteria for oscillation which can cover a larger area of different models of fourth-order differential
equations. We introduce a generalized Riccati substitution to obtain a new Philos-type criteria and
Hille- and Nehari-type. In the last section, we apply the main results to two different examples.

In the following, we show some previous results in the literature which relate to this paper:
Many researchers in [30–33] have studied the oscillatory behavior of equation(

r (`) y(n−1) (`)
∣∣∣y(n−1) (`)

∣∣∣α−1
)′

+ f (`, y (τ (`))) = 0,

under the condition in Equation (3), where α is a positive real number. In [29], the authors studied the
oscillation of the equation (

r (`)
(
y′′′ (`)

)α
)′

+ q (`) yα (τ (`)) = 0,

under the condition ∫ ∞

`0

1
r1/α (u)

du < ∞. (4)

By comparison theory, Baculikova et al. [6] proved that the equation(
r (`)

(
x(n−1) (`)

)α)′
+ q (`) f (x (τ (`))) = 0

is oscillatory if the delay equations

y′ (`) + q(`) f

(
δτn−1 (`)

(n− 1)!r
1
α (τ (`))

)
f
(

y
1
α (τ (`))

)
= 0

is oscillatory. Moaaz et al. [21] established the oscillation criterion for solutions of the equation

(
r (`)

(
y′′′ (`)

)α
)′

+
∫ b

a
q (`, ζ) f (y (g (`, ζ))) dσ (ζ) = 0,

under the condition in Equation (4).
Next, we begin with the following lemmas.

Lemma 1. [5] Let β be a ratio of two odd numbers. Then

P(β+1)/β − (P−Q)(β+1)/β ≤ 1
β

Q1/β [(1 + β) P−Q] , PQ ≥ 0, β ≥ 1

and

Ux−Vx(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
, V > 0.

Lemma 2. [9] If the function u satisfies u(j) > 0 for all j = 0, 1, ..., n, and u(n+1) < 0, then

n!
`n u (`)− (n− 1)!

`n−1
d
d`

u (`) ≥ 0.
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Lemma 3. [25] The equation (
a (`)

(
x′ (`)α))′ + q (`) xα (`) = 0, (5)

where a ∈ C[`0, ∞), a (`) > 0 and q (`) > 0, is nonoscillatory if and only if there exist a ` ≥ `0 and a function
υ ∈ C1[`, ∞) such that

υ′ (`) +
α

r1/α (`)
υ1+1/α (`) + q (`) ≤ 0,

for ` ≥ `.

Lemma 4. [28] Suppose that h ∈ Cn ([`0, ∞) , (0, ∞)) , h(n) is of a fixed sign on [`0, ∞) , h(n) not identically
zero and there exists a `1 ≥ `0 such that

h(n−1) (`) h(n) (`) ≤ 0,

for all ` ≥ `1. If we have lim`→∞ h (`) 6= 0, then there exists `λ ≥ `1 such that

h (`) ≥ λ

(n− 1)!
`n−1

∣∣∣h(n−1) (`)
∣∣∣ ,

for every λ ∈ (0, 1) and ` ≥ `λ.

2. Main Results

In this section, we shall establish some oscillation criteria for Equation (1). For convenience,
we denote

η (`) :=
∫ ∞

`

1
r1/α (s)

ds, F+ (`) := max {0, F (`)} ,

ψ (`) := ρ (`)

(
kq (`)

(
τ3 (`)

`3

)α

+
µλ

(1+α)/α
1 `2 − 2λ1α

2r
1
α (`) ηα+1(`)

)
,

φ (`) :=
ρ′+ (`)

ρ (`)
+

(α + 1) λ1/α
1 µ`2

2r
1
α (`) η(`)

, φ∗ (`) :=
ϑ′+ (`)

ϑ (`)
+

2λ2

η(`)
,

and

ψ∗ (`) := ϑ (`)

(∫ ∞

`

(
k

r (v)

∫ ∞

v
q (s)

τα (s)
sα

ds
)1/α

dv +
λ2

2 − λ2r
−1
α (`)

η2(`)

)
,

where λ1, λ2 are constants and ρ, ϑ ∈ C1 ([`0, ∞) , (0, ∞)).
Also, we define the generalized Riccati substitutions

ω (`) := ρ (`)

(
r (`) (y′′′)α (`)

yα (`)
+

λ1

ηα(`)

)
, (6)

and

ζ (`) := ϑ (`)

(
y′ (`)
y (`)

+
λ2

η(`)

)
. (7)

After studying the asymptotic behavior of the positive solutions of Equation (1), there are only
two cases:

Case (1) : y(j) (`) > 0 for j = 0, 1, 2, 3.
Case (2) : x(j) (`) > 0 for j = 0, 1, 3 and y′′ (`) < 0.

Moreover, from Equation (1) and the condition in Equation (2), we have that
(
r (`) (y′′′ (`))α)′.

In the following, we will first study each case separately.
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Lemma 5. Assume that y be an eventually positive solution of Equation (1) and y(j) (`) > 0 for all j = 1, 2, 3.
If we have the function ω ∈ C1[`, ∞) defined as (6), where ρ ∈ C1 ([`0, ∞) , (0, ∞)) , then

ω′ (`) ≤ −ψ (`) + φ (`)ω (`)− αµ`2

2 (r (`) ρ (`))1/α
ω

α+1
α (`) , (8)

for all ` > `1, where `1 large enough.

Proof. Let y is an eventually positive solution of (1) and y(j) (`) > 0 for all j = 1, 2, 3. Thus, from
Lemma 4, we get

y′ (`) ≥ µ

2
`2y′′′ (`) , (9)

for every µ ∈ (0, 1) and for all large `. From Equation (6), we see that ω (`) > 0 for ` ≥ `1, and

ω′ (`) = ρ′ (`)

(
r (`) (y′′′)α (`)

yα (`)
+

λ1

ηα(`)

)
+ ρ (`)

(
r (y′′′)α)′ (`)

yα (`)

−αρ (`)
yα−1 (`) y′ (`) r (`) (y′′′)α (`)

y2α (`)
+

αλ1ρ (`)

r
1
α (`) ηα+1(`)

.

Using Equation (9) and Equation (6), we obtain

ω′ (`) ≤
ρ′+ (`)

ρ (`)
ω (`) + ρ (`)

(
r (`) (y′′′ (`))α)′

yα (`)

−αρ (`)
µ

2
`2 r (`) (y′′′ (`))α+1

yα+1 (`)
+

αλ1ρ (`)

r
1
α (`) ηα+1(`)

≤ ρ′ (`)

ρ (`)
ω (`) + ρ (`)

(
r (`) (y′′′ (`))α)′

yα (`)

−αρ (`)
µ

2
`2r (`)

(
ω (`)

ρ (`) r (`)
− λ1

r (`) ηα(`)

) α+1
α

+
αλ1ρ (`)

r
1
α (`) ηα+1(`)

. (10)

Using Lemma 1 with P = ω (`) / (ρ (`) r (`)) , Q = λ1/ (r (`) ηα(`)) and β = α, we get

(
ω (`)

ρ (`) r (`)
− λ1

r (`) ηα(`)

) α+1
α

≥
(

ω (`)

ρ (`) r (`)

) α+1
α

−
λ1/α

1

αr
1
α (`) η(`)

(
(α + 1)

ω (`)

ρ (`) r (`)
− λ1

r (`) ηα(`)

)
. (11)

From Lemma 2, we have that y (`) ≥ `
3 y′ (`) and hence,

y (τ (`))

y (`)
≥ τ3 (`)

`3 . (12)

From Equations (1), (10), and (11), we obtain

ω′ (`) ≤
ρ′+ (`)

ρ (`)
ω (`)− kρ (`) q (`)

(
τ3 (`)

`3

)α

− αρ (`)
µ

2
`2r (`)

(
ω (`)

ρ (`) r (`)

) α+1
α

−αρ (`)
µ

2
`2r (`)

(
−λ1/α

1

αr
1
α (`) η(`)

(
(α + 1)

ω (`)

ρ (`) r (`)
− λ1

r (`) ηα(`)

))
+

αλ1ρ (`)

r
1
α (`) ηα+1(`)

.
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This implies that

ω′ (`) ≤
(

ρ′+ (`)

ρ (`)
+

(α + 1) λ1/α
1 µ`2

2r
1
α (`) η(`)

)
ω (`)− αµ`2

2r1/α (`) ρ1/α (`)
ω

α+1
α (`)

−ρ (`)

(
kq (`)

(
τ3 (`)

`3

)α

+
µλ

(1+α)/α
1 `2 − 2λ1α

2r
1
α (`) ηα+1(`)

)
.

Thus,

ω′ (`) ≤ −ψ (`) + φ (`)ω (`)− αµ`2

2 (r (`) ρ (`))1/α
ω

α+1
α (`) .

The proof is complete.

Lemma 6. Assume that y be an eventually positive solution of Equation (1), y(j) (`) > 0 for j =

1, 3 and y′′ (`) < 0. If we have the function ζ ∈ C1[`, ∞) defined as Equation (7), where ϑ ∈
C1 ([`0, ∞) , (0, ∞)) , then

ζ ′ (`) ≤ −ψ∗ (`) + φ∗ (`) ζ (`)− 1
ϑ (`)

ζ2 (`) , (13)

for all ` > `1, where `1 large enough.

Proof. Let y is an eventually positive solution of Equation (1), y(j) > 0 for j = 1, 3 and y′′ (`) < 0.
From Lemma 2, we get that y (`) ≥ `y′ (`). By integrating this inequality from τ (`) to `, we get

y (τ (`)) ≥ τ (`)

`
y (`) .

Hence, from Equation (2), we have

f (y (τ (`))) ≥ k
τα (`)

`α
yα (`) . (14)

Integrating Equation (1) from ` to u and using y′ (`) > 0, we obtain

r (u)
(
y′′′ (u)

)α − r (`)
(
y′′′ (`)

)α
= −

∫ u

`
q (s) f (y (τ (s))) ds

≤ −kyα (`)
∫ u

`
q (s)

τα (s)
sα

ds.

Letting u→ ∞ , we see that

r (`)
(
y′′′ (`)

)α ≥ kyα (`)
∫ ∞

`
q (s)

τα (s)
sα

ds

and so

y′′′ (`) ≥ y (`)
(

k
r (`)

∫ ∞

`
q (s)

τα (s)
sα

ds
)1/α

.

Integrating again from ` to ∞, we get

y′′ (`) ≤ −y (`)
∫ ∞

`

(
k

r (v)

∫ ∞

v
q (s)

τα (s)
sα

ds
)1/α

dv. (15)
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From the definition of ζ (`), we see that ζ (`) > 0 for ` ≥ `1. By differentiating, we find

ζ ′ (`) =
ϑ′ (`)

ϑ (`)
ζ (`) + ϑ (`)

y′′ (`)
y (`)

− ϑ (`)

(
ζ (`)

ϑ (`)
− λ2

η(`)

)2
+

ϑ (`) λ2

r1/α (`) η2(`)
. (16)

Using Lemma 1 with P = ζ (`) /ϑ (`) , Q = λ2/η(`) and β = 1, we get(
ζ (`)

ϑ (`)
− λ2

η(`)

)2
≥
(

ζ (`)

ϑ (`)

)2
− λ2

η(`)

(
2ζ (`)

ϑ (`)
− λ2

η(`)

)
. (17)

From Equations (1), (16) and (17), we obtain

ζ ′ (`) ≤ ϑ′ (`)

ϑ (`)
ζ (`)− ϑ (`)

∫ ∞

`

(
k

r (v)

∫ ∞

v
q (s)

τα (s)
sα

ds
)1/α

dv

−ϑ (`)

((
ζ (`)

ϑ (`)

)2
− λ2

η(`)

(
2ζ (`)

ϑ (`)
− λ2

η(`)

))
+

λ2ϑ (`)

r
1
α (`) η2(`)

.

This implies that

ζ ′ (`) ≤
(

ϑ′+ (`)

ϑ (`)
+

2λ2

η(`)

)
ζ (`)− 1

ϑ (`)
ζ2 (`)

−ϑ (`)

(∫ ∞

`

(
k

r (v)

∫ ∞

v
q (s)

τα (s)
sα

ds
)1/α

dv +
λ2

2 − λ2r
−1
α (`)

η2(`)

)
.

Thus,

ζ ′ (`) ≤ −ψ∗ (`) + φ∗ (`) ζ (`)− 1
ϑ (`)

ζ2 (`) .

The proof is complete.

Lemma 7. Assume that y will eventually be a positive solution of Equation (1). If there exists a positive function
ρ ∈ C ([`0, ∞)) such that

∫ ∞

`0

(
ψ (s)−

(
2

µs2

)α r (s) ρ (s) (φ (s))α+1

(α + 1)α+1

)
ds = ∞, (18)

for some µ ∈ (0, 1), then y does not fulfill Case (1).

Proof. Assume that y is eventually positive solution of Equation (1). From Lemma 5, we get that
Equation (8) holds. Using Lemma 1 with

U = φ (`) , V = αµ`2/
(

2 (r (`) ρ (`))1/α
)

and x = ω,

we get

ω′ (`) ≤ −ψ (`) +

(
2

µ`2

)α r (`) ρ (`) (φ (`))α+1

(α + 1)α+1 . (19)

Integrating from `1 to `, we get

∫ `

`1

(
ψ (s)−

(
2

µs2

)α r (s) ρ (s) (φ (s))α+1

(α + 1)α+1

)
ds ≤ ω (`1) ,

for every µ ∈ (0, 1) , which contradicts Equation (18). The proof is complete.
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Lemma 8. Assume that y will eventually be a positive solution of Equation (1), y(j) (`) > 0 for j = 1, 3
and y′′ (`) < 0. If there exists a positive function ϑ ∈ C ([`0, ∞)) such that

∫ ∞

`0

(
ψ∗ (s)− 1

4
ϑ (s) (φ∗ (s))2

)
ds = ∞, (20)

then y does not fulfill Case (2).

Proof. Assume that y is eventually a positive solution of Equation (1). From Lemma 6, we get that
Equation (13) holds. Using Lemma 1 with

U = φ∗ (`) , V = 1/ϑ (`) , α = 1 and x = ζ,

we get

ω′ (`) ≤ −ψ∗ (`) +
1
4

ϑ (`) (φ∗ (`))2 . (21)

Integrating from `1 to `, we get

∫ `

`1

(
ψ∗ (s)− 1

4
ϑ (s) (φ∗ (s))2

)
ds ≤ ω (`1) ,

which contradicts Equation (20). The proof is complete.

Theorem 1. Assume that there exist positive functions ρ, ϑ ∈ C ([`0, ∞)) such that Equations (18) and (20)
hold, for some µ ∈ (0, 1). Then every solution of Equation (1) is oscillatory.

In the next theorem, we establish new oscillation results for Equation (1) by using the integral
averaging technique.

Definition 1. Let

D = {(`, s) ∈ R2 : ` ≥ s ≥ `0} and D0 = {(`, s) ∈ R2 : ` > s ≥ `0}.

A kernel function Hi ∈ C (D,R) is said to belong to the function class=, written by H ∈ =, if, for i = 1, 2,

(i) Hi (`, s) = 0 for ` ≥ `0, Hi (`, s) > 0, (`, s) ∈ D0;
(ii) Hi (`, s) has a continuous and nonpositive partial derivative ∂Hi/∂s on D0 and there exist functions

ρ, ϑ ∈ C1 ([`0, ∞) , (0, ∞)) and hi ∈ C (D0,R) such that

∂

∂s
H (`, s) + φ (s) H (`, s) = h1 (`, s) Hα/(α+1)

1 (`, s) (22)

and
∂

∂s
H2 (`, s) + φ∗ (s) H2 (`, s) = h2 (`, s)

√
H2 (`, s). (23)

Lemma 9. Assume that y be an eventually positive solution of Equation (1) and y(j) (`) > 0 for j = 1, 2, 3. If
there exist functions ρ ∈ C ([`0, ∞) , (0, ∞)) and H1 ∈ = such that Equation (22) holds and

lim sup
`→∞

1
H1 (`, `1)

∫ `

`1

(
H1 (`, s)ψ (s)−

2αr (s) ρ (s) hα+1
1 (`, s) Hα

1 (`, s)

(α + 1)α+1 (µs2)
α

)
ds = ∞, (24)

then y does not fulfill Case (1).



Symmetry 2020, 12, 136 8 of 12

Proof. Assume that y is eventually positive solution of Equation (1). From Lemma 5, we get that
Equation (8) holds. Multiplying Equation (8) by H (`, s) and integrating the resulting inequality from
`1 to `; we find that

∫ `

`1

H (`, s)ψ (s)ds ≤ ω (`1) H (`, `1) +
∫ `

`1

(
∂

∂s
H (`, s) + φ (s) H (`, s)

)
ω (s)ds

−
∫ `

`1

αµs2

2 (r (s) ρ (s))1/α
H (`, s)ω

α+1
α (s)ds.

From Equation (22), we get

∫ `

`1

H (`, s)ψ (s)ds ≤ ω (`1) H (`, `1) +
∫ `

`1

h1 (`, s) Hα/(α+1)
1 (`, s)ω (s)ds

−
∫ `

`1

αµs2

2 (r (s) ρ (s))1/α
H (`, s)ω

α+1
α (s)ds. (25)

Using Lemma 1 with C = αµs2

2(r(s)ρ(s))1/α H (`, s) , D = h1 (`, s) Hα/(α+1)
1 (`, s) and x = ω (s), we get

h1 (`, s) Hα/(α+1)
1 (`, s)ω (s)− αµs2

2 (r (s) ρ (s))1/α
H (`, s)ω

α+1
α (s) ≤

2αr (s) ρ (s) hα+1
1 (`, s) Hα

1 (`, s)

(α + 1)α+1 (µs2)
α

,

which, with Equation (25) gives

1
H (`, `1)

∫ `

`1

(
H (`, s)ψ (s)−

2αr (s) ρ (s) hα+1
1 (`, s) Hα

1 (`, s)

(α + 1)α+1 (µs2)
α

)
ds ≤ ω (`1) ,

which contradicts Equation (24). The proof is complete.

Lemma 10. Assume that y be an eventually positive solution of Equation (1), y(j) (`) > 0 for j = 1, 3
and y′′ (`) < 0. If there exist functions ϑ ∈ C ([`0, ∞) , (0, ∞)) and H2 ∈ = such that Equation (23) holds and

lim sup
`→∞

1
H2 (`, `1)

∫ `

`1

(
H2 (`, s)ψ∗ (s)−

ϑ (s) h2
2 (`, s)
4

)
ds = ∞, (26)

then y does not fulfill Case (2).

Proof. Assume that y is eventually positive solution of Equation (1). From Lemma 6, we get that
Equation (13) holds. Multiplying Equation (13) by H2 (`, s) and integrating the resulting from `1 to `,
we obtain ∫ `

`1

H2 (`, s)ψ∗ (s)ds ≤ ζ (`1) H2 (`, `1)

+
∫ `

`1

(
∂

∂s
H2 (`, s) + φ∗ (s) H2 (`, s)

)
ζ (s)ds

−
∫ `

`1

1
ϑ (s)

H2 (`, s) ζ2 (s)ds.
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Thus, ∫ `

`1

H2 (`, s)ψ∗ (s)ds ≤ ζ (`1) H2 (`, `1) +
∫ `

`1

h2 (`, s)
√

H2 (`, s)ζ (s)ds

−
∫ `

`1

1
ϑ (s)

H2 (`, s) ζ2 (s)ds

≤ ζ (`1) H2 (`, `1) +
∫ `

`1

ϑ (s) h2
2 (`, s)
4

ds,

and so
1

H2 (`, `1)

∫ `

`1

(
H2 (`, s)ψ∗ (s)−

ϑ (s) h2
2 (`, s)
4

)
ds ≤ ζ (`1) ,

which contradicts Equation (26). The proof is complete.

Theorem 2. Assume that there exist positive functions ρ, ϑ ∈ C ([`0, ∞)) and functions H1, H2 ∈ = such that
Equation (24) and Equation (26) hold, for some µ ∈ (0, 1). Then every solution of Equation (1) is oscillatory.

In the next theorem, we establish new oscillation results for (1) by using the theory of comparison
with the second order differential equation:

Theorem 3. Let (3) hold. Assume that the equation[
r (`)
`2α

(
y′ (`)

)α
]′
+ ψ (`) yα (`) = 0 (27)

and

y′′ (`) + y (`)
∫ ∞

`

[
k

r (v)

∫ ∞

v
q (s)

τα (s)
sα

ds
]1/α

dv = 0, (28)

are oscillatory, then every solution of (1) is oscillatory.

Proof. Suppose to the contrary that Equation (1) has a eventually positive solution x and by virtue of
Lemma 3. If we set ρ (`) = 1, λ1 = 0 in Equation (8), then we get

ω′ (`) +
αµ`2

2r (`)1/α
ω

α+1
α + ψ (`) (`) ≤ 0.

Thus, we can see that Equation (27) is nonoscillatory. Which is a contradiction. If we now set
ϑ (`) = 1, λ2 = 0 in Equation (13), then we obtain

ζ ′ (`) + ψ∗ (`) + ζ2 (`) ≤ 0.

Hence, Equation (28) is nonoscillatory, which is a contradiction.

Theorem 3 is proved.

It is well known (see [26]) that if

∫ ∞

`0

1
r (`)

d` = ∞, and lim inf
`→∞

(∫ `

`0

1
r (s)

ds
) ∫ ∞

`
q (s) ds >

1
4

,

then Equation (5) with α = 1 is oscillatory.
From the previous results that we have concluded and Theorem 3, we can easily obtain Hille and

Nehari type oscillation criteria for Equation (1), in the next theorem:
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Theorem 4. Let Equation (3) hold. Assume that

∫ ∞

`0

`2

r (`)
d` = ∞, and lim inf

`→∞

(∫ `

`0

s2

r (s)
ds
) ∫ ∞

`
ψ (s) ds >

1
2λ1

,

for some constant λ1 ∈ (0, 1) and

lim inf
`→∞

∫ ∞

`

(∫ ∞

`

[
k

r (v)

∫ ∞

v
q (s)

τα (s)
sα

ds
]

dv
)

ds >
1
4

.

Then every solution of Equation (1) is oscillatory.

3. Discussion and Application

Theorems 1 and 2 can be used in a wide range of applications for oscillation of Equation (1)
depending on the appropriate choice of functions ρ and ϑ. To applying the conditions of theorems, we
search on for suitable restitution for functions ρ and ϑ such that ρ, ϑ ∈ C1 ([`0, ∞) , (0, ∞)).

In the following, by using our results, we study the oscillation behavior of some differential
equations with a fourth-order.

Example 1. Consider a differential equation

y(4) (`) +
q0

`4 y (`) = 0, ` ≥ 1, (29)

where q0 > 0. Note that α = 1, r (`) = 1, q (`) = q0/`4 and τ (`) = `. Hence, we have

η (`0) = ∞, ψ (`) =
q0

`
, φ (`) =

3
`

, φ∗ (`) =
1
`

and ψ∗ (`) =
q0

6`
.

If we set ρ (`) = `3, ϑ (`) = ` and k = 1, then condition Equation (18) becomes

∫ ∞

`0

(
ψ (s)−

(
2

µs2

)α r (s) ρ (s) (φ (s))α+1

(α + 1)α+1

)
ds =

∫ ∞

`0

(
q0

s
− 9

2µs

)
ds

=

(
q0 −

9
2µ

) ∫ ∞

`0

1
s

ds.

Therefore, from Lemma 7, if q0 > 9/2µ, then Equation (29) has no positive solution y satisfies y′′ (t) > 0.
Moreover, condition Equation (20) becomes

∫ ∞

`0

(
ψ∗ (s)− 1

4
ϑ (s) (φ∗ (s))2

)
ds =

∫ ∞

`0

(
q0

6s
− 1

4s

)
ds

= ∞, if q0 >
3
2

,

From Lemma 8, if q0 > 3/2, then Equation (29) has no positive solution y satisfies y′′ (t) < 0.

Remark 1. In Example 1, by using Theorem 1, the new criterion for oscillation of Equation (29) is

q0 > max
{

9
2µ

,
3
2

}
.

Example 2. Consider a differential equation(
`3 (y′′′ (`))3

)′
+

υ

`7 y3 (ε`) = 0, ` ≥ 1, (30)
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where υ > 0 and 0 < ε < 1 is a constant. Note that α = 3, r (`) = `3, q (`) = υ/`7 and τ (`) = ε`. Hence,

η (`0) = ∞, ψ (`) =
υε9

`
, φ (`) =

6
`

, φ∗ (`) =
1
`

and ψ∗ (`) =

(
υε3

48

)1/3 1
`

.

If we set ρ (`) = `6, ϑ (`) = ` and k = 1, then

∫ ∞

`0

(
ψ (s)−

(
2

µs2

)α r (s) ρ (s) (φ (s))α+1

(α + 1)α+1

)
ds =

∫ ∞

`0

(
υε9

s
− 81

2µ3s

)
ds

=

(
υε9 − 81

2µ3

) ∫ ∞

`0

1
s

ds

and ∫ ∞

`0

(
ψ∗ (s)− 1

4
ϑ (s) (φ∗ (s))2

)
ds =

∫ ∞

`0

((
υε3

48

)1/3 1
s
− 1

4s

)
ds

for some constant µ, ε ∈ (0, 1). Hence, by Theorem 1, every solution of Equation (30) is oscillatory if

υ > max
{

3
4ε3 ,

81
2ε9µ3

}
.
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