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Abstract

This document provides supplementary information to the article en-

titled 'Role of Geometric Shape in Chiral Optics'. The Vector Spherical

Harmonics as basis functions for the T -matrix and the T -matrix itself are

summarized. Transformations of T as well as mirror planes in T and nu-

merical inaccuracies are discussed. Further, the symmetry classes shown

in the main article are analyzed in the dipolar approximation and the

physical relevance of the chosen 2-norm for the optical chirality coe�cient

χTT is outlined. Addtionally, we explain the exact geometric model of

the helix and the construction of the geometric chirality coe�cient χGE.
Finally, details on the minimization procedure, which is obtained with

Bayesian Optimization, are given.

1 Vector Spherical Harmonics

The solution of Maxwell's equations for an isolated scatterer being the subject to
external illumination is conventiently expressed in the basis of vector spherical
harmonics (VSHs) N (l)

nm(x) and M (l)
nm(x) [7]. The index n is the multipole
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order and is related to the eigenvalue n(n + 1) of the squared orbital angular-
momentum operator L2. The index m is the eigenvalue of the z-component
of the orbital angular-momentum operator Lz [6, Sec. 9.7,]. The superscript l
di�erentiates between incident (l = 1) and scattered (l = 3) electromagnetic
�elds.

In the VSH basis, the incident electric E inc and magneticHinc time-harmonic
�elds are

E inc(x, t) = e−iωt
∞∑

n=1

m=n∑
m=−n

pmnN
(1)
mn(x) + qmnM

(1)
mn(x), (1)

Hinc(x, t) = − ie
−iωt

Z

∞∑
n=1

m=n∑
m=−n

pmnM
(1)
mn(x) + qmnN

(1)
mn(x), (2)

with the wave impedance Z =
√
µ0µ/(ε0ε) and the relative permeability µ and

relative permittivity ε of the surrounding medium. The scattered �elds obeying
the radiation condition are given by

Esca(x, t) = e−iωt
∞∑

n=1

m=n∑
m=−n

amnN
(3)
mn(x) + bmnM

(3)
mn(x), (3)

Hsca(x, t) = − ie
−iωt

Z

∞∑
n=1

m=n∑
m=−n

amnM
(3)
mn(x) + bmnN

(3)
mn(x). (4)

The VSHs N (3)
nm(x) and M (3)

nm(x) are the electric �elds due to induced electric
and magnetic multipoles, respectively.

2 T -Matrix

The coe�cients pmn and qmn as well as amn and bmn are the VSH coe�cients of
the incident and scattered �eld, respectively. The optical response of a scatterer
is described by the relation of these two sets of coe�cients. Speci�cally, the
T -matrix enables the computation of the scattered �eld (a, b) from a known
incident �eld (p, q), where all coe�cients are summarized in vectors:

T

(
p
q

)
=

(
a
b

)
. (5)

Accordingly, all possible observable quantities such as scattered energy, absorp-
tion and chirality extinction can be deduced from the T -matrix [7, 4].

In this study, we analyze quadratic T -matrices of dimension 2N(N+2) with
maximal multipole order N = 5. T is obtained numerically by the illumination
with 150 plane waves. The respective incident wave vectors are distributed
equidistanly on a spherical surface and the polarizations are chosen randomly.
The projection of the scattered �eld onto VSHs is computed from general surface
integrals [2]. The resulting matrices for the extremal CD response (Figure 2 in
main text) at λ = 823nm and λ = 1, 452nm are shown in Figure 1.
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Figure 1: Colorplot of absolute values of the T -matrix entries at λ = 823nm
(left) and λ = 1, 452nm (right) which correspond to extremal values in the CD
spectrum.

3 Transformation of T

The T -matrix is useful for transformations R such as rotating R, translating T
and mirroring M the object of interest. Under mirror re�ection Mxy on the
xy-plane, both the incident (l = 1) and the scattered (l = 3) VSHs transform
as

(MxyN
(l)
mn)(x) = (−1)(m+n)N (l)

mn(x), (6)

(MxyM
(l)
mn)(x) = (−1)(m+n+1)M (l)

mn(x). (7)

Accordingly, the matrix Tl representing the mirror image of the scatterer with
T -matrix Tr is given by

Tl =M−1xy TrMxy, (8)

with (Mxy)ij = (−1)(m+n)δij for i = 1, ..., N(N + 2) and with (Mxy)ij =
(−1)(m+n+1)δij for i = N(N + 2) + 1, ..., 2N(N + 2).

By employing the addition theorems for translation T and rotation R of
VSHs [10], the T -matrix of the transformed scatterer is computed analytically.
Note that the mirrored and rotated T -matrices are exact, whereas the trans-
lated T -matrix is an approximation due to the �nite size of T , i.e. the maximal
multipole order N = 5. In Figure 2, we plot the error ∆ of forward and back-
ward translation in the same direction with Θ = 76◦,Φ = 330◦ and d = 206nm.
Although the scatterer is mapped onto its original position, the truncation of T
introduces the error

∆ =
maxij

∣∣∣(Tr − T −1back

{
T −1forwTrTforw

}
Tback

)
ij

∣∣∣
maxij

∣∣∣(Tr)ij

∣∣∣ . (9)
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Figure 2: Numerical error of translation due to the �nite size of T with maximal
multipole order N = 5.

4 Mirror Planes in T

As discussed in the main text, the aim of this study is to �nd symmetries in
T which correspond to geometric mirror planes, or at least identifying planes
of highest possible mirror symmetry for which the T -matrices of the original
scatterer and its mirror image show the highest similarity. This is done by the
global minimization in Eq. (3). As illustrative examples, we show the angle-
dependent, i.e. non-minimized, χTT(Θ,Φ, 0) for rotations by angles Θ and Φ
without translation (d = 0), in Figure 3. All possible rotations of two matrices
at the extremal values of the CD spectrum are shown (cf. Figure 1) with

χTT(Θ,Φ, d) =
∣∣∣∣Tl −R−1(Θ,Φ, d)TrR(Θ,Φ, d)

∣∣∣∣
2
. (10)

It is apparent in the change of similarity planes (Figure 3 in main text) and
the angular dependence of the similarity of the T -matrices of mirror images
(Figure 3) that the symmetry of T is highly wavelength dependent. This is
due to the fact that for shorter wavelengths, higher multipoles contribute to
the overall response as shown in Figure 4. There, we show the absolute value
of the T -matrix entries which correspond to averaged electric and magnetic
multipole orders N = 1 (dipole) and N = 2 (quadrupole). Overall the response
is dominated by electric dipole contributions. Below λ = 1µm, magnetic dipole
and electric quadrupole e�ects are increasing and result in symmetry planes
which are not found in a purely geometric analysis.
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Figure 3: χTT(Θ,Φ, 0) is the norm of the di�erence between original T -matrix
and the matrix of a mirrored scatterer rotated by Θ and Φ around the centroid of
the helix for λ = 623nm (top), λ = 823nm (middle) and λ = 1, 452nm (bottom).
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Figure 4: Absolute value of averaged entries of T corresponding to electric,
magnetic and electric-magnetic dipole and quadrupole moments.

5 Dipolar Analysis of Symmetry Classes

In order to investigate the physical origin of the three symmetry classes found
in our analysis, we further study the T -matrix in the dipolar approximation,

i.e. the electric T
(dip)
el , the magnetic T

(dip)
ma and the electric-magnetic part

T
(dip)
em . These matrices are often the dominant contribution (cf. Fig. 1) and are

de�ned as follows:

T = (Tij)i,j=1,...,2N(N+2) (11)

T
(dip)
el = (Tij)i,j=1,...,3 (12)

T (dip)
ma = (Tij)i,j=N(N+2)+1,...,N(N+2)+3 (13)

T (dip)
em = (Tij)i=1,...,3; j=N(N+2)+1,...,N(N+2)+3 . (14)

For each 3x3 matrix, we compute the three eigenvalues αv with e.g. T
(dip)
el v =

αvv. In Fig. 5, we show the absolute value of αv as well as the spherical
coordinates Θv and Φv of the respective eigenvector.

The quantities belonging to the largest eigenvalue are plotted with large
black circles. The second largest eigenvalue is depicted with small black circles
and the smallest one has small gray circles. The y-axis of |αv| is presented on
the left and the y-axis for the two angles is placed on the right. Alongside the
x-axis, the colored wavelength-dependent symmetry classes found in our study
are shown. The transitions between these classes at λ = 680nm and λ = 1025nm
are shown with gray vertical lines.
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The transitions between the symmetry classes occur for a change in the dom-
inant eigenvalue of the electric, magnetic and electric-magnetic submatrices,
i.e. for di�erent resonances of the scatterer. That is why the symmetry planes
discussed in the main text are sharply separated. There is always a smooth
line connecting the parameters of the eigenvalues, however, the dominant eigen-
state is highly wavelength-dependent and introduces the drastic changes in the
symmetry of T .

Note that the changes of the maximal eigenvalue do not exactly coincide for
the electric, magnetic and electric-magnetic matrices. This illustrates that the
symmetry of T and especially the chiral behaviour of the helix is dependent on a
complex interplay between electric and magnetic contributions as well as higher
order multipoles which are not shown here. In comparison with the multipolar
resonance behavior, the scalar coe�cient χTT introduced in the main text largely
simpli�es the analysis of the chiral behavior of the scatterer.
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Figure 5: Eigenvalue analysis of dipolar contributions. See section on dipolar
analysis for details.

6 Physical Relevance of the 2-norm

The electromagnetic chirality coe�cient χCD is directly accessible by experi-
ment: it is the di�erential energy extinction due to the illumination by right
and left handed circularly polarized plane waves. The observed energy extinc-
tions at di�erent angles of incidence (Θ,Φ) are averaged over the whole solid
angle. Numerically, this quantity is deduced from the T -matrix which contains
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the full angular- and polarization-resolved optical response of the scatterer [4,
Eq. (27)].

For the coe�cient χSV the T -matrix itself is analyzed rather than the ex-
perimentally measurable quantities in the experiment. Here, the ability of re-
trieving the full optical response by illumination with �elds of only one state of
well-de�ned helicity is quanti�ed [1]. Irrespective of any particular conditions
of the incident �eld and/or the experimental observables, a general property of
the scattering object is obtained, namely, whether the scatterer is electromag-
netically chiral. The latter property is introduced in Ref. [1].

In the current study, we put forward a concept relating the geometric prop-
erty of (a)chirality of an object to its optical properties. Speci�cally, we �nd
planes of similarity in the T -matrix which directly relate to geometric mirror
planes. For simplicity, we choose the 2-norm ||·||2 in Eq. (3) in the main text.
Depending on the experimental setup, other matrix norms or operations may
be chosen which correspond to observables such as the scattered chirality [5].
In any case, the measurable quantity can be computed from the T -matrix since
all optical information is contained therein.

For the speci�c choice of the 2-norm, not only the geometric mirror plane
of highest similarity between mirror images is obtained. Further, the required
illumination parameters are given directly. We recall that the 2-norm of any
matrix A is its maximal singular value σmax: ||A||2 = σmax(A). Additionally,
the singular value decomposition is a factorization of A into A = UΣV ∗ with
the diagonal matrix of singular values Σ and unitarity matrices U and V . The
matrices U and V consist of the left- u and right-singular vectors v of singular
value σ with

Av = σu. (15)

Note that due to the unitarity of U and V , the singular vectors are normalized:
||u||2 = ||v||2 = 1.

In Eq. (3) in the main text, the di�erence of the matrices Tl and Tr of
the (transformed) mirror images are compared. Accordingly, it holds χTT =
σmax(Tr − R−1TlR), where we omit the rotation and translation parameters
(Θ,Φ, d). The singular value decomposition gives the VSHs coe�cients of the
incident �eld with minimal χTT as vmax = (pmax, qmax) with

χTT =

∣∣∣∣∣∣∣∣(Tr −R−1TlR)

(
pmax

qmax

)∣∣∣∣∣∣∣∣
2

= Wsca(Tr −R−1TlR). (16)

The last step is ful�lled since the absolute value of the scattered VSH coe�-
cients is proportional to the scattered energy [7] i.e. Wsca(Tr − R−1TlR) is the
integrated scattered energy �ux of the matrix Tr−R−1TlR with an incident �eld
given by (pmax, qmax) [5, Eq. (6)]. Accordingly, the coe�cient χTT is propor-
tional to the scattered energy of the di�erential �eld due to the (transformed)
mirror images Tr and R−1TlR with the smallest discrepancy. Note that this
discussion does not correspond to the scattering problem with both the right-
(Tr) and transformed left-handed enantiomers (R1TlR) since multiple scattering
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of both objects [11] is omitted. It rather illustrates the relevance of the 2-norm
and its relation to the physically observable scattered energy Wsca.

The respective geometric parameters (Θmin,Φmin, dmin) of χTT follow from
the optimization parameters. Accordingly, we obtain in our approach both the
incident �eld (from its VSH coe�cients) as well as the mirror plane (from its
parameters) corresponding to an experimental realizable setup.

7 Electromagnetic Chirality Coe�cient

The electromagnetic chirality coe�cient χSV is based on the singular-value de-
composition of the T -matrix in the helicity basis [1]. The T -matrix in the helicity
basis TH is given as

TH =
1

2

(
1 1
1 −1

)
T

(
1 1
1 −1

)
, (17)

TH =

(
T++
H T+−

H
T−+H T−−H

)
. (18)

With the singular values σ(A) of matrix A, the vectors

σ+ =
(
σ(T++
H ), σ(T−+H )

)
, (19)

σ− =
(
σ(T−−H ), σ(T+−

H )
)

(20)

are used to compute the electromagnetic chirality coe�cient χSV:

χSV =

√√√√ ∑N(N+2)
i=1

(
σ+
i − σ−i

)2∑N(N+2)
i=1

(
σ+
i

)2
+
(
σ−i
)2 . (21)

As described in the main text, the coe�cient χSV shows di�erent behaviour
compared to the observable CD spectrum χCD. χSV is normalized by the average
interaction strength. However, this normalization is not the only reason for the
discrepancy of χSV and χCD. In Fig. 6, we show the normalized CD spectrum,
i.e. the g-factor, compared to the former two coe�cients. This shows that the
singular-value decomposition involved in the computation of χSV yields non-
smooth behaviour of χSV(λ).

8 Geometric Model

The analyzed object is a gold helix with paramters taken from Ref. [12]. The
permittivity of Au is derived from a �t of experimental data to a Lorentz-Drude
model [8].

In Fig. 7, the construction of the helix based on a CAD-model is shown. Two
spheres with radius of 35nm are placed at the top and bottom of a cylinder with
radius of 60nm and height of 230nm. This yields z = ±115nm and x = 60nm
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Figure 6: Comparison of χSV, χCD and the g-factor.

for the upper and lower sphere, respectively. A circle of radius 35nm is swept
along a path on the cylindrical surface. Due to numerical stability, the path is
divided into six segments. This procedure results in a helix with one coil and a
circular cross section.

9 Geometric Chirality Coe�cient

Similar to the approach of �nding mirror planes in the T -matrix, mirror planes
in a geometric object may be found by analyzing the overlap of the original
object Or and its mirror image Ol. The mirror image Ol is rotated by (Θ,Φ)
and translated from its centroid by the distance d in order to maximize the
overlap with the original object Or. In Fig. 8, we depict the original helix in
grey and its rotated mirror image in blue. The overlap Ol ∩Or is shown in red.

For the geometric chirality coe�cient χGE, the volume of the overlap V (Or∩
Ol) is maximized and given in units of the original volume V (Or) [Eq. (4) in
the main text and Ref. [3]]. Since the mirror image of an achiral object may
be brought to complete overlap, the coe�cient vanishes in the achiral case:
χGE = 0. By contrast, if the mirror image does not overlap at all, the coe�cient
equals unity. Note, however, that there exists an overlap for any (including
chiral) object. Accordingly, χGE = 1 is only a theoretical value.

In Figure 3 in the main text, the coe�cient χGE(Θ,Φ, 0), which depends
on the rotation angles, is shown. The relevant scalar, is the minimum of
this coe�cient as it occurs for the maximal overlap. Including translations
in χGE(Θ,Φ, d), it is always possible to obtain χGE(Θ,Φ, d) = 1 by translating
the mirror images out of their respective bounding boxes. Only the analysis of
all possible rotations and translations (i.e. the minimization procedure) yields
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Figure 7: Construction of helix: Spheres (black) are placed at the top and bot-
tom. A circle (green) is swept along a line (red) on the cylindrical surface (red,
transparent). The helix (grey, transparent) consists of six parts in parameter
space.

a relevant coe�cient which vanishes if the object possesses a mirror plane.

10 Bayesian Optimization

The global minimization of χTT(Θ,Φ, d) in Eq. (3) in the main text takes place in
a three-dimensional space with parameters de�ned by the rotations around the
angles (Θ,Φ) and the translation by the distance d. Since the behaviour of the
similarity of the original T -matrix Tl and the matrix of the transformed mirror
image Tr is unknown, a global optimizer is required to obtain the coe�cient
χTT providing the highest symmetry in the T -matrix of the helix.

Bayesian Optimization (BO) is a procedure based on a stochastic model
given by Gaussian processes (GPs) [9]. The optimization starts at a random
point in the parameter space and predicts the objective function in the full
space based on the previously obtained values. This stochastic model is used to
identify parameter values which yield a large expected improvement with respect
to the currently known minimum. Subsequently, the function value of the point
with the highest expected improvement is determined and the predictive model
is re�ned. Di�erent stopping criteria such as the maximum number of function
evaluations, the smallest probability of improvement or the smallest expected
improvement are possible.

In the current study, we use a maximum number of 500 function evaluations,
a minimal probability of improvement of 10−6 and a minimal expected improve-
ment of 10−5. The latter criterion is based on the numerical accuracy which is
limited by the translation addition theorem for a �nite T -matrix (cf. Fig. 2).
Further, we parametrize the space (Θ,Φ, d) as follows in order to obtain pa-
rameters (p1, p2, p3) ∈ [0, 1]3 and shift physical signi�cant points such as the
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Figure 8: Overlap (red) of the original helix (grey) and the transformed helix
(blue) which is mirrored and rotated around the y-axis with Θ = 125◦ yielding
the maximal overlap with χGE = 0.57.
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centroid (d = 0) to the inner part of the parameter intervals:

Φ = 360◦(p1 − 0.7), (22)

Θ = 180◦
(
p2 − 0.1

1− 0.1

)2

, (23)

d = 206nm

(
p3 − 0.2

1− 0.2

)2

. (24)

The parametrizations above are chosen such that no symmetry point corre-
sponds to the boundaries of the parameter space [0, 1]3. The quadratic func-
tions involving p2 and p3 introduce ambiguities in the parameter space which
are irrelevant for the physical values obtained from the inverse functions

p1 =
Φ

360◦
+ 0.7, (25)

p2 =

√
Θ

180◦
(1.0− 0.1) + 0.1, (26)

p3 =

√
d

206nm
(1.0− 0.2) + 0.2. (27)

The relation between the variables (Θ,Φ, d) and the parameters (p1, p2, p3) is
depicted in Fig. 9.
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Figure 9: Parametrization for optimization with (p1, p2, p3).

The stochastic nature of the BO enables the predicition of objective values
in the full parameter space as well as predicting the uncertainties, i.e. standard
deviations, of these values. Accordingly, an interpolation of the parameter space
is possible. For the two extrema of the CD, the prediction given by the BO is
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shown in Fig. 10. From the respective minimal values of χTT(pmin
1 , pmin

2 , pmin
3 )

cuts through the parameter space in all three directions are shown. For each
cut, one parameter (e.g. p1) is varied and the other parameters are kept constant
(e.g. p2 = pmin

2 and p3 = pmin
3 ).

As clearly visible, the minima are very �at with respect to parameter p3,
i.e. translation from the centroid. For λ = 823nm, the minimum is additionally
�at for p2, i.e. rotations by Θ. In other words, small variations in the translation
d (and the rotation by Θ in the �rst case) do not change signi�cantly χTT.
Accordingly, the similarity between the T -matrices of the mirror images do not
change when d (and Θ) are varied. That is why, the results of the optimization
are subject to ambiguity caused by numerical �uctuations.

The results of the minimization are shown in Fig. 11. These parameters
correspond to the planes displayed in Fig. 3. As seen in the latter, the symmetry
class 2 is divided into two subclasses: one class for λ ∈ [600, 680]nm and a second
class for λ ∈ [550, 600]nm. These two classes di�er only by a roation of 180◦

about the z-axis.
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Shaded areas depict standard deviation derived from GPs.
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11 Achiral Scatterer

In order to verify our approach, we brie�y illustrate our method with a achiral
scatterer, i.e. an object containing a mirror plane. We use a ellipsoidal body
similar to a dielectric sphere with radius 230 nm and refractive index 3.5. The
illuminating wavelength is 1800 nm which is roughly within the scattering peak
of the magnetic dipole moment (cf. [4]).

The ellipsoidal particle is de�ned by six numbers being the three principal
axes with di�erent values in positive and negative direction of the axis. Namely,
the numbers x1 and x2 describe the length of the axis in positive (x1) and
negative (x2) direction of the x-axis. The remaining two axes y and z are
de�ned analogously. The particle is constructed out of eight partial ellipsoids
each taking three axes including their direction into account. If all six numbers
are chosen distinctively, the particle is chiral without a mirror plane. Here, we
choose x1 = x2 = 230nm yielding a mirror plane in the yz-plane. The remaining
dimensions are y1 = 184nm, y2 = 253nm, z1 = 276nm and z2 = 207nm.

In Fig. 12, we show the result of the global minimization of χTT(Θ,Φ, d)
and its relation to the geometric chirality coe�cient χGE. It is apparent that
the expected mirror plane is found up to numerical accuracy. After 81 steps the
minimization obtains χTT ≈ 0.0052 with the angles Φ ≈ 359.0196 and Θ = 180.
The displacement from the theoretically expected centroid is 0.1126 nm. This
shows that our approach �nds the mirror plane for a achiral scatterer within
the T -matrix as expected.

The optimization steps undertaken by the Bayesian Optimization is dis-
played in Fig. 13. The maximal value obtained in the inspected domain is
χTT ≈ 0.1606. The parametrization described in the previous section with nor-
malized parameters p1, p2 and p3 shows that the whole design space is analyzed
by the optimizer. Note that from the history of the minimization further anal-
ysis is possible by estimating the objective value for non-computed points in
parameter space with the help of Gaussian processes [9].
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Figure 12: (a) Transformed xy-plane (red) corresponding to minimal χTT com-
puted from T -matrix of the achiral scatterer (yellow). The plane is computed
for a incident wavelenght λ = 1800nm. The dark grey plane corresponds to
minimal χGE. (b) Geometric chiral coe�cient χGE(Θ,Φ) for the scatterer and
its mirror image which is rotated around the centroid (grey colormap). The
minimal value of 0.0 belongs to the dark grey plane in Fig. 12(a). The angles
of the red plane is shown by a red circle.
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Figure 13: Minimization for obtaining χTT for the achiral ellipsoidal scatterer.
The analyzed normalized parameters are shown in black and the obtained values
for χTT are given in red. The whole parameter space is investigated before the
optimizer terminates after 81 steps.
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