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Abstract: In a real-time system, a series of jobs invoked by each task should finish its execution before
its deadline, and EDF (Earliest Deadline First) is one of the most popular scheduling algorithms to
meet such timing constraints of a set of given tasks. However, EDF is known to be ineffective
in meeting timing constraints for non-preemptive tasks (which disallow any preemption) when
the system does not know the future job release patterns of the tasks. In this paper, we develop
a scheduling algorithm for a real-time system with a symmetry multiprocessor platform, which
requires only limited information about the future job release patterns of a set of non-preemptive
tasks, called LCEDF. We then derive its schedulability analysis that provides timing guarantees of the
non-preemptive task set on a symmetry multiprocessor platform. Via simulations, we demonstrate the
proposed schedulability analysis for LCEDF significantly improves the schedulability performance
in meeting timing constraints of a set of non-preemptive tasks up to 20.16%, compared to vanilla
non-preemptive EDF.

Keywords: real-time scheduling; EDF (Earliest Deadline First); real-time systems; a symmetry
multiprocessor platform; scheduling algorithm; schedulability analysis

1. Introduction

Real-time systems have been widely deployed as emerging systems (e.g., autonomous vehicles)
need stringent timing requirements [1,2]. One of the most important issues for real-time systems is to
design scheduling algorithms that are favorable to satisfying timing constraints of all jobs invoked
by a given set of tasks and to develop their schedulability analysis that gives offline guarantees on
satisfaction of the timing constraints. Many studies have aimed at addressing the issue, and EDF
(Earliest Deadline First) is one of the most popular and effective scheduling algorithms [3].

However, EDF is known to have poor performance in meeting job deadlines of non-preemptive
tasks (which disallow any preemption) when the system does not know the future release pattern of
jobs invoked by the tasks [4]. This is because, vanilla non-preemptive EDF has inherent limitations in
meeting deadlines of non-preemptive tasks without information for the future job release patterns.
For example, suppose that there are two jobs, J1 whose release time is t = 0 and deadline is t = 10,
and J2 whose release time is t = x and deadline is t = x + 2; also, the execution time of J1 and J2 are 3
and 1, respectively. Under vanilla non-preemptive EDF, if x = 1, J1 executes for [0, 3), which yields
a deadline miss for J2. One may argue that if J1 delays its execution until J2 finishes its execution, we
can avoid the deadline of J2. However, this prevents a deadline miss only when we know the value
of x in advance. That is, if J1 delays its execution until J2 finishes its execution when x is larger than
7 (without knowing x in advance), J1 cannot finish its execution until t = 10, yielding its deadline
miss. Therefore, without knowing x, there exists a situation where vanilla non-preemptive EDF yields
a deadline miss.
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To address the inherent limitation of vanilla non-preemptive EDF, Ekelin developed a new EDF
scheduling algorithm, called CEDF (Clairvoyant non-preemptive EDF) [5]. The assumption of this
algorithm is that the system knows the future release patterns of all jobs. Using the information for
the future job release patterns, CEDF is successfully able to schedule many non-preemptive task
sets without any job deadline miss, which is difficult for vanilla non-preemptive EDF. However,
the information is not available for many real-time systems; this necessitates a new non-preemptive
scheduling algorithm, which requires only limited information for the future job release patterns but
yields better performance than vanilla non-preemptive EDF in terms of meeting deadlines of all jobs
invoked by a set of given non-preemptive tasks.

In this paper, we develop a scheduling algorithm for a real-time system with a symmetry
multiprocessor platform, which requires limited information about the future job release patterns of a
set of non-preemptive tasks, called LCEDF. While each task invokes a series of jobs, we assume to know
the release time of each task’s the next job only (to be detailed in Section 3). LCEDF classifies a given
set of non-preemptive tasks into two: τA and τB. If a task cannot be schedulable (i.e., cannot meet its
jobs deadlines) without knowing the future job release patterns of tasks (to be detailed in Section 4),
the task belongs to the former; otherwise, the task belongs to the latter. Then, we develop a processor
idling mechanism for jobs of tasks in τA when the execution of jobs of tasks in τB results in a deadline
miss of tasks in τA. We explain details of LCEDF in Section 4.

We next derive a schedulability analysis for LCEDF. Based on the schedulability analysis for
vanilla non-preemptive EDF, we investigate the effect of the processor idling on tasks in τA and
those in τB in terms of meeting their job deadlines. According to the scheduling policy of LCEDF,
the interference from other tasks on a task in τA decreases, compared to vanilla non-preemptive
EDF, while that in τB increases. By carefully calculating how much the interference is decreased and
increases, we complete the schedulability analysis for LCEDF, to be detailed in Section 5.

To evaluate the schedulability performance by LCEDF, we generate a number of task sets, and
measure how many task sets are schedulable by LCEDF as opposed to vanilla non-preemptive EDF.
The simulation results show that the LCEDF schedulability analysis finds a number of additional
schedulable task sets, which cannot be deemed schedulable by the vanilla EDF schedulability analysis;
the amount of improvement in terms of the number of schedulable task sets by LCEDF is up to 20.16%.

In summary, this paper makes the following contributions.

• We raise a problem for developing a non-preemptive scheduling algorithm that requires only
limited information for the future job release patterns of a set of non-preemptive tasks.

• We develop a new non-preemptive scheduling algorithm, LCEDF, which enforces processor idling.
• We derive a schedulability analysis for LCEDF, by addressing the properties of LCEDF.
• We demonstrate the effectiveness of LCEDF in terms of schedulability performance,

via simulations.

The rest of this paper is organized as follows. Section 2 discusses literature review. Section 3
explains the system model, assumptions and notations. Section 4 develops the LCEDF scheduling
algorithm, and Section 5 derives its schedulability analysis. Section 6 evaluates the schedulability
performance of LCEDF, and Section 7 discusses and concludes the paper.

2. Literature Review

2.1. Clairvoyant Scheduling

The most relevant paper to our study is the study proposed by Ekelin [5]. In the paper,
the assumption is that the system knows release patterns of all future jobs. Using the information,
the study predicts job deadline misses without processor idling, and therefore calculates when we
should idle the processor to avoid job deadline misses. The paper is different from our study in that
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the paper assumes clairvoyance (while ours assumes limited clairvoyance), and the paper works with
a uniprocessor platform only (while ours works with a multiprocessor platform as well).

Note that there are several studies which deal with scheduling for the job scheduling area [6,7].
However, their system model is different from ours and the study by Ekelin [5], in that their system
model consists of (Job, Constraint, Query), which cannot be applied to the system model of our study.

2.2. Schedulability Analysis for Vanilla EDF

There have been several attempts to develop schedulability analyses for vanilla (global
non-preemptive) EDF on a multiprocessor platform. After Baruah initiated the analysis [8], two different
schedulability analyses were presented in 2008 [9,10]. Also, Lee et al. proposed a new schedulability
analysis [11,12] using the well-known schedulability analysis technique for preemptive scheduling
algorithms, called RTA (Response Time Analysis). This analysis becomes a basis for not only the
schedulability analysis of LCEDF as explained in Section 5, but also the schedulability analysis of
other non-preemptive scheduling algorithm, e.g., non-preemptive fixed-priority scheduling [12,13].
However, there has been no study that develops a schedulability analysis for scheduling algorithms
that exploit clairvoyance or limited clairvoyance. This is because the study proposed by Ekelin [5] does
not need any schedulability analysis as the algorithm knows every future schedule, and there has been
no attempt to develop scheduling algorithms utilizing limited clairvoyance.

3. System Model, Assumptions and Notations

We target a set of sporadic real-time tasks τ [14], executed on a multiprocessor platform consisting
of m symmetric processors. A task τi ∈ τ is specified as (Ti, Ci, Di) where Ti is the minimum separation
(or the period), Ci is the worst-case execution time, and Di is the relative deadline. A task invokes
a series of jobs, and the jth job of τi is denoted by J j

i . Let rj
i , cj

i , and dj
i denote the release time of J j

i ,

the execution time of J j
i (which is the same as Ci), and the absolute deadline of J j

i (which is the same as

rj
i + Di), respectively. The release time between two consecutive jobs of τi (e.g., J j

i and J j+1
i ) should be

no smaller than Ti. Also, once J j
i is released, it should finish its execution for up to Ci (= cj

i) time units

no later than dj
i (= rj

i + Di). We summarize notations for task and job parameters in Table 1. In this

paper, we use a critical time instant of a job J j
i , which is (dj

i − cj
i). The physical meaning of (dj

i − cj
i)

is as follows: if the job does not start its execution until (dj
i − cj

i), the job misses its deadline. A job
cannot be executed more than one processor at the same time. We assume a quantum-based time unit;
without loss of generality, the quantum length equals 1. Therefore, all task and job parameters are
natural numbers.

We assume limited clairvoyance for future job release patterns. That is, let future jobs at t imply
jobs whose execution has not been finished until t, and then at t we assume that for every τi we know
the release time of the future job whose release time is the earliest among all future jobs of τi at t.

Table 1. Notations for task and job parameters.

Symbol Description

m The number of processors

τ Task set
τi Task i
Ti The minimum separation between two successive jobs of τi
Ci The worst-case execution time of τi
Di The relative deadline of τi

J j
i The jth job of τi

rj
i the release time of J j

i
cj

i the execution time of J j
i (which is the same as Ci)

dj
i the absolute deadline of J j

i
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In this paper, we consider global non-preemptive scheduling. Under global scheduling, each task
(as well as each job) can be executed in any processor, and under non-preemptive scheduling, a job
does not pause its execution once it starts to execute. In the rest of this paper, we omit the term
“global non-preemptive”; for example, EDF refers global non-preemptive EDF. As notations, let LHS
and RHS denote the left-hand side and the right-hand side, respectively.

4. Methodology: Design of the LCEDF Scheduling Algorithm

In this section, we first discuss limitation of vanilla EDF in meeting non-preemptive tasks’ job
deadlines without the information about the future job release patterns of tasks. We then explain
design principles for LCEDF, and finally develop the LCEDF scheduling algorithm.

4.1. Limitation of Vanilla EDF

In this subsection, we discuss limitation of vanilla EDF. To this end, we first explain the scheduling
algorithm of vanilla (global non-preemptive) EDF. Vanilla EDF manages a ready queue, in which jobs
are sorted such that a job with an earlier deadline has a higher priority. Whenever there exists an
unoccupied processor, the highest-priority job in the ready queue starts its execution on the processor;
once a job starts its execution, the job cannot be preempted by any other job until the job finishes
its execution.

As many studies pointed out [5], non-preemptive EDF is not effective in meeting job deadlines,
if the information about the future job release patterns is not available (i.e., the system is
non-clairvoyant). The following example demonstrates such ineffectiveness of EDF in meeting
job deadlines.

Example 1. Consider a task set τ with the following two tasks is executed on a uniprocessor platform:
τ1(T1 = 102, C1 = 24, D1 = 102), τ2(T2 = 33, C2 = 17, D2 = 33). Consider the following scenario:
(i) the interval of interest is [0, 47); and (ii) J1

1 is released at t = 0 and J1
2 is released at t = x > 0. We show the

schedule under vanilla EDF. At t = 0, vanilla EDF schedules J1
1 , because any job of τ2 is not released at t = 0;

then, J1
1 occupies the processor [0, 24). Suppose that J1

2 is released at t = 6; then, J1
2 misses its deadline without

having any chance to compete for an unoccupied processor until (d1
2 − c1

2) = 22 as shown in Figure 1a. What
if we know at t = 0 that J1

2 will be released at t = 6? Then, by idling the processor in [0, 6), we can make J1
2

and J1
1 schedulable as shown in Figure 1b. However, without the information of the future release time of J1

2 , we
cannot idle the processor. This is because, if J1

2 is not released until t = 78, J1
1 eventually misses its deadline.

Note that the task set is schedulable by LCEDF, to be presented in Example 3 in Section 4.3.

(a) (b)

Figure 1. Schedule of J1
1 of τ1(T1 = 102, C1 = 24, D1 = 102) and J1

2 of τ2(T2 = 33, C2 = 17, D2 = 33).
(a) Schedule by vanilla EDF; (b) Schedule by processor idling.

The similar phenomenon occurs on a symmetry multiprocessor platform, as demonstrated in the
following example.
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Example 2. Consider a task set τ with the following three tasks on a two-processor platform: τ1(T1 = 202, C1 =

22, D1 = 202), τ2(T2 = 312, C2 = 17, D2 = 312) and τ3(T3 = 81, C3 = 74, D3 = 81). Consider the
following scenario: (i) the interval of interest is [0, 93); (ii) J1

1 is released at t = 0, and J1
2 and J1

3 is released
at t = x > 0 and t = y > 0, respectively. We show the schedule under vanilla EDF. At t = 0, vanilla EDF
schedules J1

1 , because J1
2 and J1

3 are not released at t = 0; then, J1
1 occupies the processor [0, 22). Suppose that J1

2
and J1

3 are released at t = 6 and t = 12, respectively; then, J1
3 misses its deadline without having any chance

to compete for unoccupied processors until (d1
3 − c1

3) = 19 as shown in Figure 2a. If we know that J1
2 and J1

3
will be released at t = 6 and t = 12, respectively, we can make J1

3 schedulable by idling a processor in [6, 12)
as shown in Figure 2b. However, without the information of the future release time of J1

3 , we cannot idle the
processor; this is because, if J1

3 is not released until t = 295, J1
2 eventually misses its deadline. Note that the task

set is schedulable by LCEDF, to be presented in Example 4 in Section 4.3.

(a) (b)

Figure 2. Schedule of J1
1 of τ1(T1 = 202, C1 = 22, D1 = 202), J1

2 of τ2(T2 = 312, C2 = 17, D2 = 312),
and J1

3 of τ3(T3 = 81, C3 = 74, D3 = 81). (a) Schedule by vanilla EDF; (b) Schedule by processor idling.

As shown in Examples 1 and 2, there may exist a release pattern that yields a deadline miss of a job
of τk of interest under vanilla EDF, if (Dk − Ck + 1) of τk is smaller than the worst-case execution time
of some other tasks (i.e., Ci). The following observation records this property formally. (Observation 1
is already implicitly incorporated into the existing schedulability analysis for vanilla EDF [11,12].)

Observation 1. Suppose that we do not know any future job release pattern. Then, there exists a release pattern
that yields a deadline miss of a job of τk of interest, if there exist at least m tasks τi ∈ τ \ {τk} whose worst-case
execution time (i.e., Ci) is larger than (Dk − Ck + 1).

The observation holds as follows. Suppose that jobs of m tasks τi ∈ τ \ {τk} whose worst-case
execution time is larger than (Dk − Ck + 1) are released at t = 0. We consider the following situation.
Suppose that the m jobs start their execution at t = x ≥ 0. In this case, if a job of τk is released at
t = x + 1, the job of τk misses its deadline. In addition, if any of the m jobs do not start its execution
forever, the jobs eventually miss their deadlines. Therefore, the observation holds.

The observation is important because if there exists such a task τk, the task set including τk is
unschedulable by vanilla EDF. Therefore, we design LCEDF so as to carefully handle such a task τk in
Observation 1, which is detailed in the next subsection.

4.2. Design Principle for LCEDF

Motivated by Observation 1, we would like to avoid job deadline misses of tasks which belong to
τk in Observation 1, by using the limited information about the future job release patterns. To this end,
we classify tasks offline as follows:
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• τA, a set of tasks τk which satisfy that there exist at least m other tasks τi ∈ τ \ {τk} whose
execution time (i.e., Ci) is larger than (Dk − Ck + 1), and

• τB, a set of tasks which do not belong to τA.

We would like to avoid the deadline miss situations shown in Figures 1a and 2a, in which a job J j
i

of a task in τA misses its deadline without having any chance to compete for an unoccupied processor
until (dj

i − cj
i), which is the last time instant each job should start its execution to avoid its deadline

miss. As we explained in Figures 1b and 2b, the situations can be avoided using knowledge of future
job release patterns. In this paper, we aim at developing a systematic way to avoid such deadline
miss situations with only a limited information for future job release patterns (explained in Section 3).
To this end, we manage a critical queue CQ, in which jobs {J j

i } of tasks in τA are sorted by their (dj
i − cj

i),
which is the last time instant each job should start its execution to avoid its deadline miss. Whenever
a job of a task in τB is able to start its execution, we check whether executing the job of a task in
τB will jeopardize timely execution of jobs in CQ by experiencing the deadline miss situations such
as Figures 1a and 2a. If so, the job of a task in τB will be postponed by idling a processor where the job
is supposed to execute under vanilla EDF. Note that although we assume to know the next job’s release
time of all tasks in Section 3, we actually need to know the next job’s release time of tasks in τA only.

As we mentioned, the LCEDF algorithm avoids the deadline miss situations of jobs of tasks in τA

shown in Figures 1a and 2a, by postponing jobs of tasks in τB. Then, the main problem is when jobs
of tasks in τB should postpone their executions for timely execution of jobs of tasks in τA. The more
postponing yields the higher and lower chance for timely execution of jobs of tasks in τA and τB,
respectively; on the other hand, the less postponing results in the lower and higher chance for timely
execution of jobs of tasks in τA and τB, respectively. Therefore, we need to minimize postponing the
execution of jobs of tasks in τB while guaranteeing timely execution of jobs of tasks in τA. We may
classify the situations where a job J1

A1 of τA1 in τA has and does not have at least a chance to compete
for unoccupied processors until (d1

A1 − c1
A1), into four situations as shown in Figure 3.

We now discuss the four situations at t in Figure 3. Suppose that at t, there are three unoccupied
processors out of the four processors in the system. And, three jobs (J1

B1, J1
B2 and J1

B3) of tasks belonging
to τB start their executions at t, while one job (J1

B4) of a task belonging to τB keeps its execution started
before t. Now we are interested in the timely execution of J1

A1 of a task in τA. If all the four jobs (i.e., J1
B1,

J1
B2, J1

B3 and J1
B4) finish their execution after (d1

A1 − c1
A1), J1

A1 misses its deadline without having any
chance to compete for unoccupied processors, as shown in Figure 3a. However, if at least one job
among the three jobs (J1

B1, J1
B2 and J1

B3) which start its execution at t finish their execution no later than
(d1

A1 − c1
A1), then J1

A1 does not miss its deadline as shown in Figure 3b. Similarly, although there is
another job J1

A2 of a task in τA, J1
A1 does not miss its deadline as long as J1

A2 finishes its execution before
(d1

A1 − c1
A1), which is shown in Figure 3c. We have another case where J1

A1 does not miss its deadline;
that is the case where the job of J1

B4 which keeps its execution started before t finishes its execution
before (d1

A1 − c1
A1), as shown in Figure 3d.

Therefore, if the current situation does not belong to one of situations illustrated in Figure 3b–d,
we judge that there exists a job deadline miss. Once we judge such a deadline-miss situation, we choose
the lowest-priority job among the jobs of tasks in τB which is supposed to start their execution at t,
and avoid the lowest-priority job’s execution, by idling a processor intentionally.
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(a) (b)

(c) (d)

Figure 3. Four cases where a job J1
A1 of τA1 ∈ τA has and does not have at least a chance to compete for

unoccupied processors until (d1
A1 − c1

A1). (a) The case where the timely execution of J1
A1 of τA1 ∈ τA

cannot be guaranteed at t; (b) The case where the timely execution of J1
A1 of τA1 ∈ τA is guaranteed at

t, due to a job of a task in τB which starts its execution at t but finishes its execution until (d1
A1 − c1

A1);
(c) The case where the timely execution of J1

A1 of τA1 ∈ τA is guaranteed at t, due to a job of a task
in τB which starts its execution at t but finishes its execution until (d1

A1 − c1
A1); (d) The case where

the timely execution of J1
A1 of τA1 ∈ τA is guaranteed at t, due to a job of a task in τB which starts its

execution before t but finishes it execution until (d1
A1 − c1

A1).

4.3. Algorithm Details and Examples

Based on the design principle explained in Section 4.2, we detail the LCEDF algorithm using
pseudo code and examples in this subsection.

As shown in Algorithm 1, the input components of LCEDF at t are the ready queue RQ, the critical
queue CQ, the number of unoccupied processors m′, and the running job set RJ. Here, RQ is a set of
ready jobs at t, and CQ is a set of jobs which will be released after t, invoked by τA.
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Algorithm 1 The LCEDF algorithm
Input: the ready queue RQ, the critical queue CQ, the number of unoccupied processors m′, and the

running job set RJ, at t

1: // Step 1: Check the priority of jobs of τx ∈ τA in RQ
2: for every τx ∈ τA job Ji

x in RQ do
3: if Priority of Ji

x ≤ m′ then
4: Remove the job Ji

x from RQ; start its execution; m′ ← m′ − 1
5: Update the job release information of τx (from Ji

x to Ji+1
x ) in CQ

6: end if
7: end for
8: // Step 2: Check whether every job of τA in CQ does not miss its deadline
9: for every τx ∈ τA job Ji

x in CQ do
10: if the number of jobs in RQ < m′ then
11: m′ ← m′ − 1; Continue the for statement
12: end if
13: if m′ ≤ 0 then
14: Exit the for statement
15: end if
16: IsFeasible← Case-0
17: for m′ high priority jobs J j

y of tasks in τy ∈ τB in RQ do
18: if t + cj

y ≤ di
x − ci

x then
19: IsFeasible← Case-1
20: Exit the for statement
21: end if
22: end for
23: if IsFeasible = Case-0 then
24: for every τy ∈ τA job J j

y in CQ and τy 6= τx do
25: if rj

y + cj
y ≤ di

x − ci
x then

26: IsFeasible← Case-2
27: Exit the for statement
28: end if
29: end for
30: for every job J j

y in RJ do
31: if t + cj

y(t) ≤ di
x − ci

x then
32: IsFeasible← Case-3
33: Exit the for statement
34: end if
35: end for
36: end if
37: if IsFeasible = Case-1 then
38: Remove the highest priority job J j

y that satisfies (t + cj
y ≤ di

x − ci
x) from RQ; start its execution;

m′ ← m′ − 1
39: else if IsFeasible = Case-2 or Case-3 then
40: Remove the highest priority job J j

y from RQ; start its execution; m′ ← m′ − 1
41: else // if IsFeasible = Case-0
42: m′ ← m′ − 1
43: end if
44: end for
45: // Step 3: Execute m′ remaining jobs Ji

x of τx ∈ τB in RQ
46: for m′ highest-priority jobs Ji

x of τx ∈ τB in RQ do
47: Remove from RQ; start its execution
48: end for

Step 1 in Algorithm 1 assigns jobs of tasks in τA belonging to RQ, to unoccupied processors.
Since we postpone the execution of jobs of tasks in τB in order for timely execution of jobs of tasks in
τA, the m′ highest-priority jobs of tasks in τA belonging to RQ can be executed, which is the same as
that under vanilla EDF. To this end, we first find jobs of tasks in τA belonging to RQ, whose execution



Symmetry 2020, 12, 172 9 of 19

is started at t in unoccupied processors (Lines 2–3). Such a job starts its execution and it removed from
RQ (Line 4). Also, whenever a job starts its execution on an unoccupied processor, we decrease the
number of unoccupied processors by 1 (Line 4). Then, we update the release information of a task
which invokes the job starting its execution (Line 5).

In Step 1 we start the execution of higher-priority jobs of tasks in τA belonging to RQ, and therefore
we are ready to start the execution of higher-priority jobs of tasks in τB belonging to RQ in the remaining
unoccupied processors. In Step 2, we decide whether each job of a task in τB belonging to RQ starts or
postpones its execution, according to whether it is possible to guarantee the timely execution of jobs of
tasks in τA belonging to CQ. First, we investigate whether it is possible to guarantee the schedulability
of each job of tasks in τA belonging to CQ (Line 9). If the number of jobs in RQ is strictly smaller than
m′, we can assign an unoccupied processor to Ji

x even though all jobs in RQ start their execution in
unoccupied processors. Since we reserve an unoccupied processors for Ji

x, we decrease the number
of unoccupied processors by 1; then continue the for statement (Lines 10–11). If there is no more
unoccupied processor, we stop this process because we cannot start any job execution (Lines 13–15).
We set IsFeasible as CASE-0 (Line 16), and investigate whether the current situation belongs one of
the three cases in Figure 3b–d where the timely execution of a job of a task in τA is guaranteed; based
on the cases, we change IsFeasible to either CASE-1, CASE-2 or CASE-3 (Lines 17–36).

The for statement in Lines 17–22 aims at checking whether execution of the m′ highest-priority
jobs in RQ compromises the schedulability of any job of tasks in τA in CQ. We assume to assign the
highest-priority job J j

y of a task in τB to an unoccupied processor (Line 17). If the finishing time of

the job’s execution (i.e., t + cj
y) is no later than (di

x − ci
x) that is the last instant at which Ji

x in CQ starts
its execution without its deadline miss, we set IsFeasible as Case-1 (Line 19), which corresponds
to Figure 3b.

The for statements respectively in Lines 24–29 and Lines 30–35 are performed only when
IsFeasible is equal to Case-0, which means the timely execution of the job Ji

x in CQ is not guaranteed
yet. In the for statement in Lines 24–29, we check the finishing time of a job in CQ (i.e., rj

y + cj
y) is no

later than (di
x − ci

x), which corresponds to Figure 3c; since J j
y cannot start its execution until t because

rj
y is later than t, we calculate the earliest finishing time of the job by (rj

y + cj
y) (Line 25). If so, we set

IsFeasible as Case-2 (Line 26). In the for statement Lines 30–35, we check the finishing time of a job
in RJ which starts its execution before t (i.e., t + cj

y(t)) is no later than (di
x − ci

x), which corresponds

to Figure 3d, where cj
y(t) denotes the remaining execution time of J j

y at t; this is because, J j
y starts its

execution before t (Line 31). If so, we set IsFeasible as Case-3 (Line 32).
In Lines 37–43, if IsFeasible is set to Case-1, we remove the highest-priority job in RQ that

satisfies t + cj
y ≤ di

x − ci
x and start to execute the job; also, we decrease the number of unoccupied

processors by 1 (Line 38). If IsFeasible is set to Case-2 or Case-3, we remove the highest-priority job
in RQ and start to execute the job; also, we decrease the number of unoccupied processors by 1 (Line 40).
Otherwise (meaning that IsFeasible equals to Case-0), we just decrease the number of unoccupied
processors by 1, meaning that we postpone a job of a task in τB belonging to RQ (Line 42).

In Steps 1 and 2, we already guarantee the timely execution of jobs of tasks belonging to τA in CQ,
meaning that the remaining unoccupied processors can serve for jobs of tasks in τB in RQ. Therefore, in
Step 3 we start to execute m′ highest-priority jobs in RQ (Lines 46–48).

In the following examples, we show that the task sets associated with the processor platforms
in Examples 1 and 2 can be schedulable by the LCEDF algorithms.

Example 3. Consider the task set with the processor platform shown in Example 1; that is, τ1(T1 = 102, C1 =

24, D1 = 102) and τ2(T2 = 33, C2 = 17, D2 = 33) are scheduled on a uniprocessor platform. We first
categorize each task into τA or τB. When we calculate (D2 − C2 + 1) of τ2, we get 17; since there is one task
whose execution time is larger than 17 (which is τ1), τ2 belongs to τA. Similarly, (D1 − C1 + 1) of τ1 is 79,
which is no smaller than C2 = 17; therefore, τ1 belongs to τB.
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Consider the following scenario which is the same as that of Example 1: (i) the interval of interest is [0, 47);
and (ii) J1

1 is released at t = 0 and J1
2 is released at t = 6. Since we categorized τ2 as τA, we know that at t = 0,

J1
2 will release at t = 6. At t = 0, there is only J1

1 in the ready queue; according to Step 2 we examine if there is
an unoccupied processor for J1

2 in the critical queue to be executed. This can be done by checking t + c1
1 ≤ d1

2− c1
2

resulting 0 + 24 ≤ 22, which is wrong. We conclude that there is no unoccupied processor for J1
2 to be executed

after J1
1 . Hence we postpone J1

1 and execute J1
2 at t = 6; this yields that the task set is schedulable by LCEDF.

Example 4. Consider the task set with the processor platform shown in Example 2; that is, τ1(T1 = 202, C1 =

22, D1 = 202), τ2(T2 = 312, C2 = 17, D2 = 312), and τ3(T3 = 81, C3 = 74, D3 = 81) are scheduled on
a two-processor platform. We first categorize each task into τA or τB. If we calculate (D3 − C3 + 1) of τ3, we
get 8; since there are two tasks whose execution time is larger than 8 (which is τ1 and τ2), τ3 belongs to τA.
Similarly, τ1 and τ2 belong to τB.

Consider the following scenario which is the same as that of Example 2: (i) the interval of interest is [0, 93);
and (ii) J1

1 is released at t = 0, and J1
2 and J1

3 is released at t = 6 and t = 12, respectively. Since we categorized
τ3 as τA, we know that at t = 0, J1

3 will release at t = 12. At t = 0, there is only J1
1 in the ready queue; according

to Step 2 we examine if there is an unoccupied processor for J1
3 in the critical queue to be executed. Since there

are two unoccupied processors and there is only one job in the ready queue, we do not postpone the execution of
J1
1 . At the t = 6, there is only J1

2 in the ready queue; according to Step 2 we examine if there is an unoccupied
processor for J1

3 in the critical queue to be executed. This can be done by checking t + c1
2 ≤ d1

3 − c1
3 resulting

6 + 17 ≤ 19, which is wrong. We conclude that there is no unoccupied processor for J1
3 to be executed after J1

2 .
Hence we postpone J1

2 and execute J1
3 at t = 12; this yields that the task set is schedulable by LCEDF.

We now discuss time-complexity of the LCEDF algorithm itself. Algorithm 1 takes O(n2),
where the number of tasks in τ is n. That is, the number of jobs in τA is upper-bounded by n
(See the number of iterations in Line 10), and the number of iterations for Lines 17, 24 and 30 are
also upper-bounded by n. Also, it takes O

(
n · log(n)

)
to sort jobs according to EDF. Therefore,

O(n2) + O
(
n · log(n)

)
= O(n2). Note that LCEDF performs Algorithm 1 only when there is job

release, job completion or processor idling.

5. Methodology: Schedulability Analysis for LCEDF

In the previous section, we succeed to develop a new scheduling algorithm, LCEDF,
which potentially improves vanilla EDF using limited information for the future job release pattern.
However, the algorithm becomes useful, only if we can provide offline timing guarantees of a given
set of tasks under the algorithm. In this section, we develop a schedulability analysis for LCEDF,
which offers such offline timing guarantees. We first investigate the existing schedulability analysis for
vanilla EDF, which is a basis for that for LCEDF. We then derive effects of postponing jobs and idling
processors on schedulability. Finally, we incorporate the effects to the existing schedulability analysis
technique, yielding a new schedulability analysis for LCEDF.

5.1. Existing Schedulability Analysis for Vanilla EDF

As a basis for the schedulability analysis for LCEDF to be developed, we choose to use one
of the most popular schedulability analysis techniques, called RTA (Response Time Analysis) for
non-preemptive scheduling [11,12]. Let Ik(t, t + `) denote the length of cumulative intervals in [t, t + `)

where a job of τk of interest cannot execute due to other jobs’ execution. By the definition of Ik(t, t + `),
at least one unit of execution is performed in [t, t + `) if the following inequality holds [11,12]:

1 + Ik(t, t + `) ≤ `. (1)

Under non-preemptive scheduling, a job continues its execution once it starts to execute. Therefore,
if Equation (1) holds, the job of τk finishes its execution no later than (t + `+ Ck − 1) [11,12]. That is,
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since at least one unit of execution of the job of τk of interest is performed in [t, t + `), the remaining
execution of the job of τk of interest at (t + `) is as much as at most (Ck − 1).

Then, the remaining issue is how to calculate Ik(t, t + `). To this end, the existing studies calculate
an upper-bound of Ik(t, t + `) under the target scheduling algorithm. Considering a job of τk of interest
cannot execute in a time slot only if there are m other jobs executed in the time slot, the existing studies
calculate an upper bound of the length of cumulative intervals where the job of τi of interest cannot
execute while jobs of τi execute in [t, t + `).

For vanilla EDF, the existing studies consider two upper bounds. The first upper-bound is the
maximum length of cumulative intervals where jobs of τi execute in [t, t + `) [15]. Figure 4a illustrates
the job release and execution pattern that maximizes the amount of execution of jobs of τi in an interval
of length `. The job release and execution pattern is as follows: the first and last jobs of τi execute as
late and early as possible, respectively, and the interval of interest starts at the beginning of the first
job’s execution. Here, Si denote the slack value of τi, meaning that every job of τi finishes its execution
no later than its absolute deadline ahead of Si time units. We will explain how to calculate and use Si
for RTA. Under the job release and execution pattern in Figure 4a, the number of jobs whose absolute
deadlines are within the interval of interest can be calculated by Ni(`) [15] where

Ni(`) =
⌊ `+ Di − Si − Ci

Ti

⌋
. (2)

Then, the amount of execution in the figure can be calculated by Wi(`) [15] where

Wi(`) = Ni(`) · Ci + min
(
Ci, `+ Di − Si − Ci − Ni(`) · Ti

)
. (3)

After executing Ni(`) jobs of τi in an interval of length `, at most one job of τi can be (partially)
executed. Then, (`+ Di − Si −Ci − Ni(`) · Ti) is the maximum length of the job’s execution. Since a job
of τi’s execution cannot be larger than Ci, we take the minimum between (`+ Di − Si −Ci − Ni(`) · Ti)

and Ci, yielding Equation (3).

(a) (b)

Figure 4. Two upper bounds for Ik(t, t + `). (a) The maximum length of cumulative intervals where
jobs of τi execute in [t, t + `); (b) The maximum length of cumulative intervals where jobs of τi have
a higher priority than the job of τk of interest in [t, t + Dk) under EDF.

To calculate the second upper-bound, the existing studies focus on the execution window of the job
of τk, meaning that the interval between the job’s release time and absolute deadline, whose length is Dk.
They then calculate the maximum length cumulative intervals where jobs of τi have a higher-priority
than the job of τk of interest in the interval of length Dk. Under vanilla EDF, a job of τi can have
a higher priority than a job of τk only if the job of τi has an earlier absolute deadline than the job of
τi. Figure 4b illustrates the situation for the second upper-bound. Similar to Ni(`), we can calculate
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Nk←i, the number of jobs of τi that have a higher priority than the job of τk, whose release times are
within the interval of interest of length Dk (i.e., the job of τk’s execution window), as follows [15]:

Nk←i =
⌊Dk + Ti − Di

Ti

⌋
. (4)

The, the amount of execution in the figure can be calculated by Ek←i [15] where

Ek←i = Nk←i · Ci + min
(

Ci, max
(

0, Dk − Nk←i · Ti − Si

))
. (5)

Then, Wi(`) and Ek←i operate as an upper bound of the amount of higher-priority execution of
jobs of τi (than the job of τk) in the interval of interest. Since we focus on non-preemptive scheduling,
it is possible for a lower-priority job of τi to prevent the job of τk’s execution. This happens only when
a job of τi starts its execution before the release time of the job of τk of interest. In this case, the job of τi
can block the execution of the job of τk of interest during at most (Ci − 1).

Considering a job of τk of interest cannot execute in a time slot only if there are m other jobs
executed in the time slot, Ik(t, t + `) can be upper-bounded as follows [11,12].

Ik(t, t + `) ≤⌊
∑τi∈τ\{τk}min

(
Wi(`), Ek←i , `

)
+ ∑m largest τi ∈ τ \ {τk}|Di > Dk

max
(

0, min
(

Wi(`), Ci − 1, `
)
−min

(
Wi(`), Ek←i , `

))
m

⌋
(6)

Since we calculate the two upper-bounds Wi(`) and Ek←i and the interval length is `, the amount
of higher-priority execution of τi (than the job of τk of interest) in [t, t + `) is min(Wi(`), Ek←i, `). Also,
if a job of τi starts its execution before the release of the job of τk of interest, the job of τi can interfere
with the job of τk during at most min(Wi(`), Ci − 1, `). Since there exist at most m blocking jobs, we add
min(Wi(`), Ek←i, `) for all tasks τi /∈ τk, and add the m largest difference between min(Wi(`), Ci − 1, `)
and min(Wi(`), Ek←i, `) if the difference is positive. Finally, we divide the sum by m, because the job
of τk cannot be executed only when m other jobs execute, yielding Equation (6).

Using the above equations, RTA for vanilla EDF operates as follows. With Si = 0 for every τi ∈ τ,
the following procedure is performed. For each τk ∈ τ, we set ` = 1 and check Equation (1) by
replacing Ik(t, t + `) as the RHS of Equation (6). If Equation (1) does not hold, we repeat to set ` as the
RHS of Equation (1). If Equation (1) holds with ` ≤ Dk − Ck + 1, τk is schedulable; otherwise, τk is
unschedulable. Then, if every task is schedulable, the task set is schedulable; otherwise, we update the
slack values, and repeat the procedure with the updated slack values until every task is schedulable
(schedulable task set) or there is no more slack update (unschedulable task set). Note that slack updates
are performed as follows: for each schedulable task τi, we set Si as (Dk−Ck + 1− `), which is explained
in [11,12].

5.2. Schedulability Analysis for LCEDF

The most prominent characteristic of LCEDF is to postpone jobs of tasks in τB and to idle
processors for tasks in τA. In this subsection, we calculate upper-bounds of Ik(t, t + `) for tasks in
τA and τB, which are different from those under vanilla EDF. Compared to the upper-bounds under
vanialla EDF, an upper-bound of Ik(t, t + `) for τk ∈ τA should be no larger, and that for τk ∈ τB

should be no smaller. The former holds because some jobs of tasks in τB cannot execute even though
their priorities are higher than jobs of tasks in τA. This, in turn, makes the latter holds.

We first calculate an upper-bound of Ik(t, t + `) for τk ∈ τA. Recall that τA is a set of tasks τk
which satisfy that there exist at least m other tasks τi ∈ τ \ {τk} whose execution time is larger than
(Dk − Ck + 1). Suppose that a job of a task τi in τB is ready to execute by having the highest priority
among jobs in the ready queue at t0, and the earliest time instant for a job of a task τk in τA (which does
not start its execution until t0) to encounter an unoccupied processor after t0 is t1. Then, the job of
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τi cannot start its execution, if t0 + Ci > t1 holds and other (m − 1) processors are occupied until
(t1 + 1). Since we do not know which job of a task τi in τB is ready to execute and when other (m− 1)
processors are occupied, the LCEDF schedulability analysis to be developed should capture such
situations offline.

To derive the schedulability analysis for LCEDF, we utilize the following property for LCEDF.

Lemma 1. Under LCEDF, the number of tasks which fully interfere with the execution of a job Jx
k of τk ∈ τA

(of interest) during [rx
k , dx

k − cx
k + 1) is at most (m− 1).

Proof. According to LCEDF, a job of a task in τB can start its execution only if every job Jx
k of a task in

τA has at least one chance to compete for unoccupied processors until (dx
k − cx

k ). If not (i.e., at least one
job of a task in τA cannot have any chance if the job of the task in τB starts its execution), we postpone
the execution of the job of the task in τB. Therefore, Jx

k of τk ∈ τA cannot experience more than (m− 1)
fully interfering jobs during [rx

k , dx
k − cx

k + 1).

Using the lemma, we derive Ik(t, t + `) for τk ∈ τA as follows.

Lemma 2. Let Xi denote min
(
Wi(`), Ek←i, `

)
+ max

(
0, min

(
Wi(`), Ci − 1, `

)
−min

(
Wi(`), Ek←i, `

))
,

meaning that Xi is τi’s term in the numerator of the RHS of Equation (6). Under LCEDF, Ik(t, t + `) for
τk ∈ τA is upper-bounded as follows:

Ik(t, t + `) ≤⌊
∑τi∈τ\{τk}min

(
Wi(`), Ek←i , `

)
+ ∑m largest τi ∈ τ \ {τk}|Di > Dk

max
(

0, min
(
Wi(`), Ci − 1, `

)
−min

(
Wi(`), Ek←i , `

))
− α

m

⌋
, (7)

where α denotes the mth largest value of
(
Xi − (Dk − Ck)

)
among τi ∈ τ \ {τk}; if the value is negative, α is

set to 0.

Proof. We show that in Lemma 2 there are at most (m− 1) tasks that fully interfere with the execution
of Jx

k of τk ∈ τA in [rx
k , dx

k − cx
k + 1). Therefore, the mth largest value of Xi (among τi ∈ τ \ {τk}) cannot

be larger than (Dk −Ck). We take the minimum between (Dk −Ck) and Xi for the task with mth largest
value of Xi, which is implemented by subtraction of α.

If compare the RHS of Equation (6) and that of Equation (7), the latter is no larger than the former;
their difference is equal to α. This means that a task τk ∈ τA which is not schedulable by vanilla EDF
can be schedulable by LCEDF.

Next, we calculate an upper-bound of Ik(t, t + `) for τk ∈ τB. Recall that τB is a set of tasks which
do not belong to τA. In addition to interference and blocking calculated in Equation (6), a job of a task
τk ∈ τB cannot be executed due to processor idling by the LCEDF algorithm. Therefore, we need to
calculate how long a job of a task τk ∈ τB can experience processor idling due to jobs of a task τi ∈ τA,
which is denoted by Pk→i.

If there are more than two tasks in the task set, it is possible for a job of a task in τB to be postponed
by jobs of different tasks in τA. Therefore, we need to calculate how long jobs of a task τi ∈ τA incur
processor idling that disallows a job of τk ∈ τB to perform its execution. Suppose that a job of τk ∈ τB

starts its execution at t0, and and the earliest time instant for a job of a task τi ∈ τA (which does not
start its execution until t0) to encounter an unoccupied processor after t0 is t1. Then, to trigger processor
idling for τi, t0 + Ck ≥ t1 + 1 should be satisfied, and in this case, the processor idling duration is
(Ck − (Di − Ci + 1)) as shown in Figure 5. Considering jobs of τk ∈ τB can postpone the job of τi,
the following lemma holds.
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Figure 5. The maximum cumulative length where the execution of a job J1
k of τk ∈ τB of interest is

postponed by jobs of τi ∈ τA in [r1
k , d1

k).

Lemma 3. The processor idling duration by τi ∈ τA in the execution window of a job of τk ∈ τB (i.e., [rx
k , dx

k )

for Jx
k ) is at most Pk→i where

Pk←i =
⌊Dk

Ti

⌋
·max

(
0, Ck −

(
Di − Ci

)
− 1
)
+ min

(
max

(
0, Ck −

(
Di− Ci

)
− 1
)

, Dk −
⌊Dk

Ti

⌋
· Ti

)
. (8)

Proof. A job Jy
k of τk ∈ τB can be postponed by a job Jx

i of τi ∈ τA, only when the finishing time
of Jy

k ’s execution is later than (dx
i − cx

i ). Therefore, Jx
i can trigger postponing the execution of Jy

k by
processor idling during at most

(
Ck − (Di − Ci)− 1

)
. Also, in [ry

k , dy
k), there can be bDk

Ti
c jobs of τi that

fully trigger postponing the execution of Jy
k by processor idling, and there can be additional at most

one job of τi that does partially. Therefore, similar to calculation of Wi(`) and Ek←i, we can calculate
the processor idling duration by τi ∈ τA, as Pk←i.

Then, we can derive Ik(t, t+ `) for τk ∈ τB under LCEDF, by adding Pk←i to Equation (6), which is
recorded in the following lemma.

Lemma 4. Under LCEDF, Ik(t, t + `) for τk ∈ τB is upper-bounded as follows:

Ik(t, t + `) ≤⌊
∑τ\{τk}min

(
Wi(`) + Pk←i , Ek←i + Pk←i , `

)
+ ∑m largest τi ∈ τ \ {τk}|Di > Dk

max
(

0, min
(

Wi(`), Ci − 1, `
)
−min

(
Wi(`) + Pk←i , Ek←i + Pk←i , `

))
m

⌋
(9)

Proof. The difference between Equations (6) and (9) is whether there is Pk←i added to Wi(`) and Ek←i.
Since we prove that the maximum processor idling duration is Pk←i, the lemma holds.

Then, how to apply RTA with Ik(t, t + `) for LCEDF is the same as that for vanilla EDF, which is
explained in the last paragraph of Section 5.1.

Now, we discuss time-complexity of the proposed schedulability analysis. Since the schedulability
analysis’ basis is RTA, the time-complexity is the same as that of RTA for vanilla EDF. That is, to test
the schedulability of a task with given `, we need to calculate all other tasks’ interference, yielding
O(n) time-complexity, where n is the number of tasks in τ. Considering each task τi has at most Di
choices for ` and there are n tasks in τ, it takes O(n2 ·maxτi∈τ Di) to determine the schedulability of
all tasks without slack reclamation. The slack reclamation repeats to test schedulablity without slack
reclamation, at most n ·maxτi∈τ Di times, yielding O

(
n3 · (maxτi∈τ Di)

2) time-complexity, which is the
same as RTA for vanilla EDF.
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6. Experiment and Results

In this section, we evaluate the schedulability performance of LCEDF. To this end, we first explain
the task set generation strategy. Using a number of task sets generated by the strategy, we evaluate
how many task sets are schedulable (i.e., meet all job deadlines are guaranteed) by the schedulability
analysis for LCEDF and vanilla EDF.

6.1. Generation of Task Sets

We deploy a widely used task set generation method for real-time systems [16–18]. We have two
input parameters: (a) the number of processors (m = 2, 4, 6 and 8), and (b) task utilization (Ci/Ti)
distributions (bimodal with parameters 0.1, 0.3, 0.5, 0.7 or 0.9, or exponential with parameter 0.1, 0.3,
0.5, 0.7 or 0.9). Then, each task’s parameters are determined as follows: Ti is uniformly distributed in
[1, Tmax = 1000], Ci is determined by (b), and Di is set to Ti. For every pair of (a) and (b), we generate
10,000,000 task sets with the following procedure, yielding 10,000,000 · 4 · 10 = 400,000,000 task sets
in total.

S1. We generate a set of (m + 1) tasks; note that a set of no more than m tasks are trivially schedulable
by a m-processor platform.

S2. We check whether the generated task set passes the necessary feasibility condition [19].
S3. If it fails to pass the condition, we discard the generated task set (because it is unschedulable

by every scheduling algorithm) and go to S1. If it passes, we include the generated task set as
a tested task set of interest, and then we add one task to the generated task set and go to S2.

6.2. Evaluation Results

Using a number of generated task sets, we calculate the ratio of the number of task sets schedulable
by LCEDF (and vanilla EDF) among the number of generated task sets, called schedulability ratio.
Different from general-purpose systems, hard real-time systems do not allow any single job deadline
miss; therefore, schedulability ratio has been used as a typical metric for evaluating hard real-time
scheduling. Figure 6 targets a specific m, and shows the ratio, where the x-axis means the task set
utilization, i.e., ∑τi∈τ Ci/Ti. We can check the schedulability improvement trend by LCEDF, for given
m in the figure. On the other hand, Figure 7 targets a specific pair of m and task utilization (i.e., (Ci/Ti))
distribution, and shows the ratio. Among ten distributions, we choose to show the results for bimodal
with 0.9, exponential with 0.9, and that with 0.1 in the figure, because they yields task sets each of whose
average number of tasks is the smallest, medium, and the largest. We can check the schedulability
improvement trend for given task utilization distribution in the figure.

We make the following observations from Figures 6 and 7.

O1. According to Figure 6, the schedulability performance of LCEDF under every m is superior to
that of vanilla EDF.

O2. According to Figure 6, the schedulability improvement by LCEDF is more significant with
smaller m.

O3. According to Figure 6, the difference between the ratio by LCEDF and that by EDF becomes larger
until some point of task set utilization, but becomes smaller after the point.

O4. According to Figure 7, the schedulability improvement by LCEDF is significant with task sets each
of whose number of tasks are small (i.e., task sets generated by bimodal distribution with 0.9).

O1 shows that the LCEDF schedulability analysis finds additional task sets that are schedulable
by LCEDF but unschedulable by EDF, regardless of the number of processors. The schedulability
improvement by LCEDF comes from proper decisions for applying postponing jobs and idling
processors. As a result, the LCEDF schedulability analysis deems a task set schedulable, if the vanilla
EDF schedulability analysis does; in addition, the LCEDF schedulability analysis deems some additiona
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task sets schedulable, which cannot be deemed schedulable by the vanilla EDF schedulability analysis,
by reducing interference on jobs of tasks in τA at the expense of increasing interference on jobs of tasks
in τB. Compared to the vanilla EDF schedulability analysis, the LCEDF schedulability analysis deems
additional 5.32%, 2.21%, 1.31%, and 0.90% task sets schedulable on average, respectively for m = 2, 4, 6
and 8. Also, for task sets with similar task set utilization (i.e., for given x-axis in Figure 6, the LCEDF
schedulability analysis improves schedulability up to 10.32%, 6.93%, 4.86%, and 3.85%, respectively
for m = 2, 4, 6 and 8.

(a) m = 2 (b) m = 4

(c) m = 6 (d) m = 8

Figure 6. The ratio of the number of task sets schedulable by LCEDF (and vanilla EDF) among the
number of generated task sets, for given m.

When it comes to O2, the superiority of LCEDF over vanilla EDF in terms of schedulability
performance decreases as the number of processors increases, as we mentioned in the quantitative
improvement according to different m. This is because, the number of tasks in τB that interfere with
jobs of tasks in τA increases as the number of processors increases while the advantage of LCEDF by
applying idling processors remains the same regardless of the number of processors. Therefore, as the
number of processors increases, the advantage of LCEDF in terms of schedulability becomes smaller.

O3 represents the correlation between task set utilization and the results for O1. The schedulability
of LCEDF is similar to that of vanilla EDF, with low task set utilization. This is because, many task sets
with low task set utilization are schedulable by vanilla EDF, and they have a few tasks which belong to
τA. As task set utilization increases, the number of task sets unschedulable by EDF increases and the
number of tasks belonging to τA in each task set also increases; this yields the schedulability difference
between LCEDF and EDF. However, if the task set utilization is larger than some point, it is apt to have
at least one unschedulable task due to large interference from other tasks. Therefore, the schedulability
difference between LCEDF and EDF gradually decreases after some point of task set utilization.

O4 represents the schedulability results according to the number of tasks in each task set. As shown
in Figure 7, the schedulability difference between LCEDF and EDF is significant when the number
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of tasks in each task set is small (i.e., generated by bimodal distribution with 0.9); in particular,
the difference is up to 20.16% with m = 2 and 12.97% with m = 8. On the other hand, there is
a little improvement when the number of tasks in each task set is large (i.e., generated by exponential
distribution with 0.1); in this case, the difference is up to 1.92% with m = 2 and 0.53% with m = 8.

(a) Bimodal with 0.9, with m = 2 (n = 3.11) (b) Exponential with 0.9, with m = 2 (n = 4.27)

(c) Exponential with 0.1, with m = 2 (n = 11.64) (d) Bimodal with 0.9, with m = 8 (n = 10.15)

(e) Exponential with 0.9, with m = 8 (n = 14.47) (f) Exponential with 0.1, with m = 8 (n = 43.11)

Figure 7. The ratio of the number of task sets schedulable by LCEDF (and vanilla EDF) among the
number of generated task sets, for given m and task utilization distribution, where n denotes the
average number of tasks in each task set.

In summary, LCEDF improves schedulability, compared to EDF. The improvement is maximized
when (i) the number of tasks in each task set is small, (ii) the number of processors is small, and (iii) the
task set utilization is moderate.
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7. Discussion and Conclusions

In this paper, we propose a new non-preemptive scheduling algorithm, LCEDF, which utilizes the
limited information of future job release patterns. By investigating the limitations of vanilla EDF in
terms of meeting job deadlines of non-preemptive tasks, we design LCEDF by classifying tasks into
two types and handling them differently. We then develop a schedulability analysis for LCEDF, by
analyzing the interference increment/decrement for the two types of tasks. The simulation results show
that LCEDF improves schedulability performance of non-preemptive task sets, compared to vanilla
EDF. Due to the high schedulability performance of the LCEDF schedulability analysis, we expect that
the LCEDF algorithm is potentially employed in actual systems that require real-time guarantees, e.g.,
autonomous vehicles. This requires addressing some practical issues such as how to know and manage
information of the future job release pattern. Once the LCEDF algorithm is employed in the actual
system, it improves schedulability performance, meaning that the actual system can accommodate
more tasks under the same hardware.

While we found a number of additional task sets which are not deemed schedulable by vanilla
EDF but deemed schedulable by LCEDF, we believe that there still exist some task sets which are
actually schedulable by LCEDF, but not deemed schedulable by the LCEDF schedulability analysis.
This necessitates additional research on how to tightly upper-bound the interference calculation under
LCEDF. Also, LCEDF requires the information of future job release patterns although the information
is limited. In the future we need to figure out how to reduce the required information for LCEDF.
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