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Abstract: Non-magnetic impurity scattering effects on the vortex core states are theoretically
studied to clarify the contributions from the sign-change of the pairing function in anisotropic
superconductors. The vortex states are calculated by the Eilenberger theory in superconductors with
px-wave pairing symmetry, as well as the corresponding anisotropic s-wave symmetry. From the
spatial structure of the pair potential and the local electronic states around a vortex, we examine
the differences between anisotropic superconductors with and without sign-change of the pairing
function, and estimate how twofold symmetric vortex core images change with increasing the
impurity scattering rate both in the Born and the unitary limits. We found that twofold symmetric
vortex core image of zero-energy local density of states changes the orientation of the twofold
symmetry with increasing the scattering rate when the sign change occurs in the pairing function.
Without the sign change, the vortex core shape reduces to circular one with approaching dirty cases.
These results of the impurity effects are valuable for identifying the pairing symmetry by observation
of the vortex core image by the STM observation.

Keywords: unconventional superconductivity; pairing symmetry; vortex states; non-magnetic
impurity scattering

1. Introduction

Superconductivity is caused by the long-range order of the pair potential, which is wave function
of Cooper pair. In type II superconductors [1–3], magnetic fields penetrate into the superconductor
as quantized flux lines, and form a flux line lattice under applied fields between upper and lower
critical fields. Around a flux line with a vortex of supercurrent, the complex value pair potential has
the phase winding 2π around the vortex center, and the amplitude of the pair potential vanishes at the
vortex center. At the vortex core where the pair potential is suppressed, low-energy bound states called
Caroli-de Gennes Matricon states appear [4–6]. The local electronic structure of the bound state at the
vortex core was experimentally observed by the scanning tunneling microscope (STM) observation
by Hess et al. [7–9]. The STM observations of the vortex core image have been performed to study
exotic properties of superconductivity in many superconductors [10–13], including high-Tc cuprate
superconductors [14–19], iron-based superconductors [20–24], and topological superconductors [24,25].

In unconventional superconductors with pairing mechanism other than the conventional
electron–phonon interaction, anisotropic pairing symmetries such as p-, d-, and f -wave symmetries
are realized rather than the isotropic s-wave. Therefore, to understand the pairing mechanism of
unconventional superconductivity, we have to identify the pairing symmetry including the node
positions of the pairing function. For the purpose, we can obtain important feature of the anisotropic
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superconductivity from the local density of states (LDOS) around a vortex in type-II superconductors.
For example, in isotropic s-wave superconductors, the LDOS shows circular vortex core image, whereas
in d-wave superconductors with line nodes, we see a fourfold symmetric vortex core image [26–29].
Reflecting the anisotropic superconducting gap, the star-shaped vortex core images are observed by
STM experiments in NbSe2 [8,30,31] and YNi2B2C [10,11,32]. In the direction where the LDOS extends
far from the vortex center, pairing function of the superconductivity has nodes or gap-minimum on the
Fermi surface. Recently, in quasi-one-dimensional nickel-compounds such as NiBi3, STM experiments
observed twofold symmetric vortex core image [13], which may reflect the Fermi surface structure
and anisotropic superconducting gap. Twofold symmetric vortex core image was observed also in a
nematic superconductor FeSe [20–22].

An example for pairing function ϕ(θ) of anisotropic superconductivity with vertical line nodes
is ϕpx (θ) =

√
2kx/kF =

√
2 cos θ for the px-wave symmetry pairing. This is schematically shown

in Figure 1a. Here, for simplicity we consider a two-dimensional cylindrical Fermi surface k =

(kx, ky, kz) = (kF cos θ, kF sin θ, kz). In the px-wave symmetry pairing, nodes of the pairing function
appear at θ = ±π/2. As the zero-energy LDOS N(E = 0, r) around a vortex extends toward the node
directions, vortex core image becomes twofold symmetric shape, which is expected to be observed by
STM. However, in the clean limit the LDOS structure is reproduced even if we consider anisotropic
s-wave pairing functions φ|px |(θ) = |φpx (θ)| in Figure 1b. As zero-energy LDOS is determined
by the amplitude |ϕ(θ)| and independent of the sign of ϕ(θ) in the clean limit, it is difficult to
distinguish the line node of ϕpx (θ) and the deep-minimum of ϕ|px |(θ). On the other hand, it is know
that non-magnetic impurity scattering effect is sensitive to the pairing symmetry. In uniform states,
although isotropic s-wave pairing superconductivity is not affected by the impurity effect as called
Anderson theorem [33,34], anisotropic s-wave superconductivity is weakly suppressed by the impurity
scattering effect [35,36]. As the impurity effect easily suppresses unconventional p and d wave
superconductivities [37,38], the strength to the impurity scattering is used as a clue to distinguish
the pairing symmetry of superconductors. Therefore, to find a clue to identify the sign change of the
pairing function ϕ(θ), we have to study the impurity effect also in the vortex states in anisotropic
superconductors. As other type of impurity effects, local bound states may appear at the impurity
site [39,40], which are not covered in this work.
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Figure 1. Some pairing functions ϕ(θ) are schematically presented on a circular Fermi surface in
(kx, ky) plane. (a) ϕpx (θ) =

√
2 cos θ for the px-wave symmetry. (b) ϕ|px |(θ) = |ϕpx (θ)| =

√
2| cos θ|

for anisotropic s-wave symmetry which has the same amplitude as ϕpx (θ).

The purpose of this work is to theoretically study the non-magnetic impurity scattering effects on
the spatial structure of vortex states. Especially, we focus the contribution of the sign change of the
pairing function on the Fermi surface, comparing the results of px-wave paring symmetry ϕpx (θ) with
sign change, and the anisotropic s-wave ϕ|px |(θ) without sign change. We evaluate the spatial structure
of the pair potential and the LDOS in the vortex state by quantitative calculation of selfconsistent
Eilenberger theory in the vortex lattice state [28,29,41–44] and study the dependence on the scattering
rate 1/τ0 of non-magnetic impurities both in the Born and the unitary limits. Around the twofold
symmetric vortex core, the anisotropy ratio is easily evaluated comparing the core radius of the vortex
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core image along the x and the y directions. From the results of the vortex structure, we discuss
contributions from the sign change of ϕ(θ). The study about the anisotropic s-wave pairing can be
applied to the twofold symmetric vortex core such as in NbNi3 [13] and FeSe [20–22], which have deep
minimum in the pairing function.

This paper is organized as follows. After this introduction, we explain our formulation in Section 2.
In Section 3, we see the impurity effects in the uniform states. In Section 4 we study impurity effects
on the pair potential and the LDOS in the vortex states for the cases of ϕpx (θ) and ϕ|px |(θ). The last
section is devoted to discussion and conclusion.

2. Formulation

2.1. Eilenberger Theory with Non-Magnetic Impurity Scatterings

Our numerical calculations of the vortex state are based on the Eilenberger theory [28,29,41–44].
Eilenberger equation is derived from Gor’kov equation in the superconducting state under the
assumption ∆0/EF � 1, which is satisfied in many superconductors, for the superconducting gap ∆0

and Fermi energy EF. The Eilenberger theory is suitable to treat inhomogeneous superconducting
states, such as surface, interface, and vortex states. There, pair potential of superconductivity shows
spatial variation in the length scale of the coherence length, which is longer than the atomic scale.
To include contributions of non-magnetic impurities, we consider self-energies of the impurity
scattering, as explained below. In addition to the Born limit [41,42], we cover also the unitary limit of
the impurity scatterings by the t-matrix approximation [45–50].

Eilenberger equation is given by

iv · ∇ĝ +
[
iω̃nτ̂3 − ∆̂− Σ̂, ĝ

]
= 0̂ (1)

in Nambu matrix form [45,50]. ω̃n = ωn + iv · A with Matsubara frequency ωn, and the vector
potential A. v = vF/vF with Fermi velocity vF and v2

F = 〈v2
F〉k. 〈· · · 〉k indicates the Fermi surface

average. The quasi-classical Green’s functions ĝ and the pair potential ∆̂ are, respectively,

ĝ(ωn, k, r) = −iπ

(
g i f
−i f † −g

)
, ∆̂(k, r) =

(
0 ∆(r)ϕ(k)

−∆†(r)ϕ∗(k) 0

)
. (2)

In our formulation using the Eilenberger unit, length, temperature, and magnetic field are,
respectively, measured in unit of ξ0, Tc, and B0. Here, ξ0 = h̄vF/2πkBTc and B0 = φ0/2πξ2

0 with the
flux quantum φ0. Tc is superconducting transition temperature in the clean limit at a zero magnetic
field. The energy E, pair potential ∆ and ωn are in unit of πkBTc.

In the t-matrix approximation for the non-magnetic impurity scattering [45–50], self-energy
Σ̂(ωn, k, r) = ns t̂(ωn, k, k, r) is given by

t̂(ωn, k, k, r) = û(ωn, k, k) + N0〈û(ωn, k, k′′)ĝ(ωn, k′′, r)t̂(ωn, k′′, k, r)〉k′′ . (3)

N0 is the density of states (DOS) at the Fermi energy in the normal state, and ns the number
density of impurities. When impurity scattering is assumed to be s-wave scattering, impurity potential
is a constant as û = u01̂, and t̂(ωn, r) = û + N0û〈ĝ(ωn, k, r)〉k t̂(ωn, r). Therefore, as t̂(ωn, r) =

[1− N0û〈ĝ(ωn, k, r)〉k]−1û, we obtain the self-energy Σ̂ as

Σ̂ = ns

[
1̂ + iπN0u0

(
〈g〉k i〈 f 〉k
−i〈 f †〉k −〈g〉k

)]−1

u0 =
1
τ

[
1

πN0u0
1̂ +

(
−i〈g〉k 〈 f 〉k
−〈 f †〉k i〈g〉k

)]
(4)
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where

1
τ
=

1/τ0

cos2 δ0 + (〈g〉2k + 〈 f 〉k〈 f †〉k) sin2 δ0
(5)

with

1
τ0

=
nsπN0u2

0
1 + (πN0u0)2 , cos2 δ0 =

1
1 + (πN0u0)2 , sin2 δ0 =

(πN0u0)
2

1 + (πN0u0)2 , (6)

and δ0 = tan−1(πN0u0). τ0 is in unit of 2πkBTc/h̄. In the Born limit of weak impurity scattering
potential u0, δ0 → 0. In the unitary limit of strong scattering potential, δ0 → π/2.

From Equation (4) and [1̂, ĝ] = 0, Eilenberger Equation (1) is written as

iv · ∇ĝ +

[(
i(ω̃n + G) −(∆ϕ + F)
∆† ϕ∗ + F† −(iω̃n + G)

)
, ĝ

]
= 0̂ (7)

with components of the self-energy,

F(ωn, r) =
1
τ
〈 f 〉k, F†(ωn, r) =

1
τ
〈 f †〉k, G(ωn, r) =

1
τ
〈g〉k. (8)

From matrix components of Equation (7), we obtain Eilenberger equations

{ωn + G + v · (∇+ iA)} f = (∆ϕ + F) g,

{ωn + G− v · (∇− iA)} f † =
(

∆∗ϕ∗ + F†
)

g. (9)

For numerical analyses of Eilenberger equation, it is more convenient to employ functions
a(ωn, k, r) and b(ωn, k, r) defined by

f =
2a

1 + ab
, f † =

2b
1 + ab

, g =
1− ab
1 + ab

. (10)

Substituting these into Eilenberger Equation (9), we obtain the Riccati differential equations [26,51],

v · ∇a = ∆ϕ + F−
(

∆∗ϕ∗ + F†
)

a2 − (ωn + G + iv ·A) a, (11)

−v · ∇b = ∆∗ϕ∗ + F† − (∆ϕ + F) b2 − (ωn + G + iv ·A) b. (12)

Unlike the original Equation (9), the Riccati equations for a and b are decoupled. The Riccati
Equations (11) and (12) are then, respectively, solved by numerical integration along the trajectory
parallel to the vector v, under given ∆, A, G, F, and F†.

2.2. Methods of Numerical Calculations in the Vortex Lattice

We calculate the spatial structure of vortices in the vortex lattice state by selfconsistent Eilenberger
theory [28,29,41–44,51,52]. We determine the spatial structure of vortices to be selfconsistent with
the quasi-classical Green’s functions of electronic states, solving the Riccati differential equations.
We introduce contributions of the impurity scatterings by self-energies from non-magnetic s-wave
impurity scatterings [43–50]. This method of Eilenberger theory can be applied to all temperature
and magnetic field range in the vortex state, and appropriately capture contributions of vortex core
and inter-vortex interaction. In many previous researches, local electronic states in the vortex states
were studied in the clean limit. The researches of the impurity effect in the vortex states were done in
pairing symmetries with isotropic gap, such as isotropic s-wave and chiral p-wave. Although there
were some studies of impurity effect in the vortex state in the dx2−y2-wave pairing symmetry [44,47],
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we need systematic study of the impurity effect about the impurity scattering rate dependence and
of the identification of contributions from the sign-change in the pairing function of anisotropic
superconductors with line nodes.

In our calculation, magnetic fields B are applied z axis direction, so that B = (0, 0, B). The vector
potential is given by A(r) = 1

2 B × r + a(r) in the symmetric gauge. For simplicity, we consider a
two-dimensional cylindrical Fermi surface with a Fermi velocity vF = (vx, vy, 0) ∝ (cos θ, sin θ, 0) at
a Fermi wave number k = (kx, ky, kz) = (kF cos θ, kF sin θ, kz). We consider two cases of the pairing
function, ϕ(θ) = ϕpx (θ) and ϕ|px |(θ).

As the first step in our selfconsistent calculations of the vortex states, we calculate the quasiclassical
Green’s functions in the Eilenberger theory, under given ∆, A, G, F, and F†. To obtained the solution
a(ωn, k, r), we numerically integrate Equation (11) along the trajectory from r− vs0 to r [26,51,52].
As demonstrated in Figure 8 of [52], choosing enough long length s0 of these trajectories we obtain
unique solution independent of s0 and initial values at r− vs0. The solution b(ωn, k, r) is obtained in
the similar way by integrating Equation (12) along the trajectory from r + vs0 to r. From the solutions
a and b, we obtain quasiclassical Green’s functions g, f , and f † in Equation (10) at r.

As an initial state, we start our calculations from the Ablikosov lattice solution,

∆(r) =
(

2ay

ax

) 1
4 ∞

∑
p=−∞

exp

{
−π

ay

ax

(
y + y0

ay
+ p

)2
− 2πi

[
p
(

x0

ax
+

ζ

2
p
)
+

(
y0

ay
+ p

)]}

×exp
(
−iπ

xy
axay

)
, (13)

and a(r) = 0 of the vector potential A(r) = 1
2 B× r + a(r) in the symmetric gauge. Unit vectors of

the vortex lattice are given by r1 = (ax, 0) and r1 = (ax, ζay) with ζ = 1
2 and Baxay = φ0. We set

ax/ay =
√

3/2 in the triangular vortex lattice. r0 = (x0, y0) = − 1
2 (r1 + r2), so that one of vortex

centers is located at 1
2 (r1 + r2) + r0 = 0. A unit cell in our calculation is set to be u1(r1 − r2) + u2r2

with −0.5 ≤ ui < 0.5 (i = 1, 2).
Using the quasiclassical Green’s functions g, f , and f † obtained from Equations (10)–(12),

we estimate new values of ∆(r) and A(r) by the gap equation

∆(r) = g0N0T ∑
0<ωn≤ωcut

〈
ϕ∗
(

f + f †∗
)〉

k
(14)

and the current equation

∇× (∇×A) = −2T
κ2 ∑

0<ωn

〈vImg〉k . (15)

We set

(g0N0)
−1 = ln T + 2T ∑

0<ωn≤ωcut

ω−1
n (16)

in Equation (14), so that the value of the cut-off ωcut does not seriously affect the numerical results.
In the present calculation, ωcut = 20kBTc. We set the Ginzburg–Landau (GL) parameter κ = 30
assuming typical type-II superconductors. For the large κ, since variation of internal fields due to a(r)
is very small compared with the applied field as is shown in Ref. [44], contributions of small a(r) do not
seriously affect on results of the pair potential and the LDOS around a vortex. The self-energies G, F
and F† are obtained from Equations (5) and (8) using the quasiclassical Green’s functions. We calculate
∆(r), a(r), and self-energies at mesh points r in a unit cell of the vortex lattice, and estimate them at
arbitrary points by interpolation of the values on the mesh points. Once we obtain ∆(r) and a(r) in a
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unit cell, we can know ∆(r) and a(r) in other unit cells by the lattice translation R = mr1 + nr2 (m and
n are integers) as

∆(r + R) = ∆(r)eiχ(r,R), a(r + R) = a(r), (17)

where

χ(r, R) = − π

φ0
(B× R) · (r + 2r0)− πmn (18)

in the symmetric gauge.
First, we solve Equations (9)–(15) at T = 0.5Tc, and obtain selfconsistent solutions of ∆(r), A(r),

and quasi-classical Green’s functions. We perform the calculations for some values of 1/τ0 in the
Born and the unitary limits, in addition to the clean limit 1/τ0 = 0. Using the renewed pair potential,
vector potential, and self-energies, we solve the Riccati Equations (11) and (12) again to obtain new
quasi-classical Green’s functions. We iterate these calculation steps, until a sufficiently self-consistent
solution is obtained.

Next, we study local electronic states. Using the selfconsistently obtained ∆(r) and A(r) in the
calculation of ωn, we solve Riccati Equations (11) and (12) with iωn → E + iη to obtain g(iωn →
E + iη, k, r), f (iωn → E + iη, k, r), and f †(iωn → E + iη, k, r) as a function of real energy E. η is an
infinitesimal constant. Then, we calculate self-energies in Equation (8). These calculations of Riccati
equations and the self-energies are iterated, until a selfconsistent solution is obtained. Using the
selfconsistently obtained g, the LDOS is given by N(E, r) = 〈N(E, k, r)〉k with k-resolved LDOS

N(E, k, r) = N0g(iωn → E + iη, k, r). (19)

3. Impurity Effects in Uniform States

Before studying the vortex states, we evaluate the strength of the superconductivity to the
non-magnetic impurity scattering in uniform states without vortices at a zero magnetic field. Figure 2a
shows the 1/τ0-dependence of uniform ∆ at T/Tc = 0.5 to see how the impurity scattering suppresses
px-wave and anisotropic s-wave superconductivities. For the px-wave pairing symmetry, ∆ is slightly
smaller in the unitary limit compared with the Born limit. In both limits ∆ vanishes at 1/τ0 ∼ 0.19.
On the other hand, by the Anderson theorem, ∆ is not changed by the non-magnetic impurity scattering
in isotropic s-wave symmetry. Even in the anisotropic s-wave pairing symmetry ϕ|px |(θ), ∆ shows
very weak suppression as is seen in Figure 2a. Therefore, s-wave superconductors are strong to the
non-magnetic impurity scattering. Figure 2b shows ∆ in wider range until higher 1/τ0. There we
see that ∆ for ϕ|px |(θ) survives until 1/τ0 ~22. The drop near 1/τ0 ~22 is related to ωcut. We see
that ∆ is smaller for larger ωcut when 1/τ0 is large. Our study is performed at 1/τ0 ≤ 1, where
the ωcut-dependence of ∆ is negligible. The Born and the unitary limits have almost the same 1/τ0

dependence for ϕ|px |(θ). The difference between two limits comes from L ≡ 〈g〉2k + 〈 f 〉k〈 f †〉k in
Equation (5). For example, in isotropic s-wave pairing, since L = 1 from the relation g2 + f f † = 1 of
the quasiclassical Green’s functions in Equation (10), 1/τ = 1/τ0 in both limits.

Impurity effect on the DOS spectrum N(E) in uniform states for the px wave pairing ϕpx (θ)

is presented in Figure 3a for the Born limit and in Figure 3b for the unitary limit. N(E) for the
corresponding anisotropic s-wave ϕ|px |(θ) is shown in Figure 3c for the Born limit, and in Figure 3d for
the unitary limit. The horizontal axis is E/∆ with ∆ for each 1/τ0. Both ϕpx (θ) and ϕ|px |(θ) have the
same N(E) in the clean limit (not shown in the figure), as the DOS is determined only by the amplitude
of the pairing function, |ϕ(θ)|. We see a peak of N(E) at the gap edge E/∆ =

√
2, as the maximum

of |ϕpx (θ)| is
√

2. The peak is smeared with increasing the impurity scattering rate 1/τ0 both in the
Born and unitary limits. The smearing is seen in all cases of Figure 3. In the presence of line nodes, it is
know that N(E) ∝ E near E = 0 in the clean limit 1/τ0 = 0. For the px -wave symmetry in Figure 3a in
the Born limit, N(E) = 0 even when 1/τ0 becomes finite. With increasing 1/τ0, N(E) at low E ( 6= 0)
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is enhanced. In the unitary limit in Figure 3b, finite DOS appears at E = 0 [53,54]. Flat N(E) near
E = 0 becomes larger with increasing 1/τ0. On the other hand, for anisotropic s-wave symmetry in
Figure 3c,d, the Born and the unitary limits show the similar behaviors. Even in the unitary limit of the
impurity scattering, the zero-energy states do not appear, as N(E = 0) = 0. Rather, at finite 1/τ0 gap
opens, since N(E) = 0 at finite E near E = 0. With increasing 1/τ0, gap amplitude becomes larger.
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Figure 2. (a) Amplitude of the pair potential ∆ as a function of 1/τ0 in uniform states at a zero field.
∆ is plotted in the range 0 ≤ 1/τ0 ≤ 0.2 for px-wave pairing ϕ(θ) = ϕpx (θ) in the Born and the unitary
limits, with ∆ for anisotropic s-wave paring ϕ(θ) = ϕ|px |(θ) in the Born limit. T/Tc = 0.5. (b) ∆ for
anisotropic s-wave paring ϕ(θ) = ϕ|px |(θ) is plotted in wider range 0 ≤ 1/τ0 ≤ 25 in the Born limit.
∆ in the unitary limit shows almost the same 1/τ0-dependence.
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Figure 3. DOS spectrum N(E) in uniform states at a zero field. (a) N(E) for the px-wave pairing
ϕ(θ) = ϕpx (θ). 1/τ0 = 0.01, 0.05, 0.1, and 0.15 in the Born limit. (b) The same as (a), but in the unitary
limit. (c) N(E) for anisotropic s-wave paring ϕ(θ) = ϕ|px |(θ). 1/τ0 = 0.01, 0.1, 0.6, and 1.0 in the Born
limit. (d) The same as (c), but in the unitary limit.

The reason for the finite gap is because the gap structure is determined by ∆ϕ + F as is seen in
Eilenberger Equations (9). In uniform states, the quasiclassical anomalous Green’s function f has the
same symmetry as the pairing function ϕ(θ). By the Fermi surface average, the anomalous self-energy
F = 0 for ϕ(θ) = ϕpx (θ). However, for ϕ(θ) = ϕ|px |(θ), F 6= 0 and finite gap are induced due to
the finite F, which has isotropic s-wave symmetry on the Fermi surface. However, as the anomalous



Symmetry 2020, 12, 175 8 of 19

f and F show different behaviors at the vortex core from those in the uniform states, we need to
study the impurity effect around the vortex core by detailed calculations of the spatial structure in the
vortex state.

4. Impurity Effects in Vortex States for px-Wave Pairing ϕpx (θ) and Anisotropic s-Wave ϕ|px |(θ)

Figure 4a presents calculated spatial structure of the pair potential’s amplitude |∆(r)| within
a unit cell of the vortex lattice in xy plane for the px-wave pairing symmetry ϕpx (θ) at a low field
B = 0.01B0. The amplitude |∆(r)| decreases with approaching the vortex center. The vortex core shape
shows twofold symmetric shape, reflecting the twofold symmetric pairing function ϕpx (θ) on the
Fermi surface. This vortex core shape indicates the relation ξx > ξy, where ξx (ξy) is the coherence
length relating to the vortex core radius in x (y) direction. This anisotropy of the coherence length
is consistent to the estimate ξx ∝ 〈v2

x|ϕpx |2〉1/2
k and ξy ∝ 〈v2

y|ϕpx |2〉1/2
k in the GL theory. |ϕpx (θ)| is

larger (smaller) where v2
x (v2

y) is larger on the Fermi surface. Even when the impurity effect is stronger,
vortex core shape keeps similar twofold symmetric anisotropy both in the Born and the unitary limits.
The suppression by the impurity scattering is stronger in the unitary limit compared with the Born
limit also around the vortex core. These behaviors are also seen from the comparison of the profile
between x and y directions shown in the lower panels of Figure 4a. In each panel, |∆(r)| and the slope
around the vortex core are smaller along the x axis, compared to those along the y axis. When we
compare the Born (solid lines) and the unitary (dashed lines) limits, the slope of |∆(r)| at the vortex
center is almost the same in the both limits. Approaching outside region of the vortex core, deviation
of |∆(r)| between two limits becomes larger. There, |∆(r)| in the Born limit is larger compared with
the unitary limit.

Figure 4b presents |∆(r)| for anisotropic s-wave pairing ϕ|px |(θ). When the impurity scattering is
weak with small 1/τ0, the vortex core shape shows similar twofold symmetric shape as in Figure 4a.
However, approaching the dirty case with larger 1/τ0, the vortex core becomes circular shape. This is
because contributions of the self-energy F with isotropic s-wave symmetry becomes dominant in the
effective pair potential ∆ϕ + F. Differences between the Born and the unitary limits are small in this
anisotropic s-wave pairing ϕ|px |(θ). These behaviors are also seen from the comparison of the profile
between x and y directions shown in the lower panels of Figure 4b. In each panel, as lines for the Born
limit overlap with those for the unitary limit, the x and y dependences of ∆(r) are same in both limits.
Although |∆(r)| is smaller along the x-direction, the deviation between x and y directions becomes
small with increasing 1/τ0 to be circular vortex core shape.

From the fitting of the slope of ∆(r) at the vortex center, we define the core radius ξx along the
x-direction as ∆(x, y = 0) = ∆maxx/ξx near x = 0. ∆max is maximum of |∆(r)| within a unit cell of the
vortex lattice. Similarly we define the core radius ξy along the y direction as ∆(x = 0, y) = ∆maxy/ξy

near y = 0. We present 1/τ0 dependence of ξx and ξy in Figure 5a. Although each ξ increases as a
function of 1/τ0, and ξx is longer than ξy. For px-wave pairing symmetry, ξx and ξy rapidly increase
toward the critical point 1/τ0 ∼ 0.19. For anisotropic s-wave pairing symmetry, ξx and ξy gradually
increase in this range of 1/τ0, as the critical point 1/τ0 ∼ 22 is far. The anisotropy ratio ξy/ξx is
presented in Figure 5b as a function of 1/ξ0. For the px-wave, since the ratio ξy/ξx ∼ 0.65 in the range
0 ≤ 1/τ0 < 0.19 of the superconductivity, twofold symmetric vortex core shape is unchanged by the
impurity scattering, as seen Figure 4a. On the other hand, for anisotropic s-wave ϕ|px |(θ), the ratio
ξy/ξx gradually increases towards 1 changing to circular vortex core shape seen in Figure 4b.

The zero-energy LDOS N(E = 0, r) around a vortex core is presented in Figure 6a for the px-wave
pairing symmetry. N(E = 0, r) has a peak at the vortex center, and extends toward the y-axis, which is
the node direction of the pairing function ϕpx (θ) on the Fermi surface. In the vortex lattice, N(E = 0, r)
is slightly suppressed on the line connecting nearest neighbor vortices [28,29]. This suppression is seen
in N(E = 0, r) on the y axis at 1/τ0 = 0.01.
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Figure 4. (a) Spatial structure of the pair potential |∆(r)| around a vortex core within a unit cell of the
vortex lattice in xy plane for the px-wave pairing ϕ(θ) = ϕpx (θ). 1/τ0 = 0.01, 0.05, 0.10, and 0.15. The
upper (middle) panels are for the Born (unitary) limit. Lower panels show profile of |∆(r)| along the x
(red lines) and the y axes (blue lines). The solid (dashed) lines are for the Born (unitary) limit. (b) The
same as panel (a), but for anisotropic s wave pairing symmetry ϕ(θ) = ϕ|px |(θ). 1/τ0 = 0.01, 0.1, 0.6,
and 1.0.
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Figure 5. (a) Impurity scattering rate 1/τ0 dependence of vortex core radius ξx and ξy, which are
determined from the slope of |∆(r)| at the vortex center, for ϕpx (θ) in the range 0 ≤ 1/τ0 ≤ 0.15 and
ϕ|px |(θ) in the range 0 ≤ 1/τ0 ≤ 1. The Born (solid lines) and the unitary (dashed lines) limit shows
almost identical 1/τ0 dependence. (b) The anisotropy ratio ξy/ξx as a function of 1/τ0, from ξx and ξy

in panel (a).

Figure 6a shows how the local electronic states around a vortex are changed by the non-magnetic
impurity scattering effects in the Born and the unitary limits, respectively. The sharp structure of
N(E = 0, r) around the vortex core is smeared with increasing 1/τ0, and the smearing effect is greater
in the unitary limit than in the Born limit. With increasing the impurity effect, orientation of the twofold
symmetric vortex core shape changes. At larger 1/τ0, N(E = 0, r) extends toward the x direction.
This is similar anisotropy to that of |∆(r)| in Figure 4a. In the unitary limit, we see enhancement of
N(E = 0, r) outside of vortex core by the impurity effect, which occurs even in uniform states as shown
in Figure 3b. These behaviors are also seen in lower panels of Figure 4b. There, we see that N(E = 0, r)
at larger 1/τ0 is larger on the x-axis, compared with the y-axis direction, because twofold symmetric
vortex core image extends toward the x-direction. In the unitary limit, peak height at the vortex center
is lower, and N(E = 0, r) is higher outside of the vortex core, compared with the Born limit.

On the other hand, impurity effect on the zero-energy LDOS N(E = 0, r) is presented in Figure 6b
for anisotropic s-wave pairing ϕ|px |(θ). When the impurity effect is weak with small 1/τ0, N(E = 0, r)
shows similar anisotropic core image to that in Figure 6a, as the gap anisotropy is same as |ϕpx (θ)| =
|ϕ|px |(θ)|. With increasing 1/τ0 of the impurity effect, peak structure of N(E = 0, r) around the
vortex core is smeared, and the vortex core image of N(E = 0, r) transforms to circular shape. In this
process, the extension of N(E = 0, r) toward the node direction along the y axis is weakened, because
contributions of the isotropic self-energy F become dominant. This changes to circular core shape
is consistent to that of the pair potential in Figure 4b. The impurity effect in the unitary limit is
qualitatively same as in the Born limit for the anisotropic s-wave pairing symmetry. These behaviors
are also seen in lower panels of Figure 6b. Although peak height at the vortex center is higher in the
unitary limit, the difference between the Born and the unitary limits becomes smaller with increasing
1/τ0. Thus, N(E = 0, r) has almost the same spatial structure in the two limits at 1/τ0 = 1.
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Figure 6. (a) Spatial structure of zero-energy LDOS N(E = 0, r) around a vortex core in xy plane for
the px-wave pairing ϕ(θ) = ϕpx (θ). 1/τ0 = 0.01, 0.05, 0.10, and 0.15. The upper (middle) panels are
for the Born (unitary) limit. Lower panels show profile of N(E = 0, r) along the x (red lines) and the y
axes (blue lines). The solid (dashed) lines are for the Born (unitary) limit. (b) The same as panel (a), but
for anisotropic s wave pairing symmetry ϕ(θ) = ϕ|px |(θ). 1/τ0 = 0.01, 0.1, 0.6, and 1.0.

To see the 1/τ0 dependence quantitatively, we present the peak height N(E = 0, r = 0) at
the vortex center as a function of 1/τ0 in Figure 7a. For the px wave pairing ϕpx (θ) in the range
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0 ≤ 1/τ0 ≤ 0.15, with increasing 1/τ0, the peak height is suppressed toward normal state value 1.
It is slightly smaller in the unitary limit than in the Born limit. On the other hand, for the anisotropic
s-wave pairing ϕ|px |(θ) in the range 0 ≤ 1/τ0 ≤ 1, the suppression effect of the peak height by the
impurity scattering is greater in the Born limit than in the unitary limit. Although the peak height is
rapidly suppressed as in the px-wave pairing in the Born limit, it decreases slowly in the unitary limit.
These behavior in the anisotropic s-wave is consistent to results of isotropic s-wave pairing [47].

To quantitatively estimate the twofold symmetric vortex core shape in the zero-energy LDOS, the
vortex core radii ξx and ξy are, respectively, determined as a radius of half width by N(E = 0, x =

ξx, y) = 0.5N(E = 0, x = y = 0) on the x axis and N(E = 0, x = 0, y = ξy) = 0.5N(E = 0, x = y = 0)
on the y axis. The 1/τ0 dependences of ξx and ξy are presented in Figure 7b. There we see clear
differences between the Born and the unitary limits, as the peak height is different between two limits
as shown in Figure 7a. For px-wave pairing symmetry, ξx and ξy rapidly increase toward the critical
point 1/τ0 ∼ 0.19. The increase is greater in the unitary limit because N(E = 0, r) largely appear
outside of the vortex. For anisotropic s-wave pairing symmetry, ξx and ξy gradually increase in this
range of 1/τ0. The increase is smaller in the unitary limit than in the Born limit.
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Figure 7. (a) Peak height N(E = 0, r = 0) at the vortex center as a function of impurity scattering
rate 1/τ0 for ϕpx (θ) in the range 0 ≤ 1/τ0 ≤ 0.15 and ϕ|px |(θ) in the range 0 ≤ 1/τ0 ≤ 1. The solid
(dashed) lines are for the Born (unitary) limit. (b) 1/τ0 dependence of vortex core radius ξx and ξy,
which are determined from the zero energy LDOS N(E = 0, r) around a vortex core as described in
text, for ϕpx (θ) and ϕ|px |(θ). Solid (dashed) lines are for the Born (unitary) limit. (c) The anisotropy
ratio ξy/ξx as a function of 1/τ0, from ξx and ξy in panel (b).
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The anisotropy ratio ξy/ξx from N(E = 0, r) is presented in Figure 7c as a function of 1/ξ0. In the
clean limit, ξy/ξx ∼ 1.7, which is different anisotropy from the order parameter. For the px-wave
ϕpx (θ), the ratio ξy/ξx rapidly decreases as a function of 1/τ0 to ξy/ξx ∼ 0.5, which is the same
orientation of twofold symmetry as in ∆(r). On the other hand, for anisotropic s-wave ϕ|px |(θ), the
ratio decrease until ξy/ξx ∼ 1.0 to be circular vortex core image. The decrease of ξy/ξx is slower in the
unitary limit, compared with the Born limit.

Last, we study the spatial structure of the LDOS N(E, r) at finite energy E = 0.01, 0.1, 0.2, and 0.5.
It is presented in Figure 8 for the px-wave pairing ϕpx (θ), and in Figure 9 for the anisotropic s-wave
pairing ϕ|px |(θ). These figures focus the vortex core region. At low energy E = 0.01, spatial structure
of the LDOS is almost the same as the zero-energy LDOS N(E = 0, r) at 1/τ0 = 0.01 and 0.1 presented
in Figure 6. At 1/τ0 = 0.05 in the Born limit, N(E, r) shows similar spatial structure both for the
px-wave ϕpx (θ) in Figure 8 and the anisotropic s-wave ϕ|px |(θ) in Figure 9. There, twofold symmetric
vortex core image of the LDOS at E = 0.01 extends along the y axis, which is node-direction of the
pairing function ϕpx (θ). At E = 0.1 and higher E, the vortex core shape is seen to be rotated 90◦, and it
extends to the x-direction. At E = 0.1 and 0.2, N(E, r) has large intensity near the vortex core, but it
is suppressed at the vortex center. At higher energy E = 0.5, N(E, r) is rather smaller in the vortex
core region, and has peak on the y axis far from the vortex center. These behaviors are also seen in
the upper panels of Figures 8b and 9b. With increasing E, the peak position is shifted from the vortex
center r = 0 at E = 0.01 to finite r. The distance between the peak position and the vortex center is
longer at higher E. At 1/τ0 = 0.01, N(E, r) in the unitary limit (dashed lines) has almost the same
spatial structure as in the Born limit (solid lines) in Figures 8 and 9.

The spatial pattern of the LDOS and the E-dependence at 1/τ0 = 0.01 are qualitatively explained
by picture of the quasiparticle trajectory [27,31], which is schematically presented in Figure 10 for
the px-wave pairing symmetry ϕpx (θ). This is the same also for ϕ|px |(θ). As schematically presented
in Figure 10a, the k-resolved LDOS N(E, k, r) for k with the velocity v = (cos θ, sin θ, 0) is mainly
distributed on the line with distance r⊥(E, θ) from the vortex center. Roughly speaking, r⊥ is given
by the relation E = |∆(r)ϕpx (θ)|. If we assume |∆(r)| = ∆maxr/ξ for simplicity, we obtain r⊥ =

ξ(E/∆max)/|ϕpx (θ)|. When a quasiparticle is propagating toward an antinode direction θ = 0 or π, r⊥
takes the minimum value ξE/∆max. When propagating toward a node direction θ = ±π/2, r⊥ → ∞.
On a line with angle α from the x-axis as shown in Figure 10a, distance s between the main distribution
of N(E, k, r) and the vortex center is given by

s(E, α, θ) =
r⊥

| sin(θ − α)| = ξ
E/∆max

|ϕpx (θ) sin(θ − α)| . (20)

The LDOS N(E, r) is given by the sum of N(E, k, r) distribution in the range 0 ≤ θ < 2π.
The peak of the LDOS appears at the inner edge of the LDOS distribution, where distance s on a line
of angle α takes the minimum smin(E, α) as a function of θ. For the p-wave pairing symmetry ϕpx (θ),
smin =

√
2ξ(E/∆max)/(1− sin α) at θ = (α + π/2)/2. In Figure 10b,c, smin on a line of angle α is

plotted for 0 ≤ α < 2π, as quasiparticle trajectories. On the trajectories, first, in-coming quasiparticles
is pointing to the direction θ = −π/2 or π/2, where ϕpx (θ) = 0, far from the vortex center. On
going around the vortex core, when the direction θ of the quasiparticle is increasing, the distance
between the trajectories and the vortex center is narrower since |ϕpx (θ)| becomes larger. When the
direction of the trajectory is θ = 0 or π, the distance is the minimum at y = ±ξE/∆max. Then,
trajectories go away from the vortex center towards the direction of θ = π/2 or 3π/2, with increasing
θ. For small E in Figure 10b, tails of the trajectories extend toward ±y directions. This pattern of the
trajectories corresponds to twofold symmetric vortex core image extending to the y-direction in the
spatial structure of N(E, r) at E = 0.01 in Figure 8. On the other hand, for larger E in Figure 10c, shape
of trajectories within the crossing points of two trajectories gives twofold symmetric vortex core image
extending to the x-direction in N(E, r) at larger E in Figure 8, as tails of the trajectories far from the
vortex are smeared.
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Figure 8. (a) Spatial structure of LDOS N(E, r) around a vortex core in xy plane for the px-wave
pairing ϕ(θ) = ϕpx (θ) at E = 0.01, 0.1, 0.2, and 0.5. 1/τ0 = 0.01 (upper panels), 0.10 (middle panels) in
the Born limit, and 1/τ0 = 0.1 in the unitary limit (lower panels). (b) Profile of N(E, r) along the x (red
lines) and the y axes (blue lines) for the px-wave pairing ϕ(θ) = ϕpx (θ). The solid (dashed) lines are
for the Born (unitary) limit. 1/τ0 = 0.01 (upper panels) and 0.1 (lower panels).
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Figure 9. The same as Figure 8, but for anisotropic s wave pairing symmetry ϕ|px |(θ).

When we compare the LDOS N(E, r) in the clean case, 1/τ0 = 0.01, and the dirty case, 1/τ0 = 0.1,
for the px wave symmetry ϕpx (θ) in Figure 8, the spatial pattern of the quasiparticle trajectories is
smeared in the dirty case. There, the trajectories are not seen far from the vortex. Around the vortex
core, the distance between the trajectories and the vortex center increases, because E/∆ becomes larger
due to the suppression of ∆ by 1/τ0, seen in Figure 2a. From lower panels of Figure 8, we see that
the peak height becomes lower and the LDOS outside of vortex core is increased when 1/τ0 = 0.1,
compared with the case of 1/τ0 = 0.01. These tendencies are greater in the unitary limit than in the
Born limit. On the other hand, for anisotropic s-wave ϕ|px |(θ) in Figure 9, we see weak suppression
of the quasiparticle trajectory in the case of 1/τ0 = 0.1, since anisotropic s-wave pairing is stronger
to the impurity effect, compared with the px wave pairing. From lower panels of Figure 9, we see
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that the peak height at the quasiparticle trajectories becomes lower at 1/τ0 = 0.1, compared with that
of 1/τ0 = 0.01. The large differences between the Born and the unitary limits are only seen near the
vortex core. xy xy(a) (b) ()

Figure 10. (a) Bold line schematically shows main distribution of the k-resolved LDOS N(E, k, r).
Vortex center is located at O(0,0). See text for details. (b) Quasiparticle trajectories at low E for the
px-wave pairing symmetry ϕpx (θ) are schematically presented. (c) The same as panel (b), but at
higher E.

5. Discussion and Conclusions

To clarify contributions from the sign-change of the pairing function ϕ(θ) in the non-magnetic
impurity scattering effects on the vortex state, we studied the twofold symmetric vortex core
structure of the pair potential |∆(r)| and the LDOS N(E, r) in anisotropic superconductors with
px-wave pairing symmetry ϕpx (θ) and anisotropic s-wave pairing ϕ|px |(θ). The LDOS is accessible
by the STM observation. In the STM experiments, twofold symmetric vortex core was observed
in NiBi3 [13] and FeSe [20–22], which may be anisotropic s-wave superconductors. If the impurity
effects are experimentally studied in these superconductors, the theoretical results in this work may
be examined by the STM observation. If a chiral p-wave superconductor exists, the px-wave pairing
superconductivity may be realized under uniaxial pressure, as tried in Sr2RuO4 [55]. We note that
twofold symmetric vortex core shape may also come from the contributions of anisotropic Fermi
surface, in addition to anisotropic pairing symmetry. The study about the contribution of anisotropic
Fermi surface belongs to future study.

As anisotropic superconductors with higher symmetry of the pairing, dx2−y2-wave
pairing is realized in high Tc cuprate superconductors [56,57], and some of heavy fermion
superconductors [58,59]. As dx2−y2-wave pairing has four vertical line node on the Fermi surface,
vortex core becomes four-fold symmetric shape [26,27]. As the corresponding anisotropic s-wave
superconductors, four-fold symmetric vortex core image was observed in YNi2B2C by STM [10,11,32].
Therefore, detailed studies about the impurity effect of the vortex states are expected also in these
superconductors. The twofold or four-fold symmetric vortex core structure may be related to various
physical quantities in the anisotropic superconductors under magnetic fields, such as vortex lattice
configuration [60] and angle-resolved specific heat measurement [58,59]. Therefore, studies about the
impurity effects on these physical quantities are also interesting.

In summary, non-magnetic impurity scattering effect on the vortex core states are studied by the
Eilenberger theory in superconductors with px-wave pairing symmetry, as well as the corresponding
anisotropic s-wave symmetry. From the comparison of the pair potential and the local electronic
states around a vortex, we examine the differences between anisotropic superconductors with and
without sign-change of the pairing function, and find how twofold symmetric vortex core changes
with increasing the impurity scattering rate both in the Born and the unitary limits. For example,
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we found that twofold symmetric vortex core image of zero-energy LDOS changes the orientation of
the twofold symmetry with increasing the scattering rate when the sign change occurs in the pairing
function. Without the sign change, the vortex core shape reduces to circular one with approaching
dirty cases. These results clarify the contributions from the sign-change of the pairing function in
anisotropic superconductors, which are helpful to identify the pairing symmetry in unconventional
superconductors, in relation to the STM vortex core observation.
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