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Abstract: Recently, with the popularization of intelligent terminals, research on intelligent big data
has been paid more attention. Among these data, a kind of intelligent big data with functional
characteristics, which is called functional data, has attracted attention. Functional data principal
component analysis (FPCA), as an unsupervised machine learning method, plays a vital role in
the analysis of functional data. FPCA is the primary step for functional data exploration, and the
reliability of FPCA plays an important role in subsequent analysis. However, classical L2-norm
functional data principal component analysis (L2-norm FPCA) is sensitive to outliers. Inspired by the
multivariate data L1-norm principal component analysis methods, we propose an L1-norm functional
data principal component analysis method (L1-norm FPCA). Because the proposed method utilizes
L1-norm, the L1-norm FPCs are less sensitive to the outliers than L2-norm FPCs which are the
characteristic functions of symmetric covariance operator. A corresponding algorithm for solving
the L1-norm maximized optimization model is extended to functional data based on the idea of the
multivariate data L1-norm principal component analysis method. Numerical experiments show
that L1-norm FPCA proposed in this paper has a better robustness than L2-norm FPCA, and the
reconstruction ability of the L1-norm principal component analysis to the original uncontaminated
functional data is as good as that of the L2-norm principal component analysis.

Keywords: functional data; L1-norm; outliers; principal component analysis; robust

1. Introduction

In recent years, with the rapid popularization of intelligent terminals and sensors, massive data
have been rapidly accumulated, and the processing technology of intelligent big data has attracted
more and more attention. Among these data, kinds of intelligent big data with function characteristics,
such as physiological indicator data, growth curve data, air quality data, and temperature data, has
also attracted people’s attention. In fact, these data are discrete samples of a continuous function, so
such data are known in the literature as functional data [1–10]. The difference between functional data
and traditional multivariate data is that the former regards the observed discrete data as a whole and as
a realization of a random process. Therefore, the first step of statistical analysis is to fit the discrete data
into smooth curves; this can solve the problems of missing data and inconsistent sampling intervals,
which are difficult issues for multivariate data. Moreover, if the fitting curve is smooth enough, we can
get more information from its derivatives, which is impossible for traditional multivariate data. As a
nonparametric statistical method, functional data analysis is not limited by a model and its parameters,
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so it can better reflect real laws in nature. At present, statistical analysis methods for functional data
have been widely used in the fields of biology, medicine, economics and meteorology [11–18].

Functional data principal component analysis (FPCA), as an unsupervised machine learning
method, plays a vital role in the analysis of functional data. The central idea of FPCA is to use a few
orthogonal dimensions to express most of the information of the original functional data. Through
dimensionality reduction, the analysis of the original functional data can be transformed into the
analysis of the characteristic functions of a few dimensions, thus greatly reducing the complexity of
the functional data and allowing for the better interpretation of the function data. Since J.Q. Ramsay
proposed the idea of functional principal component analysis in 1991 [19], various pieces of research on
functional principal component analysis have emerged one after another. Classical functional principal
components are the characteristic functions of the symmetric empirical covariance operator [20]. As
early as 1982, Pousse and Romain studied the asymptotic properties of the characteristic functions of
the empirical covariance operator: the empirical functional principal components [21]. In order to
avoid the violent oscillation of the obtained principal component weight function, Rice and Silverman
(1991) proposed a smooth functional principal component estimation method that smoothed the
principal component weight function by adding penalties to the variance after projection [22]. The
consistency of the estimate of the smooth functional principal component was then confirmed by
Pezzulli and Silverman (1993) [23]. Silverman (1996) proposed another method of smooth functional
principal components. Unlike the methods of Rice and Silverman (1991), the new method achieved the
smoothness of the principal component function by penalizing the norm of the projected variance [24].
Gareth (2000) studied principal component analysis for sparse function data [25]. Boente (2000) studied
the functional principal components-based kernel [26] Hall (2006) studied the properties of functional
principal components [27]. Benko (2009) studied common functional principal components [28], and
Hormann (2015) studied dynamic functional principal components [29].

Functional data principal component analysis (FPCA) is an important research subject of machine
learning and artificial intelligence, and it is the primary step for functional data exploration. Therefore,
the reliability of FPCA plays an important role in subsequent analysis. The aforementioned principal
component methods for functional data were established in L2-norm framework. However, because
the L2-norm enlarges the influence of outliers, the traditional functional principal components
analysis method is sensitive to outliers. On the other hand, in regard to multivariate data, relevant
research of principal component analysis methods [30–37] has shown that the principal component
analysis method of L1-norm for multivariate data has a better robustness than that of the L2-norm.
In [30], Kwak (2008) proposed an L1-PCA optimization model based on L1-norm maximization for
multivariable data, i.e., WL1 = argmax

W∈RD×K ,WTW=I
‖WTX‖1. The algorithm in [30] gives an approximate

solver for WL1 = argmax
W∈RD×K ,WTW=I

‖WTX‖1 through a sequence of deflating nullspace projections with

cost O(N2DM), and it is robust to outliers and invariant to rotations. In [31], Nie et al. (2011)
simultaneously approximated all M L1-PCs of X with complexity O(N2DM + NM3); however, the
principal components obtained by [31] were highly dependent on the the finding of the dimension
M of a subspace. For example, the projection vector obtained when M = 1 may not be in a subspace
obtained when M = 2. The optimal algorithm in [33] introduced a bit-flipping-based approximate
solver for WL1 = argmax

W∈RD×K ,WTW=I
‖WTX‖1 with complexity O(NDmin{N, D}+ N2(M4 + dM2) + NdM3),

where d = rank(X); this solution has a low performance degradation, and is close to L2-PCA, but the
cost is that it is not as robust as that in [30]. The work in [32] offered an algorithm for exact calculation
WL1 = argmax

W∈RD×K ,WTW=I
‖WTX‖1 with complexity O(2NM); however, when X is big data of large N and/or

large dimension D, the cost is prohibitive. The authors of [34] studied the relationship of independent
component analysis (ICA) and L1-PCA, and they proved that independent component analysis (ICA)
can be performed by L1-norm PCA under the assumption of whitening. The authors of [36] computed
L1-PCA by an incremental algorithm, in which only one measurement was processed at a time, and the
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changes in the nominal signal subspace could be tracked. Instead of maximizing the L1-norm deviation
of the projected data, the authors of [35,37] focused on minimizing the L1-norm reconstruction error.
However, in contrast to the conventional L2-PCA, the solutions of the minimization of the L1-norm
reconstruction error might not be same as the solutions of the maximization of the L1-norm deviation
of projected data.

Inspired by these pieces of research on L1-PCA for multivariable data, in this paper, we try
to construct a robust L1-norm principal component analysis method for functional data (L1-norm
FPCA). Firstly, we build a functional data L1-norm maximized principal component optimization
model, and then a corresponding algorithm for solving the L1-norm maximized optimization model is
extended to functional data based on the idea of a multivariate data L1-norm principal component
analysis method [30]. Numerical experiments show that the L1-norm functional principal component
analysis method provides a more robust estimation of principal components than the traditional
L2-norm functional principal component analysis method (L2-norm FPCA). Finally, by comparing the
reconstruction errors of the L1-norm FPCA and L2-norm FPCA, it is found that the reconstruction
ability of the L1-norm principal components to the original uncontaminated functional data is as good
as that of the L2-norm functional principal components.

2. Problem Description

2.1. L2-Norm Functional Principal Component Analysis (L2-Norm FPCA)

Suppose x1(t), x2(t), · · · , xn(t), t ∈ τ ⊂ R are implementations of the square integrable random
process X(t) ∈ L2(τ). Without a loss of generality, we assume that x1(t), x2(t), · · · , xn(t), t ∈ τ ⊂ R
are centralized. The purpose of functional principal component analysis (FPCA) is to express as
much information as possible of the original functional data with as few dimensions as possible.
Firstly, the case of only one principal component is considered. At this point, the task of FPCA is
to find a “projection direction” in infinite dimensional space so that the variance of projection of
x1(t), x2(t), · · · , xn(t), t ∈ τ to that direction is maximum. Assuming that the projection direction is
ξ1(t), which is called the first functional principal component weight function of functional data
x1(t), x2(t), · · · , xn(t), t ∈ τ, then ξ1(t) should be the solution of the following optimization problem:

max
ξ1(t)

1
n

n∑
i=1

(

∫
ξ1(t)xi(t)dt)2 (1)

s.t.
∫
ξ1

2(t)dt = 1

If the information that is expressed by one principal component is insufficient, a second projection
direction ξ2(t), which is orthogonal to the first principal component direction ξ1(t) and maximizes
the variance of the functional data x1(t), x2(t), · · · , xn(t), t ∈ τ under the orthogonality condition, is
necessary. This is the second functional principal component weight function. And so on, this process
continues until the obtained principal components can express enough information. Therefore, the
subsequent principal component weight functions need to satisfy the following optimization model:

max
ξ j(t)

1
n

n∑
i=1

(
∫
ξ j(t)xi(t)dt)2

s.t.
∫
ξ j

2(t)dt = 1, j = 2, 3, · · ·m∫
ξ j(t)ξk(t)dt = 0, k = 1, 2, · · · , j− 1

(2)

J.Q. Ramsay proved that the principal component weight functions ξ1(t), ξ2(t), · · · , ξm(t) of
functional data x1(t), x2(t), · · · , xn(t), t ∈ τ are the eigenfunctions that correspond to the first m
largest eigenvalues of sample covariance function of functional data x1(t), x2(t), · · · , xn(t), t ∈ τ, i.e.,
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∫ ∧
C(t, s)ξi(t)dt = ρiξi(s), i = 1, 2, · · · , m, where ρ1 ≥ ρ2 ≥ · · · ≥ ρm are the eigenvalues of the covariance

function Ĉ(t, s).
From the optimization Formulas (1) and (2), it is easy to find that the above L2-norm functional

principal components enlarge the influence of outliers and are sensitive to outliers. Therefore, L1-norm
functional principal components are constructed in this paper. Compared with the traditional L2-norm,
the L1-norm weakens the influence of outliers. It can be expected that the L1-norm functional principal
components have a good anti-noise ability.

2.2. L1-Norm Functional Principal Component Analysis (L1-Norm FPCA)

Suppose x1(t), x2(t), · · · , xn(t) are the implementations of square integrable stochastic process
x(·). Without a loss of generality, suppose that x1(t), x2(t), · · · , xn(t) have been centralized. Now
we want to find an m-dimensional linear subspace so that the L1-norm dispersion of the projection
of x1(t), x2(t), · · · , xn(t) in this subspace is the largest. Assume that the subspace is spanned by
β1(t), β2(t), · · · , βm(t), and the optimization problem corresponding to Formulas (1) and (2) can be
obtained:

max
β1,β2,···βm

n∑
i=1

m∑
j=1

∣∣∣∣∣∫ β j(t)xi(t)dt
∣∣∣∣∣ (3)

s.t.
∫
β j

2(t)dt = 1, j = 1, 2, · · · , m∫
β j(t)βk(t)dt = 0 j, k = 1, 2, · · · , m; j , k

where β1(t), β2(t), · · · , βm(t) are called L1-norm principal component weight functions for
x1(t), x2(t), · · · , xn(t).

It is not easy to solve the Optimization Problem (3) because the objective function is
non-differentiable, non-convex, and contains an absolute value operation. Next, we try to find
the solution of Optimization Problem (3) from the perspective of orthogonal basis expansion.

Assuming that x1(t), x2(t), · · · , xn(t); β1(t), β2(t), · · · , βm(t), t ∈ τ can be linearly represented by
the same standard orthogonal basis functions φ1(t),φ2(t), · · · with the same number of basis functions
K, i.e.,

xi(t) =
K∑

v=1

civφv(t) = cT
i φ(t) i = 1, 2, · · · , n

β j(t) =
K∑

v=1

b jvφv(t) = bT
j φ(t) j = 1, 2, · · · , m

where K is a positive integer. ci = (ci1, ci2, · · · , ciK)
T; bi = (b j1, b j2, · · · , b jK)

T; φ(t) =

(φ1(t),φ2(t), · · · ,φK(t))
T;

Under the above assumptions, we get:

max
β1,β2,···βm

n∑
i=1

m∑
j=1

∣∣∣∣∣∫ β j(t)xi(t)dt
∣∣∣∣∣ = max

b1,b2,··· ,bm

n∑
i=1

m∑
j=1

∣∣∣∣∣∫ bT
j φ(t)φ

T(t)cidt
∣∣∣∣∣ = max

b1,b2,··· ,bm

n∑
i=1

m∑
j=1

∣∣∣∣bT
j ci

∣∣∣∣
Since

∫
β j

2(t)dt =
∫

bT
j φ(t)φ

T(t)b jdt = bT
j b j, the constraints

∫
β j

2(t)dt = 1, j = 1, 2, · · · , m can be

expressed as bT
j b j = 1, j = 1, 2, · · · , m, and the constrains

∫
β j(t)βk(t)dt = 0 j, k = 1, 2, · · · , m; j , k

can be expressed as bT
j bk = 0 j, k = 1, 2, · · · , m; j , k. Therefore, the Optimization Problem (3) can be

transformed into the following Optimization Problem (4):

max
b1,b2,··· ,bm

n∑
i=1

m∑
j=1

∣∣∣∣bT
j ci

∣∣∣∣ = max
b1,b2,··· ,bm

n∑
i=1

m∑
j=1

∣∣∣∣∣∣∣
K∑

k=1

b jkcik

∣∣∣∣∣∣∣ (4)
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s.t. bT
j b j = 1 j = 1, 2, · · · , m

bT
j bk = 0 j, k = 1, 2, · · · , m; j , k

If we can get the solution of Optimization Problem (4), according to β j(t) = bT
j φ(t), j = 1, 2, · · · , m,

we can get the solution of Optimization Problem (3). There are several algorithms to solve Optimization
Problem (4), such as those in [30,31,33], each of which has its own advantages. According to the goal
of building robust principal components for functional data, we finally choose the algorithm in [30],
because the principal components calculated in [30] are more robust to outliers, and this algorithm
is relatively low-complexity when the data number, data dimension, and the principal components
number are large.

Next, based on the orthogonal basis expansion of functional data, we employ the L1-norm PCA
algorithm of multivariate data [30] to get the solving algorithm of the L1-norm functional principal
component weight functions (Abbreviation: L1-FPCA algorithm). The algorithm is rewritten in the
next section.

3. The Solving Algorithm of L1-Norm Functional Principal Component Weight Functions
(L1-FPCA Algorithm)

3.1. Only One Principal Component

First, we discuss the case where there is only one principal component, namely m = 1. In this case,
the Optimization Problems (3) and (4) are, respectively, simplified as follows:

max
β(t)

n∑
i=1

∣∣∣∣∣∫ β(t)xi(t)dt
∣∣∣∣∣ (5)

s.t.
∫
β2(t)dt = 1

and

max
b

n∑
i=1

∣∣∣bTci
∣∣∣ (6)

s.t. bTb = 1

Next, we construct L1-FPCA algorithm to solve the Optimization Problems (5) and (6).
L1-FPCA Algorithm:
Step 1: Arbitrarily choose the initial projection direction β0(t), get b0 by β0(t) = (b0)

T
φ(t),

normalize b0:b0 = b0

‖b0‖2
, and set the iteration number k to be 0.

Step 2: For all i ∈ (1, 2, · · · , n), if
∫
βk(t)xi(t)dt < 0, i.e., (bk)

T
ci < 0, let pk

i = −1; otherwise pk
i = 1.

Step 3: Let bk =
n∑

i=1
pk−1

i ci, normalize bk: bk = bk

‖bk‖2
, and get the corresponding βk(t) by βk(t) =

(bk)
T
φ(t).
Step 4: If βk(t) , βk−1(t), return to step 2. If there is i such that

∫
βk(t)xi(t)dt = 0, i.e., (bk)

T
ci = 0,

then let bk =
(bK+∆b)
‖bK+∆b‖2

and get the corresponding βk(t), then return to step 2, where ∆b is a small

non-zero vector. Otherwise, let β∗(t) = βk(t), b∗ = bk and β∗(t) = (b∗)Tφ(t), stop.

Theorem 1. The L1-FPCA algorithm is convergent, and its convergence point b∗ is the local maximum point of
the Optimization Problem (6) and β∗(t) is the local maximum point of Optimization Problem (5).
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Proof. First, we prove that the objective function
n∑

i=1

∣∣∣∫ βk(t)xi(t)dt
∣∣∣ and

n∑
i=1

∣∣∣bTci
∣∣∣ are nondecreasing in

the iteration process of L1-FPCA algorithm, i.e.,

n∑
i=1

∣∣∣∫ βk(t)xi(t)dt
∣∣∣ = n∑

i=1

∣∣∣∣(bk)
T

ci

∣∣∣∣ = n∑
i=1

(bk)
T

pk
i ci = (bk)

T n∑
i=1

pk
i ci ≥ (bk)

T n∑
i=1

pk−1
i ci

≥ (bk−1)
T n∑

i=1
pk−1

i ci =
n∑

i=1
(bk−1)

T
pk−1

i ci =
n∑

i=1

∣∣∣∣(bk−1)
T

ci

∣∣∣∣
=

n∑
i=1

∣∣∣∫ βk−1(t)xi(t)dt
∣∣∣

Therefore, the objective function
n∑

i=1

∣∣∣∫ βk(t)xi(t)dt
∣∣∣ and

n∑
i=1

∣∣∣bTci
∣∣∣ are nondecreasing. Additionally,

because there are only finite number of data points, the convergence points β∗(t) and b∗ of the L1-FPCA
algorithm exist.

Next, we prove that b∗ and β∗(t) are the local maxima of the corresponding optimization problem.
Suppose that b∗ = bk, that is the convergence point b∗ is found after k iterations. Because for

any i ∈ (1, 2, · · · , n), bTpk
i c→ (b∗)Tpk

i ci , there is a neighborhood N(b∗) of b∗ so that for b ∈ N(b∗),
bTpk

i c ≥ 0 and
n∑

i=1

∣∣∣∣∣∫ β∗(t)xi(t)
∣∣∣∣∣ = n∑

i=1

∣∣∣(b∗)Tci
∣∣∣ = n∑

i=1

(b∗)Tpk
i ci = (b∗)T

n∑
i=1

pk
i ci

Because b∗ is the convergence point, b∗ is parallel to
n∑

i=1
pk

i ci; therefore, (b∗)T n∑
i=1

pk
i ci ≥ bT

n∑
i=1

pk
i ci =

n∑
i=1

∣∣∣bTci
∣∣∣, so for b ∈ N(b∗),

n∑
i=1

∣∣∣∫ β∗(t)xi(t)
∣∣∣ = n∑

i=1

∣∣∣(b∗)Tci
∣∣∣ ≥ n∑

i=1

∣∣∣bTci
∣∣∣ = n∑

i=1

∣∣∣β(t)xi(t)
∣∣∣; that is, b∗ is the local

maximum of
n∑

i=1

∣∣∣bTci
∣∣∣ and β∗(t) is the local maximum of

n∑
i=1

∣∣∣∫ β(t)xi(t)dt
∣∣∣.

Therefore, the L1-FPCA procedure finds a local maximum point b∗ of
n∑

i=1

∣∣∣bTci
∣∣∣ and β∗(t) of

n∑
i=1

∣∣∣∫ β(t)xi(t)dt
∣∣∣. �

Since the L1-FPCA algorithm obtains a local optimal solution, we expect to find the global optimal
solution with great probability by appropriately setting the initial projection direction β0(t), e.g., by
setting β0(t) = argmax

xi(t)

∫
x2

i (t)dt or by setting it to be the solution of L2-FPCA. In practice, we usually

select several different initial projection directions β0(t) and calculate the respective local optimal

solutions, and the solution with maximized the objective function
n∑

i=1

∣∣∣∫ β(t)xi(t)dt
∣∣∣ is selected as the

optimal solution.

3.2. Multiple Principal Components

Suppose that m principal components (m > 1) are needed, and the L1-FPCA algorithm needs
to sequentially find m principal component projection directions b1, b2, · · · , bm and corresponding
β1(t), β2(t), · · · , βm(t). The specific algorithm is as follows:

Step 1: Let β0(t) = 0, i.e.,b0 = 0,
{
c0

i = ci
}n

i=1
.

Step 2: For all i ∈ (1, 2, · · · , n), let c1
i = c0

i − b0(bT
0 c0

i ) and apply the L1-FPCA algorithm to
c1 = (c1

1, c1
2, · · · , c1

n) to obtain the projection vector b1 and the corresponding β1(t).

Step 3: For all i ∈ (1, 2, · · · , n), let c j
i = c j−1

i − b j−1(bT
j−1c j−1

i ) and apply the L1-FPCA algorithm to

c j = (c j
1, c j

2, · · · , c j
n) to obtain the projection vector b j and the corresponding β j(t).

Step 4: Repeat Step 3 until m projection vectors b1, b2, · · · , bm and corresponding
β1(t), β2(t), · · · , βm(t) are obtained.
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Since b1, b2, · · · , bm are standard orthogonal dimensions in RK space [38], the principal component
weight functions β1(t), β2(t), · · · , βm(t)t ∈ τ are also standard orthogonal dimensions because:

< β j(t), βk(t) >=
∫
β j(t)βk(t)dt =

∫
bT

j φ(t)φ
T(t)bkdt = bT

j bk = 0 j, k = 1, 2, · · · , m; j , k

< β j(t), β j(t) >=
∫
β j(t)β j(t)dt =

∫
bT

j φ(t)φ
T(t)b jdt = bT

j b j = 1 j = 1, 2, · · · , m

As with the L2-norm functional principal component analysis, it is necessary to consider how
many principal components are appropriate. This problem needs to be determined by the cumulative
variance contribution rate. That is, according to the variance of the j projection direction, v j =

1
n

n∑
i=1

(
∫
β j(t)xi(t)dt)2, j = 1, 2, · · · , m, the total variance of the first k projection directions can be

calculated as S(k) =
k∑

j=1
v j, and the total variance of the original functional data is S = 1

n

n∑
i=1

(
∫

x2
i (t)dt)2.

Thus, for the actual problems, the number of final principal component weight functions can be

determined when S(k)
S is more than 80% or 85%.

4. Numerical Examples

4.1. Simulation

In order to compare the robustness to outliers of L1-norm functional principal components
(L1-FPCs) that are proposed in this paper and the classical L2-norm functional principal components
(L2-FPCs), we performed this simulation. We referred to the simulation setting given by Fraiman
and Muniz (2001) [38]. Here, we considered that functional data x1(t), x2(t), · · · , xn(t) are the
implementations of squared integrable stochastic process X(·), and the function curves were generated
from different model. There was no contamination in Model 1, and several other models suffered from
different types contamination based on Model 1.

Model 1 (no contamination): xi(t) = m(t) + εi(t), i = 1, 2, · · · , n, where error term εi(t) is a
stochastic Gaussian process with zero mean and covariance function cov(s, t) = (1/2)(1/2)0.9|t−s| and
m(t) = 4t,t ∈ [0, 1].

Model 2 (asymmetric contamination): yi(t) = xi(t) + ciM, i = 1, 2, · · · , n, where ci is the sample
of the 0–1 distribution with the parameter q, and M is the contamination constant.

Model 3 (symmetric contamination): yi(t) = xi(t) + ciσiM, i = 1, 2, · · · , n, where ci and M are
defined as in Model 2 and σi is a sequence of random variables with values of 1 and −1 with a
probability of 1/2 that is independent of ci.

Model 4 (partially contaminated): yi(t) =
{

xi(t) + ciσiM, t ≥ Ti
xi(t), t < Ti

, i = 1, 2, · · · , n, where Ti is a

random number generated from a uniform distribution on [0,1].

Model 5 (peak contamination): yi(t) =

{
xi(t) + ciσiM, T ≤ t ≤ Ti + l
xi(t), t < [Ti, Ti + l]

, i = 1, 2, · · · , n, where

l = 1/15 and Ti is a random number generated from a uniform distribution on [0, 1− l].
Figure 1 shows the simulated curves of these five models. For each model, we set 100 equal-interval

sampling points in [0,1] and generated 200 replications. For Model 1, the parameter q was 0 and the
contamination constant M was 0. For several other contaminated models, we considered several levels
of contamination, with q = 5% and 10% and contamination constants M = 5 and 10. When fitting
function curves, we use generalized cross validation (GCV) to obtain the number of bases. The results
showed that the number of bases of Model 1–3 were the same, while those of Models 4 and 5 were
different. However, due to the need of calculating the change of principal component coefficient, we
had to calculate it on the same basis. Therefore, for comparison purposes, in Models 4 and 5, we
selected the same number of bases as that of Model 1.
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Figure 1. Curves generated from Model 1 (without contamination), Model 2 (asymmetric contamination),
Model 3 (symmetric contamination), Model 4 (partial contamination) and Model 5 (peak contamination)
with n = 200, p = 100, q = 5% and M = 10.

Classical L2-norm FPCA and L1-norm FPCA were used for the simulated functional data
corresponding to these five models. We focused on their robust to various abnormal disturbances.
When implementing L1-norm FPCA on Model 1, by comparing the value of objective function, the
initial value was chosen as the first L2-norm functional principal component weight function, i.e.,
β0(t) = ξ(t), where ξ(t) is the eigenfunction corresponding to the largest eigenvalue of the sample
covariance function of the functional data in Model 1. Because the L1-norm FPCA of the following
several disturbance models should be compared with Model 1, in order to ensure the consistency
of conditions when calculating the L1-norm FPCA of the following several disturbance models, the
initialization values also adopted the eigenfunction corresponding to the largest eigenvalue of the
sample covariance function of the corresponding functional data.
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The sums of absolute values of the coefficient differences of several principal components under
non-contamination and contamination were compared and analyzed. The sum of the absolute values
of the corresponding coefficient changes are given in Tables 1–4. Since the variance contribution rate
of the first principal component reached 80%, only the first principal component function was taken
in Models 1, 2, 3 and 4. However, in order to achieve a similar variance contribution rate, at least
four principal components were needed in Model 5. Thus, for Models 1, 2, 3 and 4, we only show the
changes of the first principal component function. For Model 5, we show the changes of the first four
principal component functions.

Table 1. The sum of the absolute values of the first principal component weight function coefficient
changes for no contamination and asymmetric contamination (5% and 10%).

M = 10 M = 5

q L1-norm FPC L2-norm FPC L1-norm FPC L2-norm FPC
1st FPC 1st FPC 1st FPC 1st FPC

5% 0.17 1.13 0.13 0.91
10% 0.22 1.24 0.18 1.16

Table 2. The sum of the absolute values of the first principal component weight function coefficient
changes for no contamination and symmetric contamination (5% and 10%).

M = 10 M = 5

q L1-norm FPC L2-norm FPC L1-norm FPC L2-norm FPC
1st FPC 1st FPC 1st FPC 1st FPC

5% 0.2 1.13 0.1 0.96
10% 0.25 1.17 0.23 1.04

Table 3. The sum of the absolute values of the first principal component weight function coefficient
changes for no contamination and partial contamination (5% and 10%).

M = 10 M = 5

q L1-norm FPC L2-norm FPC L1-norm FPC L2-norm FPC
1st FPC 1st FPC 1st FPC 1st FPC

5% 1.17 13.47 0.81 10.67
10% 1.70 14.77 1.24 12.29

Table 4. The sum of the absolute values of the first four principal component weight functions.
Coefficient changes for no contamination and peak contamination (5% and 10%).

M = 10 M = 5

q L1-norm FPC L2-norm FPC L1-norm FPC L2-norm FPC
1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

5% 0.5 1.5 3.9 9.8 3.9 66.3 39.2 45.2 0.2 0.7 1.3 10.1 3.9 66.8 39.9 45.7
10% 0.8 1.8 4.1 8.4 5.4 24.2 48.4 54.3 0.4 1.2 2.2 3.4 2.3 10.9 22.3 42.2

It can be seen from Tables 1–4 that under the same contamination ratio and contamination size,
the coefficient changes of the principal component weight functions of the L1-norm were significantly
smaller than those of the L2-norm, which shows that the functional principal components of the
L1-norm were more stable than those of the L2-norm, no matter which form of contamination was
received. This conclusion can also be confirmed from the boxplots of the coefficient changes of the
principal component weight functions.

As can be seen from Figures 2–5, in the same contamination ratio and size, the changes of L1-norm
principal component coefficient are more concentrated near zero compared with the changes of the
L2-norm principal component coefficient, which shows that under the same contamination mode,
L1-norm functional principal components were more robust to outliers and more reliable.
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Figure 3. The boxplots of the change of the first principal component coefficient for symmetric
contamination (q = 5% and q = 10%; M = 5 and M = 10).

From the above research, we found that the L1-norm functional principal components were
more robust than L2-norm functional principal components. Thus, how can one reconstruct the
original functional data with these two types of principal components? In order to study this problem,
we reconstructed the original uncontaminated functional data with the same number of functional
principal components of L1-norm and L2-norm under each model. The scatter plots of the coefficients
of the two types of reconstructed error curves are shown in Figures 6–9.
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Figure 4. The boxplots of the change of the first principal component coefficient for partial contamination
(q = 5% and q = 10%; M = 5 and M = 10).
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In Figures 6–9, we can see that the scatter plots of the reconstruction error curve coefficients of
L1-norm and L2-norm were always near the line y = x under the first three pollution models, and
under peak pollution, the reconstruction error of the L1-norm was smaller than that of the L2-norm.
When using the paired one-sided T-test, the p-values were found to all be close to 1, indicating that
the reconstruction error curve coefficients of the L1-norm were not greater than those of the L2-norm.
Thus, the reconstruction ability of the L1-norm principal components to the original uncontaminated
functional data was not worse than that of the L2-norm principal components. The results of the paired
one-sided T-test are shown in Tables 5–8.
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Table 5. The table of the one-sided paired T-test of the coefficients of the reconstruction error curves of
L1-norm and L2-norm under asymmetric contamination (Alternative hypothesis: The true difference of
the reconstruction error curve coefficients of L1-norm and L2-norm in means was greater than 0.).

q
M = 5 M = 10

t df p-Value t df p-Value

5% −2.8447 199 0.9975 −2.1651 199 0.9842
10% −2.2484 199 0.9872 −2.5843 199 0.9948

Table 6. The table of the one-sided paired T-test of the coefficients of the reconstruction error curves of
L1-norm and L2-norm under symmetric contamination (Alternative hypothesis: The true difference of
the reconstruction error curve coefficients of L1-norm and L2-norm in means was greater than 0.).

q
M = 5 M = 10

t df p-Value t df p-Value

5% −3.8761 199 0.9999 −3.34 199 0.9995
10% −4.7628 199 1 −3.5293 199 0.9997

Table 7. The table of the one-sided paired T-test of the coefficients of the reconstruction error curve of
L1-norm and L2-norm under partial contamination (Alternative hypothesis: The true difference of the
reconstruction error curve coefficients of L1-norm and L2-norm in means was greater than 0.).

q
M = 5 M = 10

t df p-Value t df p-Value

5% −5.2373 199 1 −4.9371 199 1
10% −7.7896 199 1 −5.033 199 1

Table 8. The table of the one-sided paired T-test of the coefficients of the reconstruction error curves of
L1-norm and L2-norm under peak contamination (Alternative hypothesis: The true difference of the
reconstruction error curve coefficients of L1-norm and L2-norm in means was greater than 0.).

q
M = 5 M = 10

t df p-Value t df p-Value

5% −6.6502 199 1 −6.6212 199 1
10% −7.6313 199 1 −6.8564 199 1

The above experiments showed that the functional principal component of the L1-norm was not
just stable and reliable, it also had the same reconstruction ability as the L2-norm.

4.2. Canadian Weather Data

We used Canadian weather data, which provide daily temperatures at 35 different locations in
Canada averaged over 1960–1994, in order to compare the robust to outliers of the L1-norm functional
principal components and L2-norm functional principal components when the functional data were
contaminated by abnormal data. Firstly, by considering the periodic characteristics of the data, the
discrete temperature observation data were fitted into 35 functional curves by a Fourier basis function,
and the number of the basis functions was 65. The fitting curves are shown in Figure 10a. As can
be seen when using the function data outlier detection method [39], the temperature modes of the
four stations of Vancouver, Victoria, Pr. Rupert and Resolute were different from those of the other
stations. Figure 10b shows this function after removing the data from these four observatories. The
functional data of the 35 observatories were called the whole data, and the functional data after
removing Vancouver, Victoria, Pr. Rupert and Resolute were normal data, so the whole data can be
understood as the addition of abnormalities to the normal data.
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data).

In order to compare the robustness between the L2-norm functional principal component weighting
functions and the L1-norm functional principal component weighting functions to outliers, the L2-norm
functional principal components and L1-norm functional principal components were, respectively,
used for normal data and data added with outliers. For each method, the results of the two cases were
compared, because the variance contribution rate of the first two principal components reached 90%,
though the latter analysis only focused on the first two functional principal components.

Figure 11 shows the change of the first principal component weight function before and after
adding outliers by using two functional principal component analysis methods. Figure 11a is a graph
of the first principal component weight function that was obtained by using the L2-norm functional
principal component method. The solid line is the result of normal data, and the dashed line is the
result of adding four abnormal curves. Figure 11b is a graph of the first principal component weight
function that was obtained by using the proposed L1-norm functional principal component method.
After comparing the objective function, the initial value was chosen as the first L2-norm functional
principal component weight function, i.e., β0(t) = ξ(t), where ξ(t) is the eigenfunction corresponding
to the largest eigenvalue of the sample covariance function of normal functional data and the same
method for whole functional data. The solid line is the result of normal data, and the dashed line is
the result of adding four abnormal curves. By comparing the coefficients of the two first functional
principal component weighting functions, it was found that the sum of the absolute change of the
coefficients of the first principal component weighting functions that were obtained by the L1-norm
method before and after adding abnormal values was 0.16, which was less than the 0.18 corresponding
to the L2-norm. Next, the performance of the second principal component weight function is discussed.

Figure 12 shows the change of the second principal component weight function before and after
the addition of outliers by using two functional principal component analysis methods. Figure 12a is a
graph of the second principal component weight function that was obtained by using the L2-norm
function principal component method. The solid line is the result of normal data, and the dashed line
is the result of adding four abnormal curves. Figure 12b is a graph of the second principal component
weight function that was obtained by using the proposed L1-norm function principal component
method. The solid line is the result of normal data, and the dashed line is the result of adding four
abnormal curves. By comparing the coefficients of the two second function principal component
weighting functions, it was found that the sum of absolute change of the coefficients of the second
principal component weighting functions that were obtained by the L1-norm method before and after
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adding abnormal values was 0.33, which was less than the 0.76 corresponding to the L2-norm. the
sums of the absolute values of the coefficient change of the principal component weight functions
under the two methods are shown in Table 5.
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Figure 11. The first principal component weight function for normal data and whole data. (a) L2-norm,
(b) L1-norm.
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Table 9 shows that the classical L2-norm principal components weight functions greatly changed
before and after removing outliers, reflecting its sensitivity to outliers. However, the L1-norm functional
principal components weight functions presented in this paper had little change before and after
adding abnormal values. Therefore, that the L1-norm principal component weight function proposed
in this paper has a strong anti-noise ability and a good stability.
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Table 9. The sum of absolute change of the coefficients of the first two principal component
weighting functions.

The Sum of Absolute Change of the
Coefficients

The 1st Function Principal
Component Weighting Function

The 2nd Function Principal
Component Weighting Function

L2-norm 0.18 0.76
L1-norm 0.16 0.33

We also compared the reconstruction ability of two types of principal components to normal
data. The scatter plots of the coefficients of the two types of reconstructed error curves are shown in
Figure 13.
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From Figure 13, it can be seen the scatter plots of the reconstruction error curve coefficients of
L1-norm and L2-norm were always near the line y = x; When we performed a paired one-sided T-test
for the two groups of reconstruction error curve coefficients, the t value was found to 1.0323, the degree
of freedom for the t-statistic was 33, and the p-value was 0.1547, which indicates that the reconstruction
error curve coefficients of L1-norm were not greater than those of L2-norm. Thus, the reconstruction
ability of the L1-norm principal components to the original uncontaminated functional data was not
worse than the L2-norm principal components.

5. Concluding Remarks

FPCA is a primary step for functional data exploration, and the reliability of FPCA plays an
important role in subsequent analysis. The existing principal component methods of functional data
were established in an L2-norm framework. However, because the L2-norm enlarges the influence of
outliers, the traditional functional principal components analysis method is sensitive to outliers. On the
other hand, in regard to multivariate data, the relevant research on the principal component analysis
method [30–37] have shown that the principal component analysis method of L1-norm for multivariate
data has a better robustness than that of the L2-norm. Motivated by this research, in this paper, we tried
to construct an L1-norm principal component analysis method for functional data. Firstly, we built a
functional data L1-norm maximized principal component optimization model. Then, a corresponding
algorithm for solving the L1-norm maximized optimization model was constructed based on the idea
of multivariate data L1-norm principal component analysis method [30]. An extensive simulation
study was conducted, and a real dataset of Canadian weather was employed to assess the robustness
of the L1-norm functional principal component analysis. From the simulation study that considered
different contamination configurations (symmetric, asymmetric, partial and peak), we found that
the L1-norm functional principal component analysis method provides a more robust estimation of
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principal components than the traditional L2-norm principal component analysis method. Finally, by
comparing the reconstruction errors of the L1-norm FPCA and L2-norm FPCA, it was found that the
reconstruction ability of the L1-norm principal components to the original uncontaminated functional
data is as good as that of the L2-norm principal components. Therefore, when functional data contain
outliers, the estimation given by the L1-norm functional principal component analysis method is more
reliable. The proposed L1-norm FPCA may prove to be an useful addition to functional data analysis.

Author Contributions: Individual contributions to this article: conceptualization, F.Y. and L.L.; methodology,
F.Y. and L.L.; software, L.J. and D.Q.; validation, F.Y. and N.Y.; writing—original draft preparation, F.Y. and L.L.;
writing—review and editing, F.Y. and L.L.; supervision, L.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the Beijing Natural Science Foundation under Grant No.9172003, in
part by the National Natural Science Foundation of China under Grant No. 61876200, in part by the Natural Science
Foundation Project of Chongqing Science and Technology Commission under Grant No. cstc2018jcyjAX0112.

Acknowledgments: The authors thank the anonymous referees for their careful reading and helpful suggestions,
which help to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kowal, D.R. Integer-valued functional data analysis for measles forecasting. Biometric 2019, in press.
[CrossRef] [PubMed]

2. Wagner-Muns, I.M.; Guardiola, I.G.; Sama-ranayke, V.A.; Kayani, W.I. A functional data analysis approach
to traffic volume forecasting. IEEE Trans. Intell. Transp. Syst. 2017, 19, 878–888. [CrossRef]

3. Ramsay, J.O.; Silverman, B.W. Applied functional data analysis. J. Educ. Behav. Stat. 2008, 24, 5822–5828.
4. Yao, F.; Müller, H.G.; Wang, J.L. Functional data analysis for sparse longitudinal data. J. Am. Stat. Assoc.

2005, 100, 577–590. [CrossRef]
5. Auton, T. Applied functional data analysis: Methods and case studies. J. R. Stat. Soc. 2010, 167, 378–379.

[CrossRef]
6. Zambom, A.Z.; Collazos, J.A.; Dias, R. Functional data clustering via hypothesis testing k-means. Comput.

Stat. 2019, 34, 527–549. [CrossRef]
7. Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice; Springer Science & Business

Media: Berlin, Germany, 2006.
8. Horváth, L.; Kokoszka, P. Inference for Functional Data with Applications; Springer Science & Business Media:

Berlin, Germany, 2012; Volume 200.
9. Tarpey, T.; Kinateder, K.K. Clustering functional data. J. Classif. 2003, 20, 93–114. [CrossRef]
10. Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis: Methods and Case Studies; Springer:

Berlin/Heidelberg, Germany, 2007.
11. Estévez-Pérez, G.; Vilar, J.A. Functional anova starting from discrete data: An application to air quality data.

Environ. Ecol. Stat. 2013, 20, 495–517. [CrossRef]
12. Ignaccolo, R.; Ghigo, S.; Giovenali, E. Analysis of air quality monitoring networks by functional clustering.

Environmetrics 2010, 19, 672–686. [CrossRef]
13. Ferraty, F.; Vieu, P. Nonparametric models for functional data, with application in regression, time series

prediction and curve discrimination. Nonparametr. Stat. 2004, 16, 111–125. [CrossRef]
14. Febrero, M.; Galeano, P.; González-Manteiga, W. Outlier detection in functional data by depth measures,

with application to identify abnormal nox levels. Environmetrics 2010, 19, 331–345. [CrossRef]
15. Ratcliffe, S.J.; Heller, G.Z.; Leader, L.R. Functional data analysis with application to periodically stimulated

foetal heart rate data ii functional logistic regression. Stat. Med. 2002, 21, 1103–1114. [CrossRef] [PubMed]
16. Giraldo, R.; Delicado, P.; Mateu, J. Continuous time-varying kriging for spatial prediction of functional data:

An environmental application. J. Agric. Biol. Environ. Stat. 2010, 15, 66–82. [CrossRef]
17. Ferraty, F.; Rabhi, A.; Vieu, P. Conditional quantiles for dependent functional data with application to the

climatic “el niño” phenomenon. Sankhyā Indian J. Stat. 2005, 67, 378–398.
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