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Abstract: In the first part of our paper, we construct a cyclic hypergroup of matrices using the Ends
Lemma. Its properties are then, in the second part of the paper, used to describe the symmetry of
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an application of our results for the study of detection sensors, which are used especially in mobile
robot mapping.
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1. Introduction

Our perception of the real world is never fully precise. Our decisions are always made with a
certain level of uncertainty or lack of some pieces of information. Mathematical tools that make this
decision making easier include fuzzy sets [1], rough sets [2,3] or soft sets [4]. In the algebraic hyperstructure
theory, i.e., in the theory of algebraic hypercompositional structures, there are numerous constructions
leading to such structures. One of these is the application of the Ends lemma [5–7] in which the
hyperoperation is the principal end of a partially ordered semigroup. For some theoretical results
regarding the construction, see for example Novák et al. [7–9]. In [9] the authors modify the
construction in order to increase its applicability.

In our paper we develop an idea similar to [9–11]. With the help of matrix calculus, which we
believe is a suitable tool, we construct cyclic hypergroups and their invertible subhypergroups. Notice
that matrix calculus linked to the theory of algebraic hypercompositional structures has been used as
a suitable tool in various contexts such as [12–14]. Since the notion of hypercompositional cyclicity
has a rather complicated evolution, we recommend the reader to study [15], which gives a complex
discussion of the topic, and [16] which is the source of our definition.

In [17] the authors consider the application of rough sets in various contexts based on establishing
the set describing its upper and lower approximation. In a general case, this issue is discussed,
e.g., in [11,18,19]. Suppose that we can see the Ends Lemma as a certain boundary used in various
areas such as economics (the need to generate at least certain profit), electrical engineering (the transistor
basis of a p-n junction needs at least certain current for the charge flow yet this must not be too great),
etc. Motivated by these considerations we investigate hypercompositional structures constructed with
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the help of the principal end (or beginning) and their subhyperstructures. We study their cyclicity and
their generators. In the context of rough sets we use cyclic hypergroups to construct the universum
with the help of indiscernibility relation and its subhyperstructures describing their upper and lower
approximations. In order to describe these we make use of some natural relations between matrix
characteristics. In the end of our paper we demonstrate how this type of rough sets, especially the
upper approximations, can be used for description of an area monitored by sensors of autonomous
robotic systems.

2. Notation and Context

In our paper, we work with matrices. In a general case these are matrices over a field. However,
within this field we regard a subset (infinite such as N or finite such as in Example 5), elements of which
are actually used as entries. We denote such a set by E, and the set of all m× n matrices with entries
from a E by Mm,n(E). We also suppose that there exists a total order on E with the smallest element
of E denoted (if it exists) by e. Within the set E we, in our hyperoperations, rely on the operation
min{a, b}, the result of which is, given our context, equal to the smaller element.

On Mm,n(E) we, for an arbitrary pair of matrices A, B ∈Mm,n(E), define relation ≤M by

A ≤M B if ‖A‖∞ ≤M ‖B‖∞ (1)

where ‖A‖∞ = max
1≤i≤m

n
∑

j=1
|aij|, i.e., ‖A‖∞ is the row norm.

Example 1. For matrices

A =

8 1 2
4 0 1
1 1 1

 , B =

2 1 1
3 0 3
5 1 0

 ,

there is

‖A‖∞ = 11 and ‖B‖∞ = 6.

Therefore B ≤M A.

Basic Notions of the Theory of Algebraic Hypercompositional Structures

Before we give our results, recall some basic notions of the algebraic hyperstructure theory
(or theory of algebraic hypercompositional structures). For further reference see, for example,
books [20,21]. A hypergroupoid is a pair (H, ∗), where H is a nonempty set and the mapping
∗ : H × H −→ P∗(H) is a binary hyperoperation (or hypercomposition) on H (here P∗(H) denotes
the system of all nonempty subsets of H). If a ∗ (b ∗ c) = (a ∗ b) ∗ c holds for all a, b, c ∈ H, then
(H, ∗) is called a semihypergroup. If moreover the reproduction axiom, i.e., relation a ∗ H = H = H ∗ a
for all a ∈ H, is satisfied, then the semihypergroup (H, ∗) is called hypergroup. Unlike in groups,
in hypergroups neutral elements or inverses need not be unique. By a neutral element, or an identity
(or unit) of (H, ∗) we mean such an element e ∈ H that e ∈ x ∗ e∩ e ∗ x for all x ∈ H while by an inverse
of a ∈ H we mean such an element a′ ∈ H that there exists an identity e ∈ H such that e ∈ a ∗ a′ ∩ a′ ∗ a.
By idempotence in the sense of hypercompositional structures we mean that a ∈ a ∗ a, i.e., that the
element is included in its “second power” (which is, in general, a set).

Numerous notions of algebraic structures can be generalized for algebraic hypercompositional
structures while some hypercompositional notions have no counterparts in algebraic structures. One of
the key algebraic concepts, cyclicity, can be transferred to theory of algebraic hypercompositional
structures in several ways. For a complex discussion of these approaches as well as their historical
context and evolution and clarification of naming and notation, see Novák, Křehlík and Cristea [15].
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In our paper we will work with the following definition introduced by Vougiouklis [16] (reworded as
in [15]); for more results regarding cyclic hypergroups see Vougiouklis [22].

Definition 1 ([15,16]). A hypergroup (H, ◦) is called cyclic if, for some h ∈ H, there is

H = h1 ∪ h2 ∪ . . . ∪ hn ∪ . . . , (2)

where h1 = {h} and hm = h ◦ . . . ◦ h︸ ︷︷ ︸
m

. If there exists n ∈ N such that Formula (2) is finite, we say that H is a

cyclic hypergroup with finite period; otherwise, H is a cyclic hypergroup with infinite period. The element
h ∈ H in Formula (2) is called generator of H, the smallest power n for which Formula (2) is valid is called
period of h. If all generators of H have the same period n, then H is called cyclic with period n. If, for a given
generator h, Formula (2) is valid but no such n exists (i.e., Formula (2) cannot be finite), then H is called cyclic
with infinite period. If we can, for some h ∈ H, write

H = hn. (3)

Then, the hypergroup H is called single-power cyclic with a generator h. If Formula (2) is valid and for
all n ∈ N and, for a fixed n0 ∈ N, n ≥ n0 there is

h1 ∪ h2 ∪ . . . ∪ hn−1 ( hn, (4)

then we say that H is a single-power cyclic hypergroup with an infinite period for h.

Apart from the notion of cyclicity we will work with the notion of EL–hyperstructures,
i.e., hypercompositional structures constructed from ordered (or sometimes pre-ordered) semigroups
by means of what is known as the “Ends Lemma”. For details and applications see,
for example, [8–10,12,23].

3. Single-Power Cyclic Hypergroup of Matrices

In order to construct a single-power cyclic hypergroup of matrices, we first, for an arbitrary pair
of matrices A, B ∈Mm,n(E), define a hyperoperation by

A ∗ B = {A, B} ∪ [A ◦m B)≤M
, (5)

where A ◦m B is such a matrix D that D = {[di,j] | di,j = min{aij; bij}, i ∈ {1, . . . , m}, j ∈ {1, . . . , n}}
and [D)≤M is the set of all matrices greater than D, i.e., [D)≤M = {X ∈ Mm,n(E) | D ≤M X}. Thus,
using terminology of Chvalina [5], (Mm,n(E), ∗) is an extensive hypergroupoid, i.e., for an arbitrary pair
of matrices A, B ∈Mm,n(E) there is {A, B} ⊆ A ∗ B. Notice that some other authors, motivated by the
geometrical meaning, call such hypergroupoids “closed” as contrasted to “open”.

Example 2. For matrices A and B from Example 1 we have:

A ∗ B =


8 1 2

4 0 1
1 1 1

 ,

2 1 1
3 0 3
5 1 0


 ∪


2 1 1

3 0 1
1 1 0



≤M

Remark 1. With the above example we not only demonstrate the meaning of the hyperoperation “∗” but
also provide an example to the forthcoming Lemma 3. In this respect notice that ‖A‖∞ = 11, ‖B‖∞ = 6
and ‖A ◦m B‖∞ = 4, which means that A, B ∈ [A ◦m B)≤M

. Since in our paper we regard E as a part of
N∪ {0}, writing the hyperoperation (5) explicitly in the form of union is not neccessary. However, for, as an
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example, E = {−6,−5,−4 . . .} the hyperoperation would no longer be extensive (without explicitly including
{A, B}). Indeed,

A =

[
3 −1
1 1

]
, B =

[
4 −6
2 1

]
; ‖A‖∞ = 4, ‖B‖∞ = 10

‖A ◦m B‖∞ = ‖
[

3 −6
1 1

]
‖∞ = 9.

The result of the hyperopration is influenced by the absolute value in the calculations of the matrix norm.
Since in our paper we restrict ourselves to positive entries of matrices, especially in Section 4 we could omit the
two-element set in the definition of the hyperoperation. Yet in our paper we prefer being more general, especially
as far as the construction of the hyperoperation is concerned. Since negative values violate extensivity, we prefer
including the two-element set in (5). Another way of preserving extensivity would be to modify the row norm
by leaving out absolute values. In this respect also notice the result proved by Massouros [24] which says that
adding {a, b} to a · b, where (H, ·) is a group or a hypergroup, i.e., defining a • b = {a, b} ∪ a · b, results in the
fact that (H, •) is a hypergroup.

Example 3. Suppose we have a manufacturing company with two production lines L1, L2, such that both lines
produce products A and B. Consider some specific conditions for production under which the first line L1 only
produces 10 pieces of A and 5 pieces of B per week, and the line L2 only produces 6 pieces of A and 7 pieces of B
per week. This can be denoted by:

P1 =

[
10 5
6 7

]
,

In the following week, under the same specific conditions, the production can be described by P2 =

[
8 6
4 8

]
.

The norm of the matrix, i.e., 15 in case of P1 and 13 in case of P2, describes the production of the better line.
The result of the hyperoperation (5), i.e.,

P1 ∗ P2 =

[[
8 5
4 7

])
≤M

describes all possibilities for the minimal guaranteed production in case that in future the same conditions repeat.
The associativity of the hyperoperation means that if we have more conditions of the same type, their order is not
important for the value of the guaranteed minimal production.

Now we include several lemmas which will simplify proofs of our forthcoming theorems. Recall
that e stands for the smallest element of E, i.e., the set of entries of matrices in Mm,n(E).

Lemma 1. The matrix E∗ =

e . . . e
...

. . .
...

e . . . e

is a unit of (Mm,n(E), ∗). Moreover, there is ‖E∗‖∞ = n · e.

Proof. Obvious because for all A ∈Mm,n(E) holds A ∈ A ∗ E∗ ∩ E∗ ∗A = [E∗)≤M

Lemma 2. Every matrix A ∈Mm,n(E) is idempotent (with respect to ∗).



Symmetry 2020, 12, 54 5 of 16

Proof. Obvious because for all A ∈Mm,n(E) holds a11 . . . a1n
...

. . .
...

am1 . . . amn

 ∗
 a11 . . . a1n

...
. . .

...
am1 . . . amn

 =


min{a11, a11} . . . min{a1n, a1n}

...
. . .

...
min{am1, am1} . . . min{amn, amn}



≤M

=


 a11 . . . a1n

...
. . .

...
am1 . . . amn



≤M

which means that A ∈ A ∗A.

Lemma 3. For an arbitrary pair of matrices A, B ∈Mm,n(E), where E ⊆ N∪ {0}, there is

‖A ◦m B‖∞ ≤M min {‖A‖∞, ‖B‖∞} .

Proof. We consider that ‖A‖∞ = max
1≤i≤m

n
∑

j=1
|aij|, ‖B‖∞ = max

1≤i≤m

n
∑

j=1
|bij| and ‖A ◦m B‖∞ =

max
1≤i≤m

n
∑

j=1
|min{aij, bij}|. Then we have

max
1≤i≤m

n

∑
j=1
|min{aij, bij}| ≤M min{ max

1≤i≤m

n

∑
j=1
|aij|, max

1≤i≤m

n

∑
j=1
|bij|}

max
1≤i≤m

n

∑
j=1
|min{aij, bij}| ≤M max

1≤i≤m

n

∑
j=1

aij ∧ max
1≤i≤m

n

∑
j=1
|min{aij, bij}| ≤M max

1≤i≤m

n

∑
j=1

bij

For every row of the matrix, i.e., for every i ∈ {1, . . . , m}, there is

n

∑
j=1
|min{aij, bij}| ≤M

n

∑
j=1
|aij| ∧

n

∑
j=1
|min{aij, bij}| ≤M

n

∑
j=1
|bij|.

Thus, it is obvious that ‖A ◦m B‖∞ ≤M min {‖A‖∞, ‖B‖∞}

Theorem 1. The extensive hypergroupoid (Mm,n(E), ∗) is a commutative hypergroup.

Proof. Commutativity of the hyperoperation is obvious because the operation min is commutative.
Next, we have to show that associativity axiom is satisfied, i.e., that there is A ∗ (B ∗C) = (A ∗ B) ∗C
for all A, B, C ∈Mm,n(E).

We calculate left hand side:

A ∗ (B ∗C) =
⋃

X∈{B,C}∪[B◦mC)≤M

A ∗ X =
⋃

X∈{B,C}∪[B◦mC)≤M

{A, X} ∪ [A ◦m X)≤M
=

{A, B, C} ∪ [B ◦m C)≤M
∪ [A ◦m B)≤M

∪ [A ◦m C)≤M
∪

⋃
X∈[B◦mC)≤M

[A ◦m X)≤M
.
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For the right hand side we have:

(A ∗ B) ∗C =
⋃

Y∈{A,B}∪[A◦mB)≤M

Y ∗C =
⋃

Y∈{A,B}∪[A◦mB)≤M

{Y, C} ∪ [Y ◦m C)≤M
=

{A, B, C} ∪ [A ◦m B)≤M
∪ [A ◦m C)≤M

∪ [B ◦m C)≤M
∪

⋃
Y∈[A◦mB)≤M

[Y ◦m C)≤M
.

The left hand side and the right hand side are the same except for the last part of the union. We are
going to show that ⋃

X∈[B◦mC)≤M

[A ◦m X)≤M
=

⋃
Y∈[A◦mB)≤M

[Y ◦m C)≤M
.

The following calculation holds for all i = {1, . . . , m}, j = {1, . . . , n}:⋃
X∈[B◦mC)≤M

[A ◦m X)≤M
=

⋃
(xij)∈[min{bij ;cij})≤M

[A ◦m X)≤M
=

[
min{aij; min{bij; cij}}

)
≤M

=
[
min{aij; bij; cij}

)
≤M

=
[
min

{
min{aij; bij}; cij

})
≤M

=⋃
(yij)∈[min{aij ;bij})≤M

[Y ◦m C)≤M
=

⋃
Y∈[A◦mB)≤M

[Y ◦m C)≤M
.

Thus the associativity axiom holds, which means that the hypergoupoid (Mm,n(E), ∗) is a
semihypergroup. Finally, because of extensivity of the hyperoperation (5) we immediately see that
reproduction axiom holds as well, i.e., the semihypergroup (Mm,n(E), ∗) is an extensive hypergroup.

Now we can include the result concerning cyclicity of the discussed hypergroup. Notice that
since we use n to denote one of the dimensions of the matrices, we will denote period of Definition 1
by p instead of n.

Theorem 2. If the set E has the smallest element e, then the hypergroup (Mm,n(E), ∗) is single-power cyclic
and all matrices containing e (other than E∗) are generators of Mm,n(E) with period p = 3.

Proof. The proof is rather straightforward. Denote by Ae an arbitrary matrix from Mm,n(E) such
that at least one of its entries (e.g., a1,2) is e. By definition, A1

e = Ae. By Lemma 2, we have that
A2

e = Ae ∗ Ae = [Ae)≤M
. Now, consider such a matrix B, elements of which are different from e

at least at those places where aij = e. For example, consider matrix B =

e b12 . . . e
...

...
. . .

...
e e . . . e

, where

b12 = max
1≤i≤m

n
∑

j=1
|aij|. Obviously, there is B ∈ [Ae)≤M

. Now, we have

A3
e = E∗ ∗ E∗ ∗ E∗ = E∗ ∗ [E∗)≤M

=
⋃

X∈[E∗)≤M

E∗ ∗ X.
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Since we know that B ∈ [E∗)≤M
, there is

⋃
X∈[E∗)≤M

E∗ ∗ X ⊇ E∗ ∗ B =

a11 e . . . a1n
...

...
. . .

...
an1 an2 . . . ann

 ∗
e b12 . . . e

...
...

. . .
...

e e . . . e

 =


e e . . . e

...
...

. . .
...

e e . . . e



≤M

= [E∗)≤M
= Mm,n(E).

Thus we have that A3
e = Mm,n(E), which means that Mm,n(E) is single-power cyclic with period

p = 3 with generators being all matrices of the form Ae.

Example 4. Suppose E = N0, i.e., consider the semiring of natural numbers including zero. Then all matrices

containing 0 are generators of Mm,n(N0). For m = 5 and n = 2 e.g., matrix M =

[
50 15 400 3 45
10 0 89 17 80

]
generates Mm,n(N0). Indeed,[

50 15 400 3 45
10 0 89 17 80

]
∗
[

50 15 400 3 45
10 0 89 17 80

]
=

[[
50 15 400 3 45
10 0 89 17 80

])
≤M

(6)

If we now denote by D a matrix with d22 = 50 + 15 + 400 + 3 + 45 = 513 and all other elements zero,
then D ∈ [M)≤M . We can see that[

50 15 400 3 45
10 0 89 17 80

]
∗
[

0 0 0 0 0
0 513 0 0 0

]
=[[

min{51, 0} min{15, 0} min{400, 0} min{3, 0} min{45, 0}
min{10, 0} min{0, 513} min{89, 0} min{17, 0} min{80, 0}

])
≤M

=

[
0 0 0 0 0
0 0 0 0 0

]
≤M

= Mm,n(N).

Theorem 3. The unit matrix E∗ ∈Mm,n(E) is a generator of (Mm,n(E), ∗) with period 2.

Proof. Proof is obvious to thanks relation “≤′′M, the fact that we regard total order on E and given the
proof of the Lemma 1. We have that E∗2 = E∗ ∗ E∗ = [E∗)≤M

= Mm,n(E).

It will be useful to investigate cyclicity of hypergroups (Mm,n(E), ∗), where E is a finite set. Notice
that in the case of a finite set E we cannot construct an analogue of matrix D with entry d22 as we did
in Example 4, simply because d22 need not be an element of E. Also, since E is finite and we suppose
that it is a chain, its smallest element e always exists.

Theorem 4. If E is finite, then the hypergroup (Mm,n(E), ∗) is single-power cyclic and all matrices Ae

containing the smallest element of E, denoted by e, are generators of (Mm,n(E), ∗) with period p = 2 + m,
where m is the number of columns of Ae.

Proof. The proof is analogous to the proof of Theorem 2, except for the row of Ae containing element
e. We construct matrix B in the following way: the row of B which in Ae contains e, will consist of m
copies of the greatest elements of E, denoted u, while all other entries of B will be equal to e. In this
way we have ||A||∞ ≤M ||B||∞, i.e., B ∈ [Ae)≤M

. We calculate once again, now A ∗ B = [C)≤M
:
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a11 e . . . a1m
...

...
. . .

...
an1 an2 . . . anm

 ∗
u u . . . u

...
...

. . .
...

e e . . . e

 =


u e . . . u

...
...

. . .
...

e e . . . e



≤M

.

Next, we reorganize entries in the first row, which does not affect the row norm. We geta11 e . . . a1m
...

...
. . .

...
an1 an2 . . . anm

 ∗
e u . . . u

...
...

. . .
...

e e . . . e

 =


e e . . . u

...
...

. . .
...

e e . . . e



≤M

.

Now it is obvious that after we do this procedure 2 + m times, we obtain matrix E∗, for which
there is [E∗)≤M = Mm,n(E).

Example 5. Consider E = {1, 2, . . . , 10} and n = 2, m = 3. In this case matrix A =

[
10 1 10
10 10 10

]
is a

generator of (Mm,n(E), ∗) with period p = 5. Indeed, we calculate:

A2 =

[
10 1 10
10 10 10

]
∗
[

10 1 10
10 10 10

]
=

[[
10 1 10
10 10 10

])
≤M

3
[

10 10 10
1 1 1

]
= B

It is obvious, following from the use of the row norm, that B ∈ A2. We get

A3 =
⋃

X∈A2

X ∗A ⊇
[

10 1 10
10 10 10

]
∗
[

10 10 10
1 1 1

]
=

[[
10 1 10
1 1 1

])
≤M

3
[

1 10 10
1 1 1

]

A4 =
⋃

Y∈A3

Y ∗A ⊇
[

10 1 10
10 10 10

]
∗
[

10 1 10
10 10 10

]
=

[[
1 1 10
1 1 1

])
≤M

3
[

1 10 1
1 1 1

]

A5 =
⋃

Z∈A4

Z ∗A ⊇
[

10 1 10
10 10 10

]
∗
[

1 10 1
1 1 1

]
=

[[
1 1 1
1 1 1

])
≤M

And we see that A5 = Mm,n(E).

Remark 2. The generators described by Theorem 4 are neither only ones nor with the smallest period. Indeed,

if in Example 5 we consider matrix C =

[
1 2 10
1 1 1

]
, there is D =

[
10 1 2
1 1 1

]
∈ C2. Then C3 ⊇ C ∗D =[[

1 1 2
1 1 1

])
≤M

3
[

1 2 1
1 1 1

]
and C4 ⊇

[
1 1 2
1 1 1

]
∗
[

1 2 1
1 1 1

]
=

[[
1 1 1
1 1 1

])
≤M

= Mm,n(E) and

we see that C is a generator of (Mm,n(E), ∗) with period p = 4.

4. Approximation Space Determined by the Cyclic Hypergroup

Now we rewrite some basic terminology of the rough set theory introduced by Pavlak [3] into
our notation.

Let Mm,n(E) be a certain set called the universe, and let RM be an equivalence relation on Mm,n(E).
The pair A = (Mm,n(E), RM) will be called an approximation space. We will call RM an indiseernibility
relation. If A, B ∈Mm,n(E) and (A, B) ∈ RM, we will say that A and B are indistinguishable in A. Subsets
of Mm,n(E) will be denoted by X, Y, Z, possibly with indices. The empty set will be denoted by 0,
and the universe U will also be denoted by 1. Equivalence classes of the relation RM will be called



Symmetry 2020, 12, 54 9 of 16

elementary sets (atoms) in A or, briefly, elementary sets. The set of all atoms in A will be denoted by
(Mm,n(E), RM). We assume that the empty set is also elementary in every A. Every finite union of
elementary sets in A will be called a composed set in A, or in short, a composed set. The family of all
composed sets in A will be denoted as Com(A). Obviously, Com(A) is a Boolean algebra, i.e., the family
of all composed set is closed under intersection, union, and complement of sets.

Now, let X be a certain subset of Mm,n(E). The least composed set in A containing X will be
called the best upper approximation of X in A, in symbols AprA(X); the greatest composed set in
A contained in X will be called the best lower approximation of X in A, in symbols Apr

A
(X). If A

is known, instead of AprA(X) (Apr
A
(X)) we will write Apr(X)(Apr(X)), respectively. The set

BndA(X) = AprA(X)− Apr
A
(X) (in short Bnd(X)) will be called the boundary of X in A.

Definition 2 ([20]). Let H be a set and R be an equivalence relation on H. Let A be subset of H. A rough
set is a pair of subsets

(
R(A), R(A)

)
of H which approximates A as closer as possible from outside and

inside, respectively:

R(A) =
⋃

R(x)∩A 6=∅

R(x)

R(A) =
⋃

R(x)⊆A

R(x)

Example 6. Let S = {−12 . . . ,−2,−1, 0, 1, 2, . . . 12} and R be defined on S by:

aRb iff a ≡ b mod 6.

In this way we obtain the following decomposition of S:

R(0) = {−12,−6, 0, 6, 12, }
R(1) = {−7,−1, 1, 7, }
R(2) = {−8,−2, 2, 8, }
R(3) = {−9,−3, 3, 9, }
R(4) = {,−10,−4, 4, 10, }
R(5) = {−11,−5, 5, 11, }

Now, consider A = {−8,−3,−2, 1, 2, 8, 9} ⊂ S. Then

R(A) =
⋃

R(x)∩A 6=∅

R(x) = R(1) ∪ R(2) ∪ R(3),

R(A) =
⋃

R(x)⊆A

R(x) = R(2).

In what follows we consider square matrices, i.e., Mn,n(E) only.
In order to study links between rough sets and the above cyclic hypergroup (Mm,n(E), ∗), or rather

its special case (Mn,n(E), ∗), we need to define a new relation RM on Mn,n(E). For all A, B ∈Mn,n(E)

we define:

ARMB if ‖A‖∞ = ‖B‖∞ and tr(A) = tr(B). (7)

It is obvious that such a relation is reflexive, transitive and symmetric. In this way we obtain a
decomposition of Mn,n(E) into equivalence classes by row norm of matrices and their traces.
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We denote by Mn,n(SEE) an arbitrary subset of Mn,n(E) with entries from SEE∗ , where SEE∗ is a
set generated by the principal beginning ≤(x], where x ∈ E and ≤ is the total order defined on E which
we had already regarded. To sum up,

SEE = ≤(x] = {y ∈ E : y ≤ x}. (8)

Theorem 5. Every hypergroup (Mn,n(SEE), ∗), where SEE∗ is defined by (8), is an invertible subhypergroup
of the hypergroup (Mn,n(E), ∗).

Proof. Recall that for and invertible subhypergroup A of a hypergroup H there holds y ∈ A ◦ x ⇒
x ∈ A ◦ y for every x, y ∈ H.

Consider now an arbitrary set Mn,n(SEE), where SEE∗ is defined by (8). It is obvious that
E∗ ∈ Mn,n(SEE). Then we have that A ∈ Mn,n(SEE) ∗ B for all A, B ∈ Mn,n(E), this is because
Mn,n(SEE) ∗ B =

⋃
X∈Mn,n(SEE)

X ∗ B = [E∗)≤M . By the proof of Theorem 3 we have that A ∈ [E∗)≤M .

For B ∈ Mm,n(SEE) ∗A the proof is the same. Thus we obtain that (Mn,n(SEE), ∗) is an invertible
subhypergroup of (Mn,n(E), ∗).

By applying Theorems 4 and 5 we immediately obtain the following corollary.

Corollary 1. Every (Mn,n(SEE), ∗) is single power cyclic.

In the paper we assume that E is a chain and an equivalence RM. As a result we can consider the set
Mn,n(SEE) as a suitable set for constructing lower and uper approximations, i.e., RM(Mn,n(SEE)) and
RM(Mn,n(SEE)). When discussing our system (Mn,n(E), RM), we can see that every subset Mn,n(SEE)

is in the beginning of the system, i.e., the class with the smallest trace and the smallest row norm of the
matrix is included in the lower and uper approximations.

Notation 1. Our results regarding rough sets are visualised by means of figures. In all figures, a white
square means that there does not exist any matrix with the given properties created by the approximation set,
a coloured square means that all matrices with the given properties belong to the approximation set, and a
partially coloured square that there exists at least one matrix with the given properties which belong to the
approximation set and at least one matrix which does not belong to it.

Example 7. Consider E = (N ∪ {0}) and SEE∗ = {0, 1}, i.e., (M2,2({0, 1})) is the set of 2× 2 Boolean
matrices. Then (M2,2({0, 1}), ∗) is invertible in (M2,2(E), ∗). Since E∗ ∈ M2,2({0, 1}), we have, for an
arbitrary pair of matrices A, B ∈ M2,2(E) that B ∗M2,2({0, 1}) = M2,2(E) 3 A and A ∗M2,2({0, 1}) =

M2,2(E) 3 B. Moreover,

RM((M2,2({0, 1}))) = R[0,0] ∪ R[1,0] ∪ R[1,1] ∪ R[1,2],∪R[2,1] ∪ R[2,2]

RM((M2,2({0, 1}))) = R[0,0] ∪ R[1,0] ∪ R[1,1] ∪ R[1,2]

The upper approximation, i.e., the set RM((Mn,n({0, 1}), is in Figure 1 visualized as the union of all
squares which include some coloured parts. The lower approximation, i.e., the set RM((Mn,n({0, 1})), is the
union of all square which are fully coloured.
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Figure 1. The lower and upper approximation with relation RM for matrices 2× 2.

Theorem 6. Let E = N0 and Mn,n(SEE) be invertible hypergroups in Mn,n(E), where SEE∗ is defined by
SEE∗ = (x]≤ = {y ∈ E : y ≤ x} for x = 1, n ∈ N, with relation RM. Then there is

RM(Mn,n(SEE)) =
n⋃

i=1

R[1,i] ∪ R[0,0]

RM(Mn,n(SEE)) =
n⋃

i=1

n⋃
j=1

R[i,j] ∪
n−1⋃
j=0

R[0,j]

where n is the size of the matrix.

Proof. For the proof we use the idea of Example 7 and Figure 1, in which the lower approximation is
the union of all squares which are fully coloured while the upper approximation is the union of all
squares which contain some coloured parts. Notice that in Figure 1 rows indicate matrices with the
same row norm (counted from the bottom) while columns (counted from the left) indicate matrices
with the same trace. When one realizes how such a scheme in constructed, the proof becomes obvious.
Indeed, take e.g., n = 3 and focus on Figure 2 and (9).

RM((M3,3({0, 1})) =R[0,0] ∪ R[1,0] ∪ R[1,1] ∪ R[1,2] ∪ R[1,3] ∪ R[2,0] ∪ R[2,1] (9)

∪ R[2,2] ∪ R[2,3] ∪ R[3,1] ∪ R[3,2] ∪ R[3,3]

RM((M3,3({0, 1})) =R[0,0] ∪ R[1,0] ∪ R[1,1] ∪ R[1,2] ∪ R[1,3] (10)
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Figure 2. The lower and upper approximation with relation RM, for matrices 3× 3.

Remark 3. Note that the boundary, defined as the difference between the upper and the lower approximation,
expands across the universe so that it has only two classes for n = 2 and 7 classes for n = 3 and 14 classes
for n = 4 and 23 classes for n = 5, i.e., n2 − 2 classes for an n× n matrix. Also, the upper approximation
has n · (n + 1) classes and the lower approximation has n + 2 classes. All these formulas can be easily seen in
Figures 1 and 2.

In what follows, we will consider RM(A) = RM(A ∗ B) and RM(A) = RM(A ∗ B), where
A, B ∈ Mn,n(E). In this way the construction can be considered as a dynamic system, where the
set X is the hyperoperproduct defined by (5).

Corollary 2. For X = A ∗ B there is RM(X) = RM(X). Moreover,

RM(X) =
⋃

j≥‖A∗B‖∞

⋃
i∈{0,1,2...∞}

Rij.

Now we will use the relation RM to present some basic and natural properties of the lower and
upper approximations with respect to the above mentioned theorem. Recall that matrices Ae are
generators of the cyclic hypergroup Mm,n(E).

Theorem 7. The following properties hold:

(1) RM(E∗ ∗ E∗) = Mm,n(E) = RM(E∗ ∗ E∗)
(2) RM(Ae) ⊆ RM(A2

e ) ⊆ RM(A3
e ) = Mm,n(E)

(3) RM(Ae) ⊆ RM(A2
e ) ⊆ R(A3

e ) = Mm,n(E)

Recall that when defining the relation RM in (7) we used the row norm and trace. Let us now
modify the definition to make use of the row norm and determinant. We define:

ARDB if ‖A‖∞ = ‖B‖∞ and |A| = |B|. (11)

If we use the relation RD instead of RM, Figure 1 changes to Figure 3. This results in the
following theorem.
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Figure 3. The lower and upper approximation with relation RD for matrices 2× 2.

Theorem 8. Let E = N0 and Mn,n(SEE) be invertible hypergroups in Mn,n(E), where SEE∗ is defined by
SEE∗ = (x]≤ = {y ∈ E : y ≤ x} for x = 1, n ∈ N, with relation RD. Than there is

RD(Mn,n(SEE)) = R[0,0] ∪ R[1,−1] ∪ R[1,0] ∪ R[1,1] ∪ R[−2,1] ∪ R[2,1]

where n is the size of the matrix.

Proof. We use Figures 3 and 4 in the proof. For an arbitrary size of the matrix, n, the lower
approximation always consists of 6 classes of equivalence. Obviously, for an arbitrary n and E = {0, 1}
there exists only one matrix (the null one), which is in R[0,0], see the coloured square. For norm equal
to 1, the proof is again obvious because thanks to the norm in every matrix of size n there can be
maximum one 1 in every row, which means that the determinant of such a matrix can only be −1, 0
or 1. For norm 2 there exists, for an arbitrary size n a matrix with element 2 and zero determinant.
Also, there exists a matrix which has one row with two 1’s. If we repeat such a row, the determinant
is zero, see the partially coloured square. At the same time no matrix with 2 as an entry can be in a
class with norm 2 and determinant 1 oe −1 because in that case the respective row must contain only
zeros as other entries. If we now expand the determinant with respect to that row, the calculation will
include 2s, where s is a subdeterminant and s ∈ N, which means that the determinant can never be
1 or −1. For norm 3 we get that the numbers of matrices can include 2 and 1, which means that the
calculation of the determinant will include a difference, i.e., we can get an arbitrary number. In other
words, for norm greater than 2 we cannot obtain fully coloured squares, i.e., classes of equivalence
which consist only of matrices with entries 0 and 1.

Figure 4. The lower and upper approximation with relation RD for matrices 3× 3.
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Finding a general rule for the upper approximation when using the determinant is not as easy as
it may seem. Even though it seems that the whole universum “behaves accordingly”, it is not easy to
find an algorithm which would easily define the upper approximation. Therefore we at least include a
theorem which shows an important property of the upper approximation. At the same time, its proof
describes the upper approximation for n ∈ {2, 3, 4, 5}.

Theorem 9. For E = N0, Mn,n(SEE) and n ∈ {2, 3, 4, 5}, the following holds:

RD(M2,2(SEE∗)) ⊂ RD(M3,3(SEE∗)) ⊂ RD(M4,4(SEE∗)) ⊂ RD(M5,5(SEE∗))

Proof. For the proof we use Figures 3 and 5. Results for n = 4 and n = 5, which had been computed
by software means, are included below.

Figure 5. The lower and upper approximation with relation RD for matrices 2× 2–5× 5.

Application in the Control Theory

Application of rough set theory is widely used in information technologies. This approach has
fundamental importance in knowledge acquisition, cognitive science, pattern recognition, machine
learning, database systems, etc. Rough sets are also used in sensors mapping in robotics.

If we examine how an autonomous mobile robot can get from point A to point B, we realize that
it must have information about obstacles in front of itself to avoid collision. To find this out it uses
sensors, mostly camera and LIDAR (an abbreviation of “Light Detection And Ranging”) for environment
mapping [25,26].

We can easily find surjective function from a set of Mn,n(SEE) matrices (our model) to coordinates
[x, y], where x, y ∈ Z. These are coordinates of occupancy grid [26] cells (robotics usage), which must
meet the following condition:

[|M|, ||M||] = [ f loor(xr), f loor(yr)], (12)

where xr, yr ∈ R are real coordinates that represents the interval/size of the cells in occupancy grid
(see Figure 6). This process is called quantization. We can mark the occupancy grid as equivalence classes.

Both sensors can be attached to specific places on the top of robot. (Notice that all visualised
information from sensors what we are working with are projected from 3D to 2D plane because of
assumption that the robot can move only in 2 directions.) In our figures (for n = 4, for example) the
lower approximation describes the robot’s shape and pose. We can be sure for 100% occupation of these
cells because of the fusion of sensor data with the known relative position between the sensors and
the robot (its shape) in particular. As we can see, this approximation will never change depending on
change of n (matrix size). This lower approximation is typical for an industrial warehouse robot.

Next part of LIDAR/camera scan is the upper approximation. This gives us information about
all cells which were hit by the sensors. However, we can only say that these cells are occupied with
probability between 0 and 1 (never 0 or 1) because this is how all current sensor work. The bigger the
n, the bigger the range of sensors. Notice that the sensor scanning angle is symmetric by vertical axis of
the sensor.
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The above example makes use of a single sensor scan. However, we can process these scans
into a whole simple mapping algorithm described in [12,26] or improved algorithm via particle filter
described in [27].

Occupancy grid

[1, 1] [2, 1]

[1, 2]

[  , 1]3
2

Equivalence classes

[1, 1] [2, 1]

[1, 2]

[1, 1]

[1, 1]

Figure 6. Quantization from real coordinates to equivalence classes.

5. Conclusions

In our paper we deal with a construction of cyclic hypergroups and present their links to rough
sets. We construct subsets of such hypergroups which determine the approximation for finding the
lower and upper approximation of the rough set. For this we use various types of equivalence relations.
In our paper we choose the input of the matrix subhypergroups out of a two element set. Generalizing
our results for arbitrary more-element sets is a topic of our further research. The constructions of the
lower and upper approximation described in this paper for various n are very interesting, which can
be, in case of norm and trace and E ∈ {0, 1, 2}, visualised in a simple figure; see Figure 7. Further
research can also focus on finding the approximation set. For this we can look for inspiration in the
intersection of the principal end and beginning of the hyperoperation in [10]. As a result we can form
an approximation set which need not include the origin of the universe, i.e., R[0,0].

Figure 7. The lower and upper approximation with relation RM for matrices 2× 2 and E = {0, 1, 2}.
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