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Abstract: In this article, the author has examined the unsteady flow over a rotating stretchable disk
with deceleration. The highly nonlinear partial differential equations of viscous fluid are simplified by
existing similarity transformation. Reduced nonlinear ordinary differential equations are solved by
homotopy analysis method (HAM). The convergence of HAM solutions is also obtained. A comparison
table between analytical solutions and numerical solutions is also presented. Finally, the results for
useful parameters, i.e., disk stretching parameters and unsteadiness parameters, are found.
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1. Introduction

Recently, due to the massive practical application in the scientific and technical field, the study of
the rotating stretchable disk has become significant, such as thermal power generation system, medical
equipment’s, computer storage devices, rotating machinery, gas turbine routers, air cleaning machines,
crystal growth process, and in aerodynamic applications [1]. Initially, von Kármán [2] conducted
a study on rotating disk. Several researchers then illustrated the different aspects of this important
analysis. Fang and Zhang [3] have highlighted the flow between two stretchable disks and found the
exact solutions. The parameters analysis and optimization of entropy generation in unsteady magneto
hydrodynamics flow over a rotating stretchable flow over a rotating disk using artificial neural network
and practical swarm optimization algorithm was presented by Rashidi et al. [4]. Recently, Fang and
Tao [5] wrote about the unsteady flow over a rotating stretchable disk with deceleration. After using
the similarity analysis, they found the numerical solutions.

In many situations, exact solutions are very difficult and in most of the cases exact solutions are
impossible. Therefore, series solutions are more useful if they satisfy the given initial and boundary
value problems. Nevertheless, there are various analytical approaches, and each approach has certain
limitations. However, homotopy analysis method (HAM) has many advantages over many analytical
methods. Liao [6] introduced the idea of HAM, which is used by many researchers effectively. Some
useful studies are cited in [7–15]. The purpose of this article is to illustrate the application of HAM
for unsteady Newtonian fluid flow over a rotating stretchable disk with declaration. Tables provide
a correlation between current HAM solution and Fang and Tao’s [5] numerical solution.

2. Formulation of the Problem

Let us consider an incompressible, laminar, and unsteady flow of a viscous fluid or Newtonian
fluid over a stretchable disk, which is rotating about the z-axis with time dependent angular velocity
Ω′(t) = Ω

1−bt , where Ω is constant angular speed of the disk and ‘b’ is the measure of unsteadiness.
Flow is due to the rotation of the stretchable disk and is axisymmetric about the z-axis. Figure 1 describe
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the geometry of the proposed problem. The governing equations for an unsteady three-dimensional
flow of viscous fluid in cylindrical coordinates are shown below.
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where r is along the radial direction, θ is along the azimuthal direction, and z is in normal direction
to the axis. Here, Equation (1) is the continuity equation and Equations (2) and (4) represent the
momentum equation for incompressible flow.

Figure 1. Geometry of the problem.

Where u, v, and w are the velocities along r,θ, and z directions, ρ is the density of fluid, p is the
pressure, v is the kinematic viscosity, and τrr, τrθ, τzr, τzθ, τzz are the stress which are defined as
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The proposed boundary conditions are specified in accordance with the geometry of the problem as

u(r,θ, 0) = aΩr
1−bt , v(r,θ, 0) = Ωr

1−bt , w(r,θ, 0) = 0,

u(r, θ, ∞) = v(r,θ,∞) = 0,
(6)

where ‘a’ is the disk stretching parameter.
Introducing, the similarity transformation used in [5] are

u = Ωr
1−bt f ′(η), v = Ωr

1−bt g(η), w = −2
√

Ωv
√

1−bt
f (η),

p =
ρvΩ
1−bt P(η), and η =

√
Ω
v

z
√
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Applying these similarities into the above equations, following non-dimensional equations along
with boundary conditions can be obtained as

f ′′′ + 2 f f ′′ − f ′2 + g2 = S
(η

2
f ′′ + f ′

)
, (8)

g′′ − 2 f ′g− 2 f g′ = S
(η

2
g′+ g

)
, (9)

P′ = 2 f ′′ + 4 f f ′′ − S(η f ′ + f ), (10)

f (0) = 0, f ′(0) = a, g(0) = 1, f ′ → 0 and g→ 0, as η→∞, (11)

where S = b/Ω is the unsteadiness parameter.

3. Homotopy Analysis Method

Homotopy Analysis Method (HAM) [6–15] is used to find an analytical solution to Equations (8)
and (11). The velocity distribution f (η) and g(η) can be expressed by a set of base functions{

ηnexp(−mη)
∣∣∣m, n ≥ 0

}
(12)

in the form
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bk
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in which ak
m,n and bk

m,n are the coefficients, the initial guesses f0 and g0 can be selected on the basis of
the law of the solution expressions and of the boundary conditions:

f0(η) = a(1− exp−η), (15)

g0(η) = exp−η . (16)

The auxiliary linear operators are

L1 =
d3

dη3 +
d2

dη2 , (17)

L2 =
d2

dη2 +
d

dη
, (18)

which satisfy
L1[C1 + C2 exp−η+C3η] = 0, (19)

L2[C4 exp−η+C5] = 0, (20)

where Ci(i = 1− 5) are integral constants.

3.1. Zeroth-Order Deformation Equation

If q ∈ [0, 1] denote an embedding parameter, } f and }g indicate the non zero auxiliary parameters
for f (η) and g(η), the zeroth-order deformations for the given problem are

(1− q) f

[
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]
= q} f N f

[
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]
, (21)
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[
ĝ(η; q), f̂ (η; q)

]
, (22)
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f̂ (0; q) = 0, f̂ ′ (0; q) = a, ĝ(0; q) = 1 f̂ ′ (∞; q) = ĝ(∞; q) = 0. (23)

Defining the nonlinear operators for the above problem as
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For q = 0 and q = 1, one can have

f̂ (η; 0) = f0(η), f̂ (η : 1) = f (η), (26)

ĝ(η; 0) = g0(η), ĝ(η : 1) = g(η). (27)

By Taylor’s theorem
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3.2. Mth-Order Deformation

Differentiating the zeorth-order deformation Equations (21) and (23) with respect to q, then setting
q = 0, and finally dividing them by m!, the mth-order deformation equations can be obtained as
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in which fm(η) and gm(η) denote the special solutions of Equations (32) and (33) and the Ci(i = 1− 5)
integral constants are calculated by the (34) boundary conditions. Equations (32) and (34) can be solved
using Mathematica for m = 1, 2, 3 . . . .

4. Convergence of the HAM Solution

The homotopy analysis method includes the regulating parameter h, which controls the region
of convergence and HAM solution approximation. To ensure that the solutions converge within the
admissible spectrum of auxiliary parameter values and h f and hg, h− curves were sketched for 15th-order
approximation. The h− curves are plotted in Figures 2 and 3. The admissible ranges of values of h f and
hg are −1.5 ≤ h f < −0.3 and− 1.5 ≤ hg < −0.3, these ranges vary with the change in parameters.

Figure 2. 15th-order g′(0) for a = 1 and S = −1.

Figure 3. 15th-order f ′′ (0) for a = 1 and S = −1.

5. Results and Discussion

To solve Equations (8) and (9) homotopy analysis method (HAM) is applied as a subject to the
boundary conditions (11). Homotopy analysis method is a strong analytical technique which is applied
to obtain the convergent series solution of nonlinear differential equations. The convergence region for
HAM through h− curves are sketched and analyzed in Figures 3 and 4. Homotopy analysis method
provides great freedom to obtain the convergent result. The convergence region varies for different
values of a and S. Tables 1–4 represent the convergence of solution for different values of parameters.
The error analysis of the obtained approximated results is as follows.

Em =

∫
∞

0
e2

m(t)dt, (38)
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where em(t) is the residual error of Equations (8) and (9) at the mth-order approximation. It is observed
that 10th-order approximation is in good agreement with the numerical result.

Figure 4. Comparison of convergence of g(η) when } = −0.333, a = 1 and S = −1 (line: 10th-order,
dots: 5th-order).

Table 1. Comparison of the numerical result [5] with homotopy analysis method (HAM) convergent
result when a = 1, S = −1 and } f = −1/3, }g = −1/4.

Order f”(0) g
′

(0) error f error g

2nd −0.7673 −1.196 0.311 0.044
4th −0.6945 −1.246 0.021 0.0067
6th −0.6681 −1.264 0.0046 0.0021
8th −0.6581 −1.270 0.00091 0.000715
10th −0.6543 −1.271 0.00014 0.00023

Numerical result [5] f′′ (0) = −0.6520, g′(0) = −1.2716.

Table 2. Comparison of the numerical result [5] with HAM convergent result when a = 1, S = −1/10
and } f = −1/3, }g = −1/4.

Order f”(0) g
′

(0) error f error g

2nd −0.9642 −1.3321 0.031 0.379
4th −0.9374 −1.4162 0.0047 0.0055
6th −0.9262 −1.446 0.00075 0.00091
8th −0.9217 −1.458 0.00012 0.00016

10th −0.9200 −1.4627 0.000018 0.000033

Numerical result [5] f′′ (0) = −0.9189, g′(0) = −1.4656.

Table 3. Comparison of the numerical result [5] with HAM convergent result when a = 2, S = −1/10
and }g = } f = −1/5.

Order f”(0) g
′

(0) error f error g

2nd −2.779 −1.658 0.408 0.543
4th −2.9729 −1.847 0.0876 0.136
6th −3.044 −1.924 0.0234 0.0437
8th −3.072 −1.953 0.0071 0.018

10th −3.082 −1.958 0.0024 0.012

Numerical result [5] f′′ (0) = −3.1178, g′(0) = −2.0530.
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Table 4. Comparison of the numerical result [5] with HAM convergent result when a = 1, S = −1/2
and }g = } f = −1/4.

Order f”(0) g
′

(0) error f error g

2nd −0.9062 −1.2760 0.1051 0.0221
4th −0.8592 −1.3424 0.0283 0.0037
6th −0.8319 −1.3654 0.0077 0.00082
8th −0.8172 −1.3741 0.0021 0.00021

10th −0.8093 −1.3774 0.00058 0.00006

Numerical result [5] f′′ (0) = −0.8007, g′(0) = −1.3797.

The convergence control parameter plays an important role. In Tables 5 and 6, the effect of } on
convergence is shown. Tables 5 and 6 show that the convergence of the solution depends strongly on }.
It can be seen easily that for one set of } the convergence is faster than the other.

Table 5. The Convergence analysis of f ′′ (0) for different } when a = 1, and S = −1/2.

Order h̄f=−1/4,h̄g=−1/5 Err h̄f=−1/5,h̄g=−1/4 Err

2nd −0.9007 0.1062 −0.9243 0.1405
4th −0.8535 0.0283 −0.8826 0.0514
6th −0.8282 0.0076 −0.8658 0.0312
8th −0.8149 0.0021 −0.8325 0.0069

10th −0.8080 0.0005 −0.8201 0.0025

Numerical result [5] f′′ (0) = −0.8007.

Table 6. The Convergence analysis of g′(0) for different } when a = 1, and S = −1/2.

Order h̄f=−1/4,h̄g=−1/5 Err h̄f=−1/5,h̄g=−1/4 Err

2nd −1.2345 0.03718 −1.2786 0.022
4th −1.3157 0.0087 −1.3445 0.0036
6th −1.3502 0.0024 −1.3578 0.0016
8th −1.366 0.0007 −1.3737 0.00021

10th −1.3734 0.0002 −1.3768 0.00006

Numerical result [5] g′(0) = 1.3797.

In Figures 5 and 6, the comparison of 5th-order approximation with 10th-order approximation is
shown, which again provide the facts for convergence. The Mathematica software is used to compute
the results for higher-order approximation. As the given problem is highly nonlinear, the computation
time increases if higher-order approximation is computed or increases the value of the parameters.
For a = 1 and S = 0, the given problem becomes a special case as mentioned in the numerical
paper [5]. Table 7 provides the convergence result for this special case as well. The results obtained in
the present research for this special case are also in very good agreement with the numerical result.
This shows the strength of homotopy analysis methods. It is found that for small S, f ′′ (0) decreases
with the increase of ‘a’ as shown in Tables 2 and 3. Figure 7 represents the velocity distribution for
different values of a. It is observed that with the increase in disk stretching parameter the velocity
decreases. Figures 8 and 9 show that with the decrease in the unsteadiness parameter, both tangential
and radial velocities increase.
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Figure 5. Comparison of convergence of f (η) when } = −0.333, a = 1 and S = −1 (line: 10th-order,
dots: 5th-order).

Figure 6. For S = −1/2 solid line: a = 1, Dashed line: a = 2 10th order HAM approximation for f ′(η).

Table 7. Comparison of the numerical result [5] with HAM convergent result for special case when
analysis = 1, S = 0, and } f = −28/100, }g = −1/3.

Order f” g
′ error f error g

5th −1.1785 −1.44639 0.00044518 0.00019581
10th −1.1751 −1.45359 0.00001437 8.13 × 10−7

15th −1.1739 −1.45402 3.86 × 10−7 1.15 × 10−8

20th −1.1737 −1.45406 2.02 × 10−8 6.42 × 10−10

Numerical result [5] f ′′ (0) = −1.1737 , g′(0) = −1.4541.
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Figure 7. For S = −1/10 10th-order HAM approximation for f ′′ (η).

Figure 8. Variation of f ′(η) for different values of unsteadiness parameter for a = 1.

Figure 9. Variation of g(η) for different values of unsteadiness parameter for a = 1.

6. Conclusions

In this research, viscous axisymmetric flow is studied on a stretchable rotating disk with
deceleration. It is found that Navier–Stokes equation admits a similarity solution, which depends on
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non-dimensionalized parameters S and a measuring unsteadiness and disk stretching, respectively.
The resulting group of nonlinear ordinary differential equations is then solved analytically using
homotopy analysis method (HAM). In numerical paper [5] it is mentioned that there are two solution
branches. The upper solution branch is physically feasible, but the lower solution branch may not be
practically possible. Here, the author has discussed and evaluated the outcome for a physical solution
from the upper field.

The main results are summarized as

• Results obtained by homotopy analysis method are in good agreement with existing
numerical results;

• All the velocity profiles decrease with an increase in unsteadiness parameter S;
• Radial and axial velocity of the flow increases with the increase in disk stretching parameter a,

whereas tangential velocity shows a decreasing trend with an increase in a;
• Variation trend decays with faster velocity to the ambient for fast deceleration as compared to the

slow deceleration of the disk.
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