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Abstract: In this study, the voltage stability margin for direct current (DC) networks in the presence of
constant power loads is analyzed using a proposed convex mathematical reformulation. This convex
model is developed by employing a second-order cone programming (SOCP) optimization that
transforms the non-linear non-convex original formulation by reformulating the power balance
constraint. The main advantage of the SOCP model is that the optimal global solution of a problem
can be obtained by transforming hyperbolic constraints into norm constraints. Two test systems are
considered to validate the proposed SOCP model. Both systems have been reported in specialized
literature with 6 and 69 nodes. Three comparative methods are considered: (a) the Newton-Raphson
approximation based on the determinants of the Jacobian matrices, (b) semidefinite programming
models, and (c) the exact non-linear formulation. All the numerical simulations are conducted using
the MATLAB and GAMS software. The effectiveness of the proposed SOCP model in addressing
the voltage stability problem in DC grids is verified by comparing the objective function values and
processing time.

Keywords: convex reformulation; direct current networks; non-linear optimization; numerical
example; second-order cone programming; voltage stability margin

1. Introduction

Direct current (DC) electrical networks are promising grids capable of supplying multiple users
at different voltage levels from high-voltage DC (HVDC) to low-voltage DC (LVDC) in monopole or
bipole configurations [1,2]. The implementation of DC technologies avoids the need for managing
reactive power or frequency, in contrast to their alternating current (AC) counterparts. This is an
important advantage that makes DC grids easily controllable and operable. Additionally, power losses
are lower, and voltage profiles are better in DC grids than in AC systems. Hence, DC networks are
more efficient than AC networks [3,4].

Two types of strategies are used to analyze DC electrical networks: dynamical and static
approaches. The first strategy is executed in the time domain and is used for developing primary
and secondary controllers in power electronic DC-DC converters [5,6]. The second type of analysis,
i.e., static studies, is used to determine all the state variables under stationary conditions. The most
typical types of analysis are power flow analysis [3], optimal power flow studies [2], economic dispatch
approaches [7], and voltage stability analysis [8,9]. In addition, these approaches are combined with
the optimal sizing and location of distributed generators for DC grids [10].
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In this study, we focus on the voltage stability calculation for DC grids. This is a non-linear
non-convex optimization problem recently analyzed in specialized literature, and few approaches
for this task have been reported. In [9], a semidefinite programming (SDP) model was proposed by
guaranteeing a global and unique solution. Nevertheless, the complexity of this model is mainly due
to the quadratic increase in the number of variables and the semidefinite requirements of the matrix
that contains all the voltage variables; this causes longer computational times when the number of
nodes in the DC system increases. The authors of [8] presented a linear matrix inequalities formulation
to determine the maximum load increments in a small DC grid composed of two constant-power loads.
However, this approach cannot be extended for multiple loads, because the resulting equations are
unsolvable using analytical methods. The authors of [11] employed the classical Newton–Raphson
method in conjunction with a linear search to determine the maximum load increment. This is
performed by observing the sign variation in the Jacobian matrix in the power flow equations.
This method is easily implementable; however, the selection of the step size has an undesirable
influence on the final solution. In [12], the voltage stability margin problem in DC grids was solved by
incorporating the non-linear formulation into an optimization package known as the general algebraic
modeling system (GAMS). Even though this software is efficient for solving non-linear problems, it is
not possible to guarantee a global solution to the problem, because the calculations are usually stuck
in local solutions.

Unlike in previous works, in this study, a second-order cone programming (SOCP) model is
proposed to address the voltage stability margin calculation in DC grids. The main advantage
of this approach is that it guarantees a global optimum and unique solution by transforming the
exact non-linear non-convex optimization problem into a convex problem [13,14]. In addition,
this approach has not been previously proposed for the analysis of voltage stability in DC networks.
Therefore, there is a gap in the literature that this study tries to fulfill. The convex approach has
lower computational requirements than SDP approaches because it avoids semidefinite matrices in
its formulation.

Even if recently reported approaches typically use the exact non-linear formulation
(GAMS solvers) and heuristic searches (Newton-Raphson) [11,12] because of the non-convexities
introduced by the power balance constraints, it is not possible to ensure a global optimum, even if for
both test feeders these solutions coincide with convex approaches, i.e., the semidefinite programming
model [9] and the newly proposed SOCP model.

The remainder of this paper is organized as follows: Section 2 presents the classical non-linear
non-convex formulation of the voltage stability calculation in DC grids. Section 3 shows the proposed
second-order cone programming reformulation and its main assumptions for developing a convex
mathematical model. Section 4 presents a small numerical example with three nodes to demonstrate
the effect of the load increment and the voltage collapse problem. Section 5 shows the numerical
implementation of the proposed SOCP model in two test systems, namely an HVDC network and a
medium-voltage DC (MVDC) grid. Section 6 presents the main conclusions drawn from this research.

2. Non-Linear Programming Formulation

The determination of the point of the voltage collapse in electrical DC networks with constant-power
loads is formulated as a non-linear non-convex optimization problem [9]. The non-convexities of this
problem are related to the power balance equations in the presence of constant-power loads, as these
expressions emerge as a hyperbolic relation between voltage and power that generates non-affine
equality constraints [8]. The complete optimization model for analyzing the point of voltage collapse
in DC grids is formulated as follows:

Objective function:

max z =
n

∑
i=1

(1 + λi) pd
i , (1)
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where z is the value of the objective function related to the maximum power consumption possible in
the DC grid; λi represents the decision variable associated with the increment in the constant-power
load at each node; and pd

i is the constant power consumption connected to node i. Please note that n is
the total number of nodes in the DC grid. In addition, the objective function (1) is linear, which makes
it convex in the solution space.

Set of constraints:

pg
i − (1 + λi) pd

i = vi

n

∑
j=1

gijvj, i ∈ N , (2)

vmin
i ≤ vi ≤ vmax

i , i ∈ N , (3)

pg,min
i ≤ pg

i ≤ pg,max
i , i ∈ N , (4)

λi ≥ 0, i ∈ N (5)

where pg
i represents the power generation by the voltage-controlled nodes (i.e., slack nodes) connected

to node i; gij corresponds to the conductance effect that relates nodes i and j and is considered to be
a constant parameter that depends on the node interconnections. vi and vj are the voltage variables
associated with nodes i and j, respectively, and are lower- and upper-bounded by vmin

i and vmax
i ,

respectively. Finally, pg,min
i and pg,max

i correspond to the minimum and maximum power generation
bounds in the slack nodes, respectively.

Remark 1. Please note that the decision variables in the problem of determining the stability margin in DC
networks shown in (1)–(5) correspond to the loadability parameter λi as well as the voltage profiles in all the
nodes, i.e., vi and the power generation in the constant-voltage sources. This suggests that the solution of this
problem involves the simultaneous determination of all these variables, which maximizes the chargeability of the
grid [12].

The optimization model defined in (1)–(5) receives the following interpretation: Equation (1) is the
objective function that corresponds to the maximization of the total power consumption admissible in
all the nodes immediately before reaching the point of the voltage collapse. Equation (2) is the power
balance constraint. Equation (3) defines the power capabilities in all generation nodes. Equation (4)
determines the voltage bounds admissible for secure operation of the DC grid under normal operative
scenarios, and Equation (5) determines the positiveness nature of the loadability variable.

Remark 2. If the variable λi is zero for all the nodes, then the mathematical model (1)–(5) corresponds to
the classical power flow problem for DC grids, which can be solved using classical methods, such as the
Gauss–Seidel [2], Newton–Raphson [3] or successive approximation methods [15], among others. All these
approaches can guarantee the existence and uniqueness of the solution under well-defined voltage conditions
through fixed-point theorems.

Please note that the objective of voltage stability analysis is to determine the maximum power
increments in all the constant power loads that carry the DC system to the voltage collapse. Hence,
the constraints related to generation capabilities in slack nodes, and voltage bounds in all the nodes
are relaxed [12]. Therefore, these constraints are neglected when the objective of the problem is to
determine the point at which all the nodes have a voltage collapse [11].

Remark 3. Even though non-linear optimization methods such as the interior-point or gradient-descent methods
can solve model (1)–(5), there is no guarantee of reaching the global optimum because of the non-convexity of the
power balance constraints.
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The mathematical problem (1)–(5) is transformed into a convex one using semidefinite
programming or SOCP to guarantee the uniqueness of the mathematical solution of the voltage
stability margin determination in DC grids [9,16]. We used the SOCP to solve the voltage stability
determination problem, which represents the main contribution of this study. The SOCP model is
described in the next section.

Convexity Test

To demonstrate that the power balance equations in DC networks represent a set of non-linear
non-convex constraints, we present a small numerical example as follows: consider a DC power system
composed of 3 nodes (see the test feeder presented in Section 4), i.e., one voltage-controlled node and
two constant-power loads. For this example, let us rewrite the power balance equation at node 2 using
the per-unit (p.u.) representation.

−pd2 = G20v2v0 + G21v1v2 + G22v2
2, (6)

for simplicity, let us consider that pd2 = 1/4 p.u, v0 = 1 p.u, G20 = −1/2 p.u, G21 = −1/2 p.u,
G22 = 1 p.u, v1 = x, and v2 = y, which produces:

2y2 − xy− y +
1
4
= 0. (7)

If we plot the non-linear function (7), the curve illustrated in Figure 1 is obtained. Please note
that the solution space is given by the red curve, which implies that it is convex only if a linear
combination tx1 + (1− t)x2 = x is contained in the curve, where t is a real number between 0 and 1.
In Figure 1, it can be observed that the line points generated (blue line) by the linear combination are
outside the red curve (except the extreme points). This means that the constraint (7) is non-convex.
Hence, the power balance constraints in power flow analysis generate a non-convex solution space.
This implies that it is impossible to ensure a global optimum in power flow analysis.
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Figure 1. Numerical test to show the non-convexity of the power balance equations.

3. Second-Order Cone Programming Formulation

The SOCP formulation is a component of optimization convex models. This is an approach
that has gained considerable importance in engineering because it can solve a family of convex
problems reliably and efficiently by guaranteeing a unique solution (global optimum) [17]. The SOCP
formulation minimizes a linear function over a convex region, which consists of the intersection of
second-order cones with an affine linear space [18].

To transform the problem of the voltage stability margin (formulated from (1)–(5)) into an SOCP
model, it is important to mention that the only one non-convex constraint represents the power balance
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Equation (2). To perform this transformation, we focus on the product between voltage variables, i.e.,
vivj, by redefining a new variable y as follows:

yij = vivj, , (8)

Now, if we multiply (8) by yij, then, the following result yields

y2
ij = v2

i v2
j ↔

∣∣∣∣yij
∣∣∣∣2 = ||vi||2

∣∣∣∣vj
∣∣∣∣2 , (9)

where the pre-multiplication by vivj is required to transform the hyperbolic relation between voltages
into a conic constraint [19].

Please note that this relaxation is possible because all the voltage variables must be positive for
satisfactory operation of DC grid, including in extreme cases, such as the voltage stability margin
analyzed in this study.

In (9), it is possible to substitute expression (8), which yields the following result∣∣∣∣yij
∣∣∣∣2 = yiiyjj. (10)

Please note that (10) is still non-linear non-convex, which implies the need for a relaxation. The first
step is to relax the equality constraint using an inequity as follows:∣∣∣∣yij

∣∣∣∣2 ≤ yiiyjj. (11)

Remark 4. Please note that the relaxation of the equality imposition by a lower-equality imposition is required
at any conic approximation because equality implies that the solution is only in the contour of the cone.
The lower-equal symbol implies that all the points inside the cone are possible solutions, including the contour of
the cone, which implies that this relaxation passes the convexity test presented in Section 2 [20].

Theorem 1. Hyperbolic constraint (11) can be transformed into a conic constraint as follows:∣∣∣∣∣
∣∣∣∣∣ 2yij

yii − yjj,

∣∣∣∣∣
∣∣∣∣∣ ≤ yii + yjj. (12)

Proof. Let us elevate to square both sides of the expression (12), which yields∣∣∣∣∣
∣∣∣∣∣ 2yij

yii − yjj,

∣∣∣∣∣
∣∣∣∣∣
2

≤
(
yii + yjj

)2 , (13)

This expression can be rewritten as follows:∣∣∣∣∣
∣∣∣∣∣ 2yij

yii − yjj,

∣∣∣∣∣
∣∣∣∣∣
T ∣∣∣∣∣

∣∣∣∣∣ 2yij
yii − yjj,

∣∣∣∣∣
∣∣∣∣∣ ≤ (

yii + yjj
)2 . (14)

Now, if we expand all the components in (14), then the following result is obtained:

4y2
ij + y2

ii − 2yiiyjj + y2
jj ≤ y2

ii + 2yiiyjj + y2
jj,

4y2
ij ≤ 4yiiyjj

y2
ij ≤ yiiyjj, (15)

Please note that (15) is the same as to (11), and the proof is complete.
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Because the power flow constraint can be rewritten as a set of convex restrictions, the equivalent
SOCP model representing the problem of maximum loadability in DC networks with constant-power
loads can be rewritten as follows:

Objective function:

max z =
n

∑
i=1

(1 + λi) pd
i , (16)

Set of constraints:

pg
i − (1 + λi) pd

i =
n

∑
j=1

gijyij, i ∈ N , (17)∣∣∣∣∣
∣∣∣∣∣ 2yij

yii − yjj,

∣∣∣∣∣
∣∣∣∣∣ ≤ yii + yjj, i, j ∈ N (18)

vmin
i vmin

j ≤ yij ≤ vmax
i vmax

j , i, j ∈ N , (19)

pg,min
i ≤ pg

i ≤ pg,max
i , i ∈ N , (20)

λi ≥ 0, i ∈ N (21)

Remark 5. Mathematical models (1)–(5) and (17)–(21) are equivalent in (18) if it is guaranteed that the quality
characteristic will be maintained in (19).

Remark 6. To retrieve the original optimization variables in the SOCP model described in (17) to (21),
the following expression can be used:

vi =
√

yii, i ∈ N , (22)

4. Graphical Example

Here, we considered a small DC test feeder composed of three nodes (one of them is the slack
node) and two constant-power loads connected to nodes 1 and 2, respectively. This system is used to
show the voltage stability margin, i.e., the region of secure operation, graphically. The topology of this
test feeder is presented in Figure 2. For this test system, 1000 W and 24 V are considered the power
and voltage bases, respectively.

−
+

1 2
40mΩ 60mΩ

200 W 2Ω 150 W 1.5Ω24 V

Figure 2. Small test feeder with two constant power loads.

Figure 3 shows the numerical behavior of the voltage collapse point when different increments
have been used at the point of connection of the constant-power loads. Please note that point
O is the solution of the classical power flow problem when all λi are fixed as zero; this point is
(v1, v2) = (0.9312, 0.8783). From this initial point, we evaluate the evolution of the voltage collapse
in the DC grid when its constant-power loads increase. Trajectory O–A shows the evolution of the
voltage at load nodes when it is increased only at the load connected at node 1, with the load at node 2
being fixed as 0.15 p.u. Please note that point A presents the maximum reduction in both load voltages
at the same time, i.e., (v1, v2) = (0.4802, 0.4265); both voltages are observed to be lower than 0.5000 p.u.
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In addition, these points represent the maximum objective function possible in this numerical example,
which is z = 3.4304 p.u, when λ1 = 15.4021. Trajectory O–B shows the evolution of the voltage
in the DC system when both loads are increased by the same magnitude, i.e., λ1 = λ2 = 5.5319.
These increments in the loads produce a maximum objective function of 2.2862 p.u, where one voltage
is higher than 0.6500 p.u (see node 2), and the other node is lower than 0.4500 p.u (see node 3).
This behavior implies that node 3 conditioned the stability margin behavior of this test system since
it is more sensitive to load changes than node 2 is. On the other hand, trajectory O–C presents the
voltage evolution of the numerical example when the load connected to node 2 is increased, with the
load at node 1 fixed as 0.20 p.u. This trajectory shows that the voltage at node 2 decreases until 0.4534,
while the voltage at node 1 remains upper that 0.7600 p.u. This behavior confirms that node 2 has a
lower possibility of increasing its load consumption since the voltage collapse point is reached when
the total load of the DC system is 1.4611 p.u, which is the minimum objective functions across the three
cases analyzed. Please note that in Table 1 the numerical behavior of the voltage stability problem in
DC networks resumes when constant-power loads start to increase.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B
C

O

Feasible solution region

Infeasible solution regionStability frontier

v1 [p.u.]

v 2
[p

.u
.]

Figure 3. Voltage collapse trajectories followed by different increments in the constant power
consumptions per node.

Table 1. CPL increments for the different simulation cases.

Trajectory λ1 λ2 Collapse Point (v1, v2) z [p.u.]

O–A 15.4021 0 A (0.4802,0.4265) 3.4304
O–B 5.5319 5.5319 B (0.6776,0.4151) 2.2862
O–C 0 7.4076 C (0.7613,0.4534) 1.4611

It is important to mention that the results presented in this numerical example have differences
lower than 1 % when compared with that in the heuristic approach based on Newton–Raphson
sensitivities [11].

Remark 7. The point of voltage collapse in DC radial networks depends on the location of the load node.
Hence, it is possible to conclude from the numerical example that loads connected to the final nodes have lower
possibilities of incrementing their consumption when compared with loads near the slack source.

5. Test Systems and Simulation Results

In this section, we present the test system configuration and the numerical results obtained
by solving the stability margin calculation problem with different methodologies reported in the
specialized literature.
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5.1. Test System Configurations

To validate the proposed SOCP model for voltage stability calculations in DC networks,
we consider the testing feeders reported in [11]. The first DC network corresponds to the high-voltage
DC (HVDC) network, and the second network is an MVDC radial network. The topologies of the test
feeders are illustrated in Figure 4. All the numerical information related to load consumption and
branch parameters can be obtained from [11].

(a) Six-terminal HVDC grid

(b) 69-node test feeder

4

2 3

1
5

6

dc
ac

dc
ac

dc
ac dc

ac

dc
ac

slack

- + 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

51

52

28 29 30 31 32 33 34 35

Figure 4. Electrical configuration of the test systems.

5.2. Numerical Validation

The proposed SOCP formulation was validated by being compared with approaches reported in
the specialized literature. The interior point was used for solving the exact non-linear programming
formulation (IP-NLP), the Newton–Raphson formulation based on determinants of Jacobian matrices
(NR-DJM), and SDP formulations [9,11]. These methodologies were implemented in MATLAB
and GAMS.

Table 2 presents the maximum loadability factor, i.e., λ, for the HVDC and MVDC systems.
Please note that the proposed SOCP model allows for reaching the optimal global solution of
this problem for both test systems since it is a convex transformation of the exact non-linear
non-convex problem.

Table 2. Voltage stability index for the HVDC and MVDC test feeders.

Test System NR-DJM IP-NLP SDP SOCP

HVDC 5.6588 5.6588 5.6588 5.6588
MVDC 3.0200 3.0200 3.0067 3.0200

In the case of the HVDC system, the proposed solution technique, i.e., the SOCP model, as well as
the comparative methods, reach the same loadability factor (λ = 5.6588) for all the nodes. In contrast,
for the MVDC system, the SDP model presents an underestimation of the loadability factor when
compared with the global optimum, i.e., 3.0200. This error is approximately 0.44% when the SDP is
compared with NR-DJM, IP-NLP, and the proposed approach.
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In terms of the computational performance with respect to the processing times required to solve
the voltage stability margin problem, all the methodologies listed in Table 2 require between 0.25 s and
30 s in the case of SOCP. In the case of the proposed approach, for the HVDC system, the processing
time is 0.28 s, while for the MVDC, the time is 4.611 s. These results confirm that the proposed SOCP
model is more efficient when compared with the NR-DJM (4.19 s and 21.11 s), SDP (0.30 s and 12.44 s),
and the IP-NLP (0.28 s and 3.57 s) models reported in [11].

In the case of the NR-DJM, it is difficult to select the heuristic parameter α reported in [11] to
determine the convergence of the algorithm. In case of the 69-node test feeder, before the voltage
collapse (λ = 3.01), the DJM is approximately 3.1856× 10268, and at the point of the voltage-collapse,
it is approximately −7.9939× 10265. This implies that the tuning of this heuristic search requires
multiple power flow evaluations. An additional complication of the NR-DJM approach is the selection
of the step δ, because large values of this parameter make the algorithm faster but sacrifice precision,
while small values increase the precision of the method. Large values also increase the computational
time required for the solution of the problem. In other words, even if the NR-DJM method is intuitive
and easy to implement, it requires adequate parametrization of the algorithm, which makes it highly
dependent on the programmer. However, this is not the case with the proposed SOCP approach;
this approach does not require any adjustment parameter.

Figure 5 depicts the voltage profile for the power flow problem considering all the chargeability
factors as zero and the voltage collapse point when all the constant-power loads increase in the
same magnitude.
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Figure 5. Voltage behavior in the test system for the initial state of load and voltage collapse: (a) HVDC
test system, and (b) MVDC test feeder.

From Figure 5, it is possible to extract the following behaviors:
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X The HVDC test feeder with its meshed structure maintains voltages higher than 0.50 p.u. until
the voltage collapse scenario. Please note that node 4 presents the lower voltage profile with
0.5114 p.u., which is a radial extension of this HVDC system.

X The voltage collapse in the MVDC test feeder is evident long after node 57 and onward.
This situation occurs in this part (node 57 and onward) of the test feeder since the total load is
more significant than regarding routes. Voltage collapse occurs when the maximum voltage drop
is 0.4610 p.u. at node 69.

X In both test systems, the voltage collapse occurs when voltages are lower than 0.55 p.u; while the
total load consumptions increase at least three times. This behavior implies that the power system
protection disconnects this system before the voltage collapse occurs because of the high currents
flowing through the branches.

6. Conclusions and Future Work

A convex reformulation of the voltage stability margin determination in DC networks with
constant-power loads was proposed in this paper based on a second-order cone formulation.
This model guarantees a global optimum for the problem by approximating the hyperbolic
constraints related to the power flow problem. Numerical results, in comparison with those of
the Newton–Raphson, SDP, and interior-point approaches, show the efficiency of the proposed SOCP
formulation in terms of the objective function calculation and processing times required.

An analysis of voltage stability margin in DC grids enabled the determination of the maximum
range of load increments before the collapse of the network. This is important because utilities can
use these results for planning and grid reposition procedures (changes in the size of conductors,
substations, grid topology) to avoid blackouts when new users are interconnected.

In future work, it will be possible to extend the convex SOCP formulation presented in this paper
for optimal power flow analysis, i.e., economic dispatch, in DC networks considering daily operation
with a high penetration of renewable energy resources and batteries.
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