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Abstract: Analyzing general uncertainty relations one can find that there can exist such pairs of
non-commuting observables A and B and such vectors that the lower bound for the product of
standard deviations ∆A and ∆B calculated for these vectors is zero: ∆A · ∆B ≥ 0. Here we discuss
examples of such cases and some other inconsistencies which can be found performing a rigorous
analysis of the uncertainty relations in some special cases. As an illustration of such cases matrices
(2× 2) and (3× 3) and the position–momentum uncertainty relation for a quantum particle in the
box are considered. The status of the uncertainty relation in PT –symmetric quantum theory and the
problems associated with it are also studied.
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1. Introduction

The famous Heisenberg uncertainty relations [1,2] play an important and significant role in the
understanding of the quantum world and in explanations of its properties. There is a mathematically
rigorous derivation of the position–momentum uncertainty relation and the uncertainty relation for
any pair of non–commuting observables, say A and B, within the standard formalism of Schrödinger
and von Neumann [3–6]. Among physicists who do not deal with theoretical research on the
mathematical foundations of quantum mechanics, and in particular with a rigorous derivation of
the uncertainty principles, there is an almost common belief based on the textbooks treatment of the
problem (see e.g., [7,8]) that if one has a pair of non-commuting observables A and B then the the
product of standard deviations ∆A and ∆B calculated for them is always large than some nonzero
positive number, say c:

∆A · ∆B ≥ c > 0. (1)

Here we show that such a belief may lead to confusions: It appears that there may exist such
vectors that the lower bound for this product is zero. Simply, there exist such pairs of non–commuting
operators A and B and such vectors from the Hilbert state space that for the standard deviations
calculated for these vectors there is ∆A · ∆B ≥ 0 (see, e.g., [9]). The motivation of the paper
is to examine such and similar cases and to discuss other limitations of Robertson–Schrödinger
uncertainty relation (1) and inconsistencies as well as mathematical problems connected with this
relation. Here we show examples of the cases where one can find that there is ∆A · ∆B ≥ 0 for some
vectors although [A, B] 6= 0. The simplest cases are illustrated using Pauli matrices and Gell–Mann
matrices. One meets a much more complicated situation in the case of a problem of a quantum
particle in the box with perfectly reflecting and impenetrable walls: In this case we analyze the
position–momentum uncertainty relation. We show that this problem leads to some paradoxical
situations and generates some inconsistencies. The solution of these inconsistencies is proposed:
From the point of view of the classical mechanics the particle in the box is a constrained system and the
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use of the position operator consistent with the constraints can solve these inconsistencies. Analyzing
the problem of particle in the box we observed that some subtle properties of such system depending
on the choice of the boundary conditions may be related to the symmetry properties of the problem
under study. For this reason, we have attempted to investigate the problem of the uncertainty relations
in PT –symmetric quantum mechanics. We found that within PT symmetric quantum mechanics
a relation corresponding to the uncertainty relations discussed, e.g., in [1–4], (or [5]), may not exist for
every pair of non–commuting operators. We also found that if it exists for a pair of noncommuting
PT –symmetric observables than it can not be considered as universally valid.

The paper is organized as follows: In Section 2 the reader finds some preliminaries. The case
of Pauli and Gell–Mann matrices is analyzed in Section 3. Section 4 contains analysis of the case of
a quantum particle in the box with perfectly reflecting and impenetrable walls. Discussion of the
problem of uncertainty relations in PT –symmetric quantum theory is presented in Section 5. Section 6
contains a discussion and conclusions.

2. Preliminaries

The uncertainty principle was formulated by Heisenberg [1,2] for the position and momentum
and it can be written as follows

∆φX · ∆φPx ≥
h̄
2

. (2)

Heisenberg considered ∆φX and ∆φPx as “precisions” with which the values x and p are known [1].
Practically from the moment of the publication of Heisenberg’s works [1,2], the ongoing discussion on
how to interpret the inequality (2) began (see, e.g., [10–12]).

The contemporary interpretation of ∆φX and ∆φPx considered in this paper comes from the
derivation of the uncertainty relation made by Robertson [3] and Schrödinger [4,5], (see also [6]): ∆φX
and ∆φPx denote the standard (root–mean–square) deviations or variances. In a general case for an
self–adjoint operator F acting inH the standard deviation is defined as follows

∆φF = ‖δF|φ〉‖, (3)

where δF = (F− 〈F〉φ I), and 〈F〉φ
def
= 〈φ|F|φ〉 is the average (or expected) value of F calculated for

the normalized vector |φ〉 ∈ H, provided that |〈φ|F|φ〉| < ∞. (Note that from the definition of δF
it follows that δF must be the self–adjoint operator if F is self–adjoint). The equivalent definition

is: ∆φF ≡
√
〈F2〉φ − 〈F〉2φ. (In Equation (2) F denotes position and momentum operators x and

px as well as their squares). Within the quantum theory the operator F represents observable F.
So, the uncertainty principle is a relation connecting standard deviations (variances) calculated for
a pair of non–commuting observables (that is, self–adjoint operators) acting in a Hilbert space H.
In general, relations (1) and (2) results from basic assumptions of the quantum theory and from the
geometry of Hilbert space [13]. Relations having the form (1) hold for any two observables, say A and
B, represented by non–commuting self–adjoint operators A and B acting in the Hilbert space of states
(see [3] and also [4,5]), such that [A, B] exists and |φ〉 ∈ D(AB)

⋂D(BA), (D(O) denotes the domain
of an operator O or of a product of operators):

∆φ A · ∆φB ≥ 1
2

∣∣〈[A, B]〉φ
∣∣ . (4)

As it was said in the general case the relation (4) results from the geometry of the Hilbert
space, strictly speaking from the Schwartz inequality: Let |ψ1〉, |ψ2〉 ∈ H, then one has |〈ψ1|ψ2〉| ≤
‖ |ψ1〉‖ ‖ |ψ2〉‖. Next taking |ψ1〉 = δA|φ〉 and |ψ2〉 = δB|φ〉, after some algebra one obtains
the inequality (4)—details can be found in Section 2 in [9] and in many textbooks and journal
articles. Now if to identify operators A and B acting in the Hilbert space H = L2(R): A with



Symmetry 2020, 12, 1640 3 of 15

the momentum operator, Px, in quantum theory, B with the position operator X, and then using the
commutation relation,

[Px, X] = −ih̄ I, (5)

one obtains from (4) the inequality (2), i.e., the Heisenberg uncertainty relation.
Note that starting with the Schwartz inequality all subsequent calculations and transformations

leading to the result (4) are purely mathematical operations and there is no physics in them
(see, e.g., [9]): The inequality (4) is a purely mathematical inequality and examining when and
for which vectors it occurs and for which it does not occur is a mathematical task. Physics will appear
only when physical quantities are assigned to operators A and B and the Hilbert space on which they
act is identified with the space of the states of the physical system considered.

As it was mentioned, there is still a discussion on how to interpret inequalities (4) and (2) and how
to improve them (see, e.g., [10] and references therein, [11,12,14–20] and many other papers). From the
derivation of the formula (4) it follows that the standard deviations ∆φ A and ∆φB characterize the
statistical distribution of the most probable values of A and B in the state |φ〉. The inequality (4)
does not depend on a possible influence of the measuring device on the result of measurements
and on the statistical distribution of values of A and B measured by this device. So, it seems that
a safe interpretation of (4) is the interpretation close to that one can find in [21], namely that it
is impossible to prepare a system in a state |φ〉 that non–commuting observables A and B have
both their probability distributions of values of A and B in this state sharply concentrated around a
single value (see, [10–12]). Therefore the relation (4) is sometimes called the “preparation uncertainty
relation” [10–12,18,19]. There is also another, probably the most popular interpretation of inequality (2)
in the literature. Namely, Heisenberg’s relation (2) is considered as a trade-off between the precision
∆φX of an approximate position measurement and the momentum disturbance ∆φP incurred by that
measurement (see, e.g., [10,19]). This is the “error–disturbance” or “noise–disturbance uncertainty
relation” (see, e.g., [19,22–26]. The relation (4) can be understood analogously. The proof of this relation
having similar form to the relations (2), (4) can be found, e.g., in [19,22,24]. One more interpretation of
the uncertainty relation can be found in the literature. It is so–called Heisenberg “uncertainty relation
for joint measurements”. It can be generally formulated as follows [22]: For any apparatus A with two
outputs for the joint measurement of A and B, the relation (4) holds for any input state |φ〉, where
in this case ∆φ A is replaced by ε(A, φ,A), ∆φB→ ε(B, φ,A) and ε(X, φ,A) stands for the noise of the
X measurement in state |φ〉 using apparatus A for X = A, B [22,26–28]. The proof of this relation can be
found, e.g., in [28]. It requires the assumption that the experimental mean values of the outcome xA of
the A measurement and the outcome yB of the B measurement should coincide with the mathematical
expectation values of observables A and B, respectively, on any input state |φ〉 [28]. So, due to such
an assumption the final form of the uncertainty relation for joint measurements is analogous to that
given by the inequality (4). In general, a common feature of all these cases is that the uncertainty
relation takes the form considered in this paper, that is the form given by inequalities (1), (2) and (4).
A discussion of different aspects of these interpretations as well as attempts to improve uncertainty
relations are still continued and can be found in many papers (see, e.g., [29–33]).

In this paper attention will be focused on the definition of standard deviations given by the
formula (3) and properties of (4) resulting from this definition. It has been pointed out in [9] that it
is not necessary for A and B to commute, [A, B] = 0, in order that 〈φ|[A, B]|φ〉 = 0 for some |φ〉 ∈ H.
Simply it may happen that for some |φ〉 ∈ H and for some non-commuting operators A and B the
expectation value of the commutator [A, B] vanishes: 〈φ|[A, B]|φ〉 = 0 and then the inequality (4) takes
the following form:

∆φ A · ∆φB ≥ 0. (6)

This means that in such cases the inequality (4) having the form (6) does not impose any restrictions
for the values of ∆φ A and ∆φB besides the condition that there should be 0 ≤ ∆φ A < ∞ and
0 ≤ ∆φB < ∞. Examples of such and similar cases will be analyzed in the next Section.
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3. Simple Algebraic Examples

Here we present examples of self–adjoint operators (matrices) for which the inequality (4) has the
form (6). So, let us considerer for a start the simplest case of (2× 2) matrices. Using Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (7)

one has σx = σ+
x , σy = σ+

y , σz = σ+
z and

[σx, σy] = 2iσz. (8)

Identifying σx, σy with operators A and B respectively one can rewrite (4) as follows

∆φσx · ∆φσy ≥
1
2

∣∣〈[σx, σy]〉φ
∣∣ ≡ ∣∣〈σz〉φ

∣∣ , (9)

where

|φ〉 = N

(
a
b

)
, (10)

N =
(
|a|2 + |b|2

)−1/2, a, b ∈ C, 〈σx〉φ = 〈φ|σx|φ〉 = 2N2 < [a∗b] and (∆φσx)2 = 〈φ|σ2
x |φ〉 − 〈σx〉2φ ≡

1− 4 N4 (< [a∗b])2, and so on. (Here <[z] and =[z] denote real and imaginary parts of z respectively).
It is easy to see that 〈σz〉φ = 〈φ|σz|φ〉 = N2 (|a|2 − |b|2) which means that

∣∣〈σz〉φ
∣∣ > 0 if |a| 6= |b|.

Choosing |φ〉 such that |a| = |b|, e.g., a = b = 1,

|φ〉 ⇒ |φ1〉 =
1√
2

(
1
1

)
, (11)

one finds that
∣∣〈σz〉φ1

∣∣ ≡ 0, and, as a result the inequality (9) will take the form of (6) for |φ〉1. We have
〈σy〉φ = 2N2 = [a∗b] and ∆φσy = 1− 4N4(= [a∗b])2. This means that for |φ1〉 one obtains 〈σy〉φ1 = 0
and ∆φ1 σy = 1. Note that in this case ∆φ1 σx = 0 because the vector |φ1〉 is an eigenvector of σx,
which means that the both sides of the inequality (9) are equal to zero for |φ〉 = |φ1〉 as it should be in
such a case.

A little more complicated example can be found considering (3× 3) matrices. So, let us consider
Gell–Mann matrices λ3, λ4 and λ5 as an example:

λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 i
0 0 0
−i 0 0

 . (12)

They are self–adjoint and do not commute,

[λ3, λ4] = −iλ5 6= 0. (13)

For these matrices the inequality (4) takes the following form,

∆ψλ3 · ∆ψλ4 ≥
1
2

∣∣〈[λ3, λ4]〉ψ
∣∣ ≡ 1

2

∣∣〈λ5〉ψ
∣∣ , (14)

where

|ψ〉 = 1√
|a|2 + |b|2 + |c|2

 a
b
c

 , (15)
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and a, b, c ∈ C. Now, putting a = b = c = 1 in (15) one gets

|ψ〉 ⇒ |ψ1〉 =
1√
3

 1
1
1

 , (16)

which leads to the result
∣∣〈λ5〉ψ1

∣∣ = 0, and hence one concludes that for |ψ1〉 the inequality (14) takes
the following form

∆ψ1 λ3 · ∆ψ1 λ4 ≥ 0, (17)

exactly as the inequality (6). More detailed analysis leads to the surprising result: If in (15) a =

a∗, b = b∗, c = c∗ then there is
∣∣〈λ5〉ψ

∣∣ = 0 for any such a, b, c. Hence for |ψ〉 defined by real a, b, c the
uncertainty relation (14) takes the same form as the relation (6). On the other hand if to consider the
more general case when a, b, c are the complex numbers then only for

c = β a, (18)

(where β = β∗ 6= 0), one obtains that
∣∣〈λ5〉ψ

∣∣ = 0 for any a and b but
∣∣〈λ5〉ψ

∣∣ > 0 for these a and c,
which do not fulfil the condition (18) and in this case the uncertainty relation (14) has the standard
form. Similar examples can be found for self–adjoint matrices or operators acting in any Hilbert space
(see, e.g., Section 2 in [20]).

4. Particle in the Box

Many similar situations to those discussed in the previous Section, or even paradoxes, can be
found when one is analyzing properties of a quantum particle, which spatial motion is confined to
a finite volume. Usually such cases are much more complicated than that discussed in the previous
Section. As a simplest nontrivial example of such a case the problem of a quantum particle in the box
with perfectly reflecting and impenetrable (rigid) walls will be considered in this Section. We assume
that a quantum non–relativistic particle of mass m is mowing on an interval (a, b) of the real axis.
In other words we assume that this particle is in the potential well V(x) defined as follows

V(x) =

{
0 for a < x < b,

+∞ for x ≤ a and x ≥ b.
(19)

The Hamiltonian H, of such a system has a usual form: It is the sum of the kinetic energy, T,
and the potential V(x): That is H = T + V(x). The assumed potential V(x) forces the particle
to be somewhere between a and b. Hence in the position representation the probability |ψ(x)|2dx,
(where ψ(x) = |ψ(x)〉 is the wave function of the particle), to find this particle having position between
x and x + dx out of the interval (a, b) must be zero. Therefore it must be |ψ(x)|2 = 0 for x < a and
x > b, and thus within this problem there must be

ψ(x) = 0 for x < a and x > b. (20)

Taking into account that in this paper we analyze some properties of the uncertainty relation
our attention will be focussed only on the operator corresponding to the momentum of the particle
considered. In one dimensional models on the real line the position operator X and the momentum
operator Px are a self–adjoint operators and when they act in the Hilbert space H = L2(R),
(where L2(R) denotes the space of square integrable functions on the real line R), they are defined by
Xψ(x) = xψ(x), (or X|ψ(x)〉 = x|ψ(x)〉), Pxφ(x) = −ih̄ d

dx φ(x), (or Px|φ(x)〉 = −ih̄ d
dx |φ(x)〉) to act on

appropriate sets of functions |ψ(x)〉, |φ(x)〉 ∈ L2(R). Now if the motion of the particle is confined to a
segment [a, b] ⊂ R, then the support of the corresponding wave–functions is [a, b] and thus they form
a subspace of L2(R), which is identified with the Hilbert space of square integrable functions L2([a, b])
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on [a, b]. The problem is that there is no a self–adjoint operator acting as −ih̄ d
dx in the subspace of

square integrable functions in L2([a, b]) defined by the condition (20), that is, which vanish at the
endpoints of the interval [a, b].

Let us pass now to the analysis of properties of an operator corresponding to the momentum of
the particle considered. For simplicity we will consider the “standard” case when a = 0 and b = l > 0
and the “symmetric” case when a = − l

2 and b = + l
2 , (see, e.g., [34]).

4.1. The “Standard” Case

Let us consider now the operator Px in a closed interval [0, l] 3 x and let us take for a domain
D(Px) the following subspace of L2([0, l]),

D(Px) =
{

φ(x), φ′(x) ∈ L2([0, l]) : φ(0) = φ(l) = 0
}

(21)

where φ′(x) = d
dx φ(x). It appears that such defined Px is only a symmetric operator in D(Px) but it

is not a self–adjoint in D(Px), (see, e.g., [35–38] and references therein). If one needs a self–adjoint
extension of Px then one have to change boundaries defining D(Px). There is a family of self–adjoint
extensions of Px “numbered” by a real parameter ϑ, where 0 ≤ ϑ < 2π [35–38], which are denoted
as Pϑ

x :

Pϑ
x φ(x) = −ih̄

d
dx

φ(x), (22)

D(Pϑ
x ) =

{
φ(x), φ′(x) ∈ L2([0, l]) : φ(l) = eiϑφ(0)

}
. (23)

Note that the set being the domain D(Pϑ
x ) of the operator Pϑ

x is much larger than the set defined
in (21): Functions belonging to D(Pϑ

x ) do not have to meet the condition φ(0) = 0. This definition
leads to the following solutions of the eigenvalue problem for Pϑ

x : One finds that the eigenfunctions are

uϑ
n(x) =

1√
l

e
i
h̄ pϑ

nx (24)

where n = 0,±1,±2, . . . and the corresponding eigenvalues are:

pϑ
n = h̄

2πn + ϑ

l
. (25)

For each ϑ the eigenfunctions uϑ
n(x) form an orthonormal basis in L2([0, l]). Let us analyze now

the uncertainty relation (4) for the operators X and Pϑ
x . For each uϑ

n(x) = |uϑ
n(x)〉 there is ∆uϑ

n
X < l

and ∆uϑ
n
Pϑ

x = 0. From this one concludes that there is

∆uϑ
n
X · ∆uϑ

n
Pϑ

x = 0, (26)

which contradicts (2) and (5). This result suggests that in the case considered there is something
wrong with the commutation relation (5) and with the modulus of the expectation value of
〈uϑ

n(x)|[Pϑ
x , X]|uϑ

n(x)〉. There is

〈uϑ
n(x)|[Pϑ

x , X]|uϑ
n(x)〉 = 〈uϑ

n(x)|Pϑ
x X|uϑ

n(x)〉 − 〈uϑ
n(x)|XPϑ

x |uϑ
n(x)〉, (27)

and more detailed analysis shows that the position operator X removes vectors |φ(x)〉 ∈ D(Pϑ
x )

from the domain D(Pϑ
x ) of Pϑ

x . Simply, there is X|φ(x)〉 = x|φ(x)〉 def
= |χ(x)〉 and, as one can

see, the condition χ(l) = eiϑχ(0) guaranteing that χ(x) ∈ D(Pϑ
x ) can not be fulfilled for such

|χ(x)〉. This means that the commutator [Pϑ
x , X] does not exist in the considered case (see [37]).

This conclusion concerns also eigenvectors uϑ
n(x) of Pϑ

x : The position operator X also removes vectors
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uϑ
n(x) from the domain D(Pϑ

x ). For every χϑ
n(x) def

= Xuϑ
n(x) ≡ xuϑ

n(x) one finds that χϑ
n(l) ≡ luϑ

n(l) 6= 0,
whereas χϑ

n(0) ≡ 0 · uϑ
n(0) = 0 which means that χϑ

n(x) = xuϑ
n(x) does not belong to the domain

D(Pϑ
x ) and therefore the matrix element 〈uϑ

n(x)|Pϑ
x X|uϑ

n(x)〉 is not defined. Hence the relation (27) is
not defined. This analysis shows that in the considered “standard” case of the particle, which motion
is confined to a segment [0, l], the uncertainty relation (2) does not hold [37].

4.2. The “Symmetric” Case

Let us now analyze the symmetric” case of the particle in the box when the particle can move
only inside the segment [− l

2 , l
2 ]. In this case

V(x) = V∗(x) =

{
0 for |x| ≤ l

2 ,
+∞ for |x| > l

2 .
, (28)

the family of self–adjoint extensions Πϑ
x of the operator Px is defined as follows [39]:

Πϑ
xφ(x) = −ih̄

d
dx

φ(x), (29)

D(Πϑ
x) =

{
φ(x), φ′(x) ∈ L2([0, l]) : φ(

l
2
) = eiϑφ(− l

2
)

}
, (30)

and again 0 ≤ ϑ < 2π, n = 0,±1,±2, . . .. The solutions of the eigenvalue problem for Πϑ
x have the

same form as for the operator Pϑ
x : eigenfunctions are given by (24) and eigenvalues pϑ

n are given
by the formula (25). Considering the uncertainty relations (2) and (4) for X and Πϑ

x computed for
|φ〉 = |uϑ

n(x)〉 one finds again that ∆uϑ
n
X < l and ∆uϑ

n
Πϑ

x = 0, which suggest that in the considered
case there is ∆uϑ

n
X · ∆uϑ

n
Πϑ

x = 0 too, which again contradicts (2). Now if one wants to verify this
conclusion one should use the relation (4), and then one should to compute the expectation value of
〈uϑ

n(x)|[Πϑ
x , X]|uϑ

n(x)〉. The properties of the matrix element 〈uϑ
n(x)|Πϑ

x X|uϑ
n(x)〉 were the crucial in

the previously considered “standard” case. So, let us analyze the function ξϑ
n(x) def

= X|uϑ
n(x)〉 and let

us check if (and when) ξϑ
n(x) ∈ D(Πϑ

x). There are

ξϑ
n(

l
2
) =

l
2

uϑ
n(

l
2
) and ξϑ

n(−
l
2
) = − l

2
uϑ

n(−
l
2
). (31)

Thus boundaries ξϑ
n(

l
2 ) = eiϑ ξϑ

n(− l
2 ) (see (30)) and properties (31) lead to the following

conclusion: In the “symmetric” case ξα
n(x) = xuα

n(x) ∈ D(Πα+π
x ) for all α, such that 0 < α < π. It is

because (−1) can be represented by eiπ ≡ −1. In other words there exists a subfamily of self–adjoint
extension of Πα

x, where 0 < α < π, such ξα
n(x) = xuα

n(x) ∈ D(Πα+π
x ), and in general X D(Πα

x) →
D(Πα+π

x ) 6= D(Πα
x). So, for 0 < α < π position operator X moves eigenfunctions of Πα

x from D(Πα
x) to

domain of Πα+π
x but nevertheless X uα

n(x) ≡ xuα
n(x) 6∈ D(Πα

x) again. For π ≤ ϑ < 2π eigenfunctions
of Πϑ

x are removed from any domain of the family of self–adjoint extensions Πϑ
x of the operator

−ih̄ d
dx . It is easy to show that 〈φ(x)|Πα

x X|φ(x)〉 ≡ 〈φ(x)|Πα
x (Xφ(x))〉 6= 〈(Πα

xφ(x))|(X|φ(x))〉 for
|φ(x)〉 ∈ D(Πα

x). This property leads to a rather unexpected result that 〈uα
n(x)|[Πα

x, X]|uα
n(x)〉 does

not exist not only for every 0 < α < π but also for any ϑ, such that 0 < ϑ < 2π. Note that if
|φ(x)〉 = |uα

n〉 then, contrary to the above conclusion, one expects that 〈uα
n(x)|[Πα

x, X]|uα
n(x)〉 = 0.

Ignoring the above described subtleties one can see that in the “symmetric” case the situation is the
same as in the “standard” case. Again the left hand side of the inequality (4) computed for X and Πϑ

x
and |φ〉 = |uϑ

n(x)〉 takes the zero value, ∆uϑ
n
X · ∆uϑ

n
Πϑ

x = 0, and the right hand side of (4) does not exist.
In [39] a conclusion was that in such a case the momentum is not a physical observable and therefore a
consideration of such a case has no a physical justification. As it was said earlier, we analyze properties
of uncertainty relations considering them as a mathematical problem and we are interested in finding
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mathematical solutions of this problem. It seems that a solution to a “paradox” such “paradoxes can
be found by carrying out a more detailed analysis of the case under considerations.

From the point of view of the theoretical mechanics the system considered is the constrained
system. Simply here imposed on the positions of the considered particle are restrictions of the
geometrical nature, called constraints. In such a situation the constraint means that certain positions
of the particle are permissible and others are forbidden: In the case considered the allowed position,
x, are: − l

2 ≤ x ≤ l
2 , whereas x < − l

2 and x > l
2 are the forbidden positions. The equation of these

constraints can be written as follows:
|x| ≤ l

2
(32)

It seems that a possible solution to the problem may be choosing the position operator X in such
a way that it would be consistent with constraints. So, taking into account the constraint equation one
can define modified position operator XM acting in L2(R) as follows

XM|ψ(x)〉 = x Θ(
l
2
+ x) Θ(

l
2
− x) |ψ(x)〉, (33)

D(XM) =

{
ψ(x) ∈ L2(R) : ψ(x) = 0 for |x| > l

2

}
, (34)

where Θ(x) is the unit step function: Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. Note that all
functions φ(x) having the set x ∈ [− l

2 , l
2 ] as a support and belonging to L2([− l

2 , l
2 ]) belong also to the

domain D(XM). Using the modified position operator XM one finds for |ψ(x)〉 ∈ L2(R) that formally,

[Px, XM]|ψ(x)〉 = ih̄
l
2

[
δ(

l
2
+ x) + δ(

l
2
− x)

]
|ψ(x)〉

−ih̄ Θ(
l
2
+ x) Θ(

l
2
− x)|ψ(x)〉. (35)

Note that here operators Px and XM act in L2(R). If a segment [− l
2 , l

2 ] is the support of |φ(x)〉
then |φ(x)〉 ∈ L2([− l

2 , l
2 ]) and Θ( l

2 + x) Θ( l
2 − x)|φ(x)〉 = |φ(x)〉, which implies that

[Px, XM]|φ(x)〉 = ih̄
l
2

[
δ(

l
2
+ x) + δ(

l
2
− x)

]
|φ(x)〉 − ih̄ |φ(x)〉. (36)

Hence for normalized |φ(x)〉 ∈ L2([− l
2 , l

2 ]) one obtains that

〈φ(x)|[Px, XM]|φ(x)〉 = ih̄
l
2

[∣∣∣∣|φ(− l
2
)

∣∣∣∣2 + |φ( l
2
)|2
]
− ih̄. (37)

The right hand side of (37) is zero if∣∣∣∣φ(− l
2
)

∣∣∣∣ = ∣∣∣∣φ(+ l
2
)

∣∣∣∣ = 1√
l
. (38)

In addition, the right hand side of (37) is zero for every φ(x) ∈ L2([− l
2 , l

2 ]) such that |φ(x)| = 1√
l
.

Note that, among others, all eigenfunctions uϑ
n(x) (see (24)) of self–adjoint extensions of the momentum

operator Px have these properties. On the other, if∣∣∣∣φ(− l
2
)

∣∣∣∣ = ∣∣∣∣φ(+ l
2
)

∣∣∣∣ 6= 1√
l
, or,

∣∣∣∣φ(− l
2
)

∣∣∣∣ 6= ∣∣∣∣φ(+ l
2
)

∣∣∣∣ , (39)

then the right hand side of (37) is nonzero.
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Coming back to the uncertainty relations for the modified position operator XM and momentum
Px one finds that

∆φXM · ∆φPx ≥ h̄
∣∣∣∣ l
2

[
|φ(− l

2
)|2 + |φ(− l

2
)|2
]
− 1
∣∣∣∣ . (40)

So, it seems that the relation (40) is consistent with the uncertainty relation (4) and the use of
the modified position operator may remove inconsistences with the position–momentum uncertainty
relation for particle in the box. Note that, as it was mentioned, the right hand side of the inequality (40)
can be zero for vectors satisfying conditions specified after Equation (37).

5. Uncertainty Principles and PT –Symmetric Quantum Theory

The uncertainty principle is one of the most famous predictions of quantum mechanics. As it
was stated in [40] (see also [41]) “as deduced from within the quantum theory itself, the uncertainty principle
only prohibits the possibility of preparing an ensemble of systems in which all those properties are sharply
defined”. This general statement can be translated for the case of two non–commuting observables
A and B as follows: The possibility of preparing a system, in which the values of observables A and
B are sharply defined, can not be realized. This is true within the Schrödinger and von Neumann
quantum mechanics. The question is: Is this also true within the PT –symmetric quantum mechanics?
Simply, when one goes form the standard (Schrödinger and von Neumann) quantum mechanics to
PT –symmetric quantum mechanics one meets some surprises. One of them is the problem of the
uncertainty relations. In standard quantum mechanics one can ask about exact values of the position
and momentum of the particle independently of that if the Hamiltonian H is known or not and
independently of the form of H. It is because all observables act in the same, common Hilbert spaceH
of states and the scalar product inH does not depend on the choice of the Hamiltonian H. The different
situation is in PT –symmetric quantum mechanics, where the Hamiltonian H and solutions of the
eigenvalue problem for this H determine the space of states and the “scalar product” in this space [42].

Within the PT –quantum mechanics the property that non–self–adjoint but PT –symmetric
Hamiltonians can have the real eigenvalues is used. Here the PT –symmetric Hamiltonian means that
the Hamiltonian H is requested to satisfy the following condition,

HPT def
= PT H PT ≡ H, (41)

where the operators P and T are defined as follows:

Px = −x, P px = −px, T x = x, T px = −px, (42)

and x and px denote position and momentum respectively,

Pφ(x) = φ(−x), T φ(x) = φ∗(x). (43)

When T acts in the Hilbert space or in a space with sesquilinear form, then 〈T ψ|T φ〉 = 〈φ|ψ〉.
From these definitions it follows that P2 = T 2 = I, [P , T ] = 0 and that (PT )2 = I. This means that
P = P−1, T = T −1 and PT = (PT )−1. Thus PXP = −X, PPxP = −Px, T XT = X, T PxT =

−Px, where X and Px are the standard position and momentum operators. In analogy to Hermitian
quantum mechanics one can define the inner product in this case as

(ψ, φ)PT =
∫ +∞

−∞
[PT ψ(x)]φ(x) dx ≡

∫ +∞

−∞
ψ∗(−x)φ(x) dx, (44)

but, unfortunately, then one runs into the problem of having negative norm for some states.
This problem can be solved by introducing a new operator usually called the C operator expressing a
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symmetry between the positive and negative norm states. Using this C operator we can define the
CPT inner product as follows

(ψ, φ)CPT =
∫

ψCPT(x)φ(x)dx, (45)

where ψCPT(x) = C[PT ψ(x)] =
∫
C(x, y)ψ∗(−y)dy. This inner product satisfies the requirements for

quantum theory defined by H and the norm defined by means of this product is positive. In order
to find within the PT –symmetric quantum mechanics a proper space of states with the proper
inner product such as CPT inner product (that is the C operator) one must find solutions of the
eigenvalue problem,

Hφn(x) = Enφn(x), (46)

for a given PT –symmetric Hamiltonian HPT . If HPT = H then the eigenvalues En are real.
Having solutions of Equation (46) one can construct a suitable C operator, e.g., as follows [42–45]

C(x, y) =
∞

∑
n=0

φn(x) φn(y). (47)

Then simply Cφn(x) =
∫
C(x, y)φn(y)dy = (−1)nφn(x) (see, e.g., [42]). There are P2 = C2 = I,

but P 6= C, and [P , C] 6= 0 but [C,PT ] = 0 and [C, H] = 0. The problem is that the calculation of
C is very nontrivial for a given H: One have to find solutions of the eigenvalue problem for this H.
Having the C operator one can define observables.

In ordinary quantum mechanics the condition for a linear operator A to be an observable is that
A has to be self–adjoint: A = A+. This condition provides the expectation value 〈φ|A|φ〉 of A in a
given normalized state 〈φ|φ〉 = 1, to be real, Within the PT –symmetric quantum theory this condition

is replaced by the following one: ACPT def
= CPT A CPT = AT , where AT denotes the transpose of

A [42]. This means that if A satisfies this condition then the expectation value of A calculated for a
given state using CPT inner product is real [42] and therefore this operator A can be considered as the
observable. Note that this condition depends on C and the form of C is determined by solutions of the
eigenvalue problem for H. Hence the inner product (., .)CPT depends on the choice of H. So, in general
it may happen that an linear operator A satisfies the condition CPT A CPT = AT = for H but it does
not satisfy analogous condition for problem described by a Hamiltonian H1 6= H (assuming that H
and H1 does not have common eigenfunctions). Every CP–symmetric Hamiltonian H satisfies the
condition CPT H CPT = HT = H, so the Hamiltonian H is an observable. Now having observables
and expectations values one can think about uncertainty relations. It turns out that in typical models
considered in PT –symmetric quantum mechanics the position x and momentum p are not observables
(sse, e.g., [42]). Simply in these models, e.g., the expectation value of x in the ground state is a negative
imaginary number as it was shown in [42]. Thus there is no position operator in PT –symmetric
quantum mechanics [42]. This means that there is no a place for the Heisenberg uncertainty relation (2)
in PT –symmetric quantum mechanics. So, the question arises: can the system be prepared in a
state, in which the position and momentum are sharply defined in such cases? Of course, within the
PT – symmetric quantum mechanics one can try to find two non commuting observables A and
B, that is, such linear operators that CPT A CPT = AT and CPT B CPT = BT , and to derive a
relation corresponding to the uncertainty relation (4), but such a relation can never be considered to be
universally valid. It is because the operator C, the inner product, (., .)CPT , in the state space and thus
geometry of this state space are determined by a given Hamiltonian H for the problem considered.
In conclusion one may wonder if it makes sense to ask about uncertainty relations in PT –symmetric
quantum mechanics.

In the light of the consequences of the PT –symmetric quantum mechanics and of the fact that
within the standard quantum mechanics uncertainty relations only results from the geometry of
the state space, the question concerning uncertainty relations may arise: are they the intrinsic and
inherent property of the quantum systems, or maybe, are they a result of our choice of the state
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space? Taking into account applications of the PT –symmetric Hamiltonians in quantum field theory,
quantum optics, in condensed matter physics, etc., and the reported result in [46,47], where a violation
of Heisenberg’s “measurement–disturbance relationship” was observed, this question seems to be
nontrivial and important.

6. Discussion and Conclusions

As it was mentioned in the Introduction, There is almost common belief that having a pair of
non–commuting self–adjoint operators (observables) A and B one always finds that the product of
standard deviations ∆φ A and ∆φB calculated for them, (where |ψ〉 ∈ H), is always larger than some
nonzero positive number: ∆φ A · ∆φB ≥ a > 0. In Sections 3–5 it was shown that such a belief may
lead to confusions. As it was shown in Section 3, in 2–dimensional, or 3–dimensional state spaces
there are many examples of self–adjoint matrices (operators) and vectors in state spaces such that the
product of the standard deviations calculated for them is greater than or equal to zero. Similar cases
can be found in n–dimensional state spaces. These observations seem to be highly non–trivial in
the case of studying the properties of two–, three–, and n–level quantum systems, which have many
applications and which are intensively studied in the context of applications, e.g., in the theory of
quantum computers, and in another cases. Simply, the examples presented in Section 3 show that the
uncertainty principle (4) may not work in many cases in n–level systems, although at first glance it
seems it must work. This means that in order to avoid unpleasant surprises, when examining such
systems and drawing general conclusions from them based on the uncertainty principle, one must
carefully check each such case.

Similar observations concern also, e.g., systems having the space L2(R), or L2([a, b]) ⊂ L2(R)
as a state space. Examples of such a situations has been studied in Section 4. In this Section the
attention was focused on the standard Heisenberg position–momentum uncertainty relation (2) for a
quantum particle in the box with perfectly reflecting and impenetrable walls. The detailed description
of this problem can be found, e.g., in [34,35,37–39] and this is why we do not analyze all the details
and subtleties of this problem, but focus our attention on the momentum of the particle considered.
Much more details concerning this momentum can be found, e.g., in [37] and also in the nice paper [36].
In Section 4.1 the “standard” case of a particle in the box has been considered, when the potential
V(x) is given by formula (19) with a = 0 and b = l and the state space is L2([0, l]). Analyzing the
position–momentum uncertainty relation in this case the family of self–adjoint adjoint extensions of
the momentum operator Pϑ

x (see (22) and (23)) was used to find the uncertainty relation. Unfortunately,
a naive direct use of the relation (4) to find the suitable relation leads to paradoxical situation, where the
left–hand side of the relation (4) is zero for eigenvectors of Pϑ

x , |φ〉 = |uϑ
n(x)〉, whereas, according

to (5) the right hand side is non–zero. A more detailed analysis shows that the position operator X
removes for any ϑ vectors |uϑ

n(x)〉 from the domain, D(Pϑ
x ), of the operator Pϑ

x , which means that the
commutator [X, Pϑ

x ] does not exist in this case and therefore the right hand side of the inequality (4)
does not exits. What is more, it appears that for any ϑ the position operator X removes also from
D(Pϑ

x ) all vectors such that φ(0) 6= 0, which has a consequence that in the case of these vectors the
commutator [X, Pϑ

x ] can not be calculated. As a result the position–momentum uncertainty relation
can not be derived from (4) in the mentioned cases (see also [37]).

A slightly different picture one meets in the “symmetric” case of the particle in the box discussed in
Section 4.2. Here the Hilbert space L2([− l

2 , l
2 ]) ⊂ L2(R) is the state space and for 0 ≤ ϑ ≡ α + π < 2π

the position operator X moves vectors |φ(x)〉 ∈ D(Πα
x) from the domain of the self–adjoint extension

Πα
x of the momentum operator to the domain D(Πα+π

x ) 6= D(Πα
x) of the operator Πα+π

x . Unfortunately
this means that for |φ(x) ∈ D(Πα

x) vectors X|φ(x)〉 ∈ D(Πα+π
x ) 6= D(Πα

x) and therefore the matrix
element of the commutator 〈φ(x)|[Πα

x, X]|φ(x)〉 calculated for |φ(x)〉 = |uα
n(x)〉, (where |uα

n(x)〉 is an
eigenvector of Πα

x) can not exist. So, as the result one can not calculate the unceratinty relation (4) for
the position and momentum.
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It seems that the root cause of these inconsistencies and paradoxes is the quantization procedure
for particles whose spatial motion is confined to a finite volume. The standard canonical quantization
procedure leads to the correct results if conventional space–phase variables px, (momentum), and x,
(position), can vary from −∞ to +∞: |px| < ∞, |x| < ∞. As it is stated in [48]: conventional
phase–space variables, such as p and q, where −∞ < p, q < +∞, with Poisson brackets {q, p} = 1, are
natural candidates to promote to basic quantum operators in the procedures that canonical quantization
employs. Simply if the spatial motion of the particle is confined to a finite volume then we have the
constrained system and the quantization procedure should take into account this fact and to be
consistent with the constraints.

As it has been shown the paradox appearing in the “symmetric” case can be removed if to use the
observation that from the classical point of view the particle in the box is the system with constraints
and to use the modified position operator, XM, (defined by (33) and (34)) consistent with these
constraints and replacing the standard position operator X. The use of the operator XM changes the
commutator (5) giving the results (35)–(37). Applying the modified position operator to calculate ∆φXM
for φ(x) ∈ L2(−[ l

2 , l
2 ]) and inserting the commutators (36) into the right hand side of the inequality (4)

may remove the above described inconsistencies appearing in the “symmetric” case considered in
Section 4.2. Simply using the modified position operator XM and the commutator (35)–(37) one finds
that expected value 〈[Px, X]〉φ of the commutator [Px, X] equals zero for φ(x) = uα

n(x) and also for
φ(x) fulfilling the condition (38) and that described below this formula. This commutator is nonzero
for φ(x) satisfying conditions (39). Summarizing this part, it should be noted that the properties of the
modified position operator XM defined in Section 4.2 and its implications are a proposal that requires
further in-depth studies.

One more observation concerning the “symmetric” case. It appears the in this case the potential
V(x) is not only symmetric with respect to the origin of the coordinate system but also with respect
to the combined transformations of the space reflection, P and the inversion of time, T , which are
defined by Equations (42) and (43). The potential V(x), and also eigenfunctions, uϑ

n(x) of the operator
Πϑ

x and the domain, D(Πϑ
x), are invariant under the PT transformation, which may explain slight

differences between “standard” and “symmetric” cases of the particle in the box.
In general, the problem of the particle in the infinite square well has not only a long tradition

of illustrating quantum concepts but also it has important practical meaning. Full and accurate
knowledge of the properties of the particle in the potential well is necessary to understand the
properties of such systems as quantum dots, quantum traps and and related problems. A problem
of a single slit diffraction experiment and the uncertainty relation of position and momentum in
such a system, where the spatial dimension is one (x ∈ [−∆x

2 , ∆x
2 ]—see [49]) is an example of such

related problems: In [49] the uncertainty relation was evaluated for a subset of functions with support
in [−∆x

2 , ∆x
2 ], which satisfy Dirichlet conditions at x = −∆x

2 and x = +∆x
2 ]. An another related

problem is a problem of the uncertainty principle for a particle localized in a compact domain D ⊂ Rn

considered in [50], where the approach used in [49] was applied. In this context, the information on
the behavior of a particle resulting from the uncertainty principles seems to be of key importance for a
full understanding of all the effects occurring in such systems and as it has been shown in Section 4 it
is very nontrivial problem (see also, e.g., [39]) and still needs further studies.

The detailed and rigorous mathematical analysis of the Heisenberg’s relation (2) together with (4)

shows that, e.g., for observables A def
= Xn and B def

= Pm, (where P = −ih̄ d
dx and m, n ∈ N), using the

so–called unitary dilation operator one can build from a normalized state |ψ(x)〉 ∈ L2(R) such
a function that the product of standard deviations of Xn and Pm calculated for this function can
vanish (for details see, e.g., [20]). This suggest that relations (2) and (4) may not be good relations,
strictly speaking that the product ∆ψ A · ∆ψB may not be a good measure of the uncertainty. This is why
in many papers were considered other relations between standard deviations ∆ψ A and ∆ψB [14,15]
having, e.g., a form of a sum of the squares of the standard deviations (see e.g., [14]): ‖δ0 A|ψ〉‖2 +

‖δ0B|ψ〉‖2 ≥ c0 > 0, where c0 is a real number and δ0 A, δ0B denote a suitably rescaled deviations δA
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and δB to have the same dimension, or to be dimensionless. A simple example of such a relation can be
found analyzing the case of Pauli matrices considered in Section 3: It is enough to take a sum of squares
of ∆φσx and ∆φσy. As it is seen, the inconsistencies of this type and others discussed in previous
Sections are integrated into inequality (4). For this reason, attempts are being made to improve and
refine the Heisenberg as well as Robertson and Schrodinger uncertainty relations (see, e.g., [14–17,20]).

From the analysis presented in Section 5 it follows that a status and role of the uncertainty
relations (1), (2) and (4) in PT –symmetric quantum theory seems to be unclear. It is because the
definition of the observable is determined by the choice of PT –symmetric Hamiltonian H. This means
that, for example, if A and B are observables with respect to the inner product (., .)C1PT defined by
means of the eigenfunction of the PT –symmetric Hamiltonian H1, from which the operator C1 is build,
then they need not be observables with respect to the inner product (., .)C2PT defined by eigenvectors
of such H2 6= H1 that H1 and H2 have not common eigenfunctions. Hence the relation corresponding
to the uncertainty relation (4) can not be considered as universally valid: The relations derived
for H1 need not hold within PT –symmetric quantum mechanics generated by the PT –symmetric
Hamiltonian H2 6= H1. What is more, as it was stated in [42], in typical models considered within
PT –symmetric quantum mechanics the position and momentum are not observables. This means
that the standard position–momentum uncertainty relation (2) can not be derived in such cases.
In conclusion: Within the PT –symmetric quantum mechanics the problem of relations corresponding
to the uncertainty relation (4) is open and needs further studies.
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