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Abstract: The subtraction of fuzzy numbers (FNs) is not an inverse operator to FNs addition.
The family of all oriented FNs (OFNs) may be considered as symmetrical closure of all the FNs
family in that the subtraction is an inverse operation to addition. An imprecise present value is
modelled by a trapezoidal oriented FN (TrOFN). Then, the expected discount factor (EDF) is a TrOFFN
too. This factor may be applied as a premise for invest-making. Proposed decision strategies are
dependent on a comparison of an oriented fuzzy profit index and the specific profitability threshold.
This way we get an investment recommendation described as a fuzzy subset on the fixed rating
scale. Risk premium measure is a special case of profit index. Further in the paper, the Sharpe’s
ratio, the Jensen’s ratio, the Treynor’s ratio, the Sortino’s ratio, Roy’s criterion and the Modiglianis’
coefficient are generalised for the case when an EDF is given as a TrOFN. In this way, we get many
different imprecise recommendations. For this reason, an imprecise recommendation management
module is described. Obtained results show that the proposed theory can be used as a theoretical
background for financial robo-advisers. All theoretical considerations are illustrated by means of a
simple empirical case study.

Keywords: behavioural finance; investment recommendations; oriented fuzzy number

1. Introduction

Imprecision is a natural feature of financial market information. A widely accepted way of
representing an imprecise number is a fuzzy number (FN). The notion of an ordered FN was intuitively
introduced by Kosiński et al. [1]. It was defined as an FN supplemented by its orientation. A significant
drawback of Kosiński’s theory is that there exists such ordered FNs that cannot be considered as FN [2].
This caused the original Kosiński’s theory to be revised by Piasecki [3]. At present, the ordered FNs
defined within Kosiński’s original theory are called Kosiński’s numbers [4–7]. If ordered FNs are
linked to the revised theory, then they are called Oriented FNs (OFNs) [6,7].

The family of all OFNs has a symmetry axis that is equal to the family R of all real numbers.
In Section 2, this axial symmetry is described in detail. The family of all OFNs may be defined
equivalently with the use of the discussed axial symmetry as the symmetrical closure of all of the FNs
family. Symmetry allows us to avoid problems related to the fact that FNs subtraction is not an inverse
operator to FNs addition.

A robo-adviser is an internet platform providing an automated financial planning service.
This service is always algorithm-driven. Therefore, no robo-adviser requires any human involvement.
It implies a minimal operating cost for any robo-advisor. Due to using robo-advisers we can apply
different finance models to develop algorithms editing financial advice. Implemented algorithms can
inform investors of any change in the market within a short period of time. In this way, robo-advisers
efficiently implement any investment strategy by using their built-in automated algorithms [8].
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With the development of Fintech, robo-adviser becomes more popular. The fundamental theoretical
background of robo-advisers is the classical mean-variance optimisation developed by Markowitz [9].
Nonetheless, this well-known approach is not good [10–12]. To obtain algorithms generating more
profitable portfolios, researchers take into account an investors’ risk-aversion. Then they construct
optimal portfolios by dealing with both conflicting objectives of minimising the risk and maximising
the return together in a static manner [11,13,14] and dynamic case [12,15,16]. Since the financial data
are imprecise, we can adapt robo-advisers using fuzzy logic [17,18] to financial practice. To the best of
my knowledge, no financial robo-advisers using OFNs have been described so far.

To deal with information imprecision, researches develop portfolio selection models with fuzzy
theory [19–40]. In all of the above-mentioned fuzzy models, an imprecision is included by the
assumption of fuzzy rates of return from financial instruments given a priori. Then, return rate (RR)
from portfolio can only be defined ex cathedra as a weighted sum of RRs assigned to its components.
This approach is only justified by the mechanical generalisation of Markowitz’s portfolio theory to the
fuzzy case. The proposed generalisation is not justified by a mathematical deduction. This greatly
reduces the reliability of performed analyses. It is a significant drawback of all fuzzy portfolio
publications stated above.

In general, a present value (PV) is equal to a current equivalent of a payment due at a fixed point
in time [41]. PV understood in this way is an imprecise value. For this reason, we can also point out
the PV imprecision as the cause of imprecision in the financial analysis. This approach is presented
in papers [42–50]. Then, with the help of mathematical deduction we can prove that the RR from a
portfolio is a linear combination of return rates of their components. This increases the credibility of
the performed financial analysis.

Fuzzy PV was proposed by Ward [51] as a discounted fuzzy prediction of a future payment.
Buckley [52] proposed fuzzy financial arithmetic. Greenhut [53], Sheen [54] and Huang [22] generalised
the definition of Ward. They expanded this definition to the case of a future payment described
by a fuzzy variable. In 2005, Tsao [44] generalised a fuzzy PV definition. He assumed that the
future payment may be considered as a fuzzy probabilistic set. Those authors described a present
value as a discounted, imprecisely evaluated future payment. Piasecki [45,46] proposed a different
approach. In this case, PV was imprecisely assessed on the basis of a current asset price. Buckley [52],
Gutierrez [55], Kuchta [56] and Lesage [57] showed the purposefulness of applying a trapezoidal
FN (TrFN) for fuzzy arithmetic. For this reason, we determine an imprecise PV by means of TrFN.
Piasecki [45] showed that if the PV is an FN, then its RR is a fuzzy probabilistic set [58]. Additionally,
then the expected RR is an FN. It is a theoretical background for investment-making models described
in [46]. Moreover, in [48] it is shown that the fuzzy expected discount factor (EDF) is a better tool
for appraising the considered securities than the fuzzy expected RR. Therefore, we use an EDF as a
premise for invest-making.

OFNs have already been used by many scientists to describe and analyse many decision-
making [59–64], financial [65–70] and economic [71,72] problems. Among other things, there it is
shown that

• The use of FNs in financial analysis only leads to averaging the imprecision risk,
• The application of OFNs in financial analysis may minimise imprecision risk.

Therefore, the main aim of this paper is an extension of the investment-making models described
in [46] to the case of imprecise PV estimated by trapezoidal OFNs (TrOFNs). The first attempt of this
subject was presented in [70]. Here, we use our experience gathered during our work on the other
criteria. Therefore, here we present a revised approach to the considered extension.

The paper is drafted as follows. Section 2 presents OFNs with their basic properties and describes
the imprecision evaluation by an energy and entropy measure. In Section 3, PV is assessed by TrOFNs.
The oriented fuzzy EDF is determined in Section 4. Investment recommendations dependent on the
oriented fuzzy EDF are discussed in Section 5. Profitability criteria for investments are extended in
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Section 6. In Section 7 we explore the management of a set of investment recommendations. Section 8
concludes the article and proposes some future research directions. In Appendix A, the optimisation
algorithm used is described in detail.

2. Fuzzy Sets—Selected Facts

2.1. Fuzzy Sets

Fuzzy sets (FSs) [73] are a suitable tool that allows to describe and process imprecise values and
information. In a given space X an FSA is distinguished by its membership function µA ∈ [0, 1]X in
the following manner

A =
{
(x,µA(x)); x ∈ X

}
(1)

By F (X) we denote the family of all FSs in a space X.
Multi-valued operations in the FSs family are defined by means of the following identities:

µA∪ B(x) = µA(x)∨ µB(x) = max
{
µA(x),µB(x)

}
(2)

µA∩ B(x) = µA(x)∧ µB(x) = min
{
µA(x),µB(x)

}
(3)

µAC(x) = 1− µA(x) (4)

FSs are widely used for modelling imprecise information. Following the work in [74],
the imprecision is understood as a composition of ambiguity and indistinctness of. Ambiguity
is defined a lack of a clear indication of one alternative among others. Indistinctness is defined as a lack
of an explicit distinction between distinguished and not distinguished alternatives. More imprecise
information is less useful. For this reason, it is sensible to assess the imprecision.

For the finite space X =
{
x1, x2, . . . , x f

}
, the suitable tool for assessing the ambiguity of an FS

A ∈ F (X) is the energy measure d : F (X)→ R+
0 [75] given as follows:

d(A) = m(A) =

f∑
i=1

µA(xi) (5)

The proper tool for measuring the indistinctness is the entropy measure e : F (X)→ R+
0 [76,77]

determined by the identity

e(A) =
m
(
A∩ AC

)
m(A∪ AC)

(6)

2.2. Fuzzy Numbers

The fuzzy number (FN) may be intuitively defined as FS in the real line R. The most general FN
definition is proposed by Dubois and Prade [78]. Any FN may be defined in an equivalent way as
follows [79]:

Theorem 1. For any FNL there exists such a non-decreasing sequence (a, b, c, d) ⊂ R thatL(a, b, c, d, LL, RL) =

L ∈ F (R) is determined by its membership function µL(·|a, b, c, d, LL, RL ) ∈ [0, 1]R described by the identity

µL(x|a, b, c, d, LL, RL) =


0, x < [a, d],
LL(x), x ∈ [a, b],
1, x ∈ [b, c],
RL(x), x ∈ [c, d].

(7)

where the left reference function LL ∈ [0, 1][a,b] and the right reference function RL ∈ [0, 1][c,d] are upper
semi-continuous monotonic ones meeting the conditions:
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LL(b) = RL(c) = 1 (8)

The family of all FNs is denoted by the symbol F.
The symbol ∗ denotes any arithmetic operation defined on R. By the symbol ~we denote such

extension of operation ∗ to F that it is coherent with Zadeh’s Extension Principle [80]. It means that, for
each pair (K ,L) ∈ F2 described by their membership functions µK,µL ∈ [0, 1]R, the FN

M = K ~L (9)

is described by membership function µM ∈ [0, 1]R determined by the identity:

µM(z) = sup
{
min

{
µK(x),µL(y)

}
: z = x ∗ y, (x, y) ∈ R

}
. (10)

A special case of FNs is trapezoidal FNs (TrFNs). Due to their simplicity and ease of performing
operations on them, they are often used in applications. A suitable definition of trapezoidal fuzzy
numbers is given in [81]:

Definition 1. For any non-decreasing sequence (a, b, c, d) ⊂ R, a trapezoidal FN (TrFN) is the FN T =

Tr(a, b, c, d) ∈ F defined by its membership functions µT ∈ [0, 1]R in the following way

µT(x) = µTr(x|a, b, c, d) =


0, x < [a, d],
x−a
b−a , x ∈ [a, b],
1, x ∈ [b, c],
x−d
c−d , x ∈ [c, d].

(11)

2.3. Oriented Fuzzy Number

Ordered FN was defined by Kosiński et al. [1] as an extension of the FN concept. An important
disadvantage of Kosiński’s theory is that there exists such ordered FNs that cannot be represented by a
membership function [2]. On the other hand, ordered FNs’ usefulness is a result of their interpretation
as FN supplemented by its orientation. The ordered FN orientation describes a forecast of the nearest
future changes of FN. This caused Kosiński’s theory to be revised by Piasecki [3]. An ordered FN
linked to the revised theory is called Oriented FN (OFN) [6,7]. In a general case, OFNs are defined
as follows:

Definition 2 [3]. For any monotonic sequence (a, b, c, d) ⊂ R, the oriented fuzzy number OFN
↔

L(a, b, c, d, SL, EL) =
↔

L is a pair of an orientation
→

a, d = (a, d) and a fuzzy set L ∈ F (R) described by
a membership function µL(·|a, b, c, d, SL, EL) ∈ [0, 1]R given by the identity

µL(x|a, b, c, d, SL, EL) =


0, x < [a, d] ≡ [d, a],
SL(x), x ∈ [a, b] ≡ [b, a],
1, x ∈ [b, c] ≡ [c, b],
EL(x), x ∈ [c, d] ≡ [d, c],

(12)

where the starting function SL ∈ [0, 1][a,b] and the ending function EL ∈ [0, 1][c,d] are upper semi-continuous
monotonic ones meeting the condition

∀x∈[a,d] : µL(x|a, b, c, d, SL, EL) (13)
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The symbol K denotes the space of all OFNs. If a < d, then any
↔

L(a, b, c, d, SL, EL) is a positively
oriented OFN. Any positively oriented OFN may be interpreted as such FN, which can increase in
the near future. The symbol K+ denotes the space of all positively oriented OFN. If a > d, then any
↔

L(a, b, c, d, SL, EL) is a negatively oriented OFN, which may be interpreted as decreasing FN. The symbol

K− denotes the space of all negatively oriented OFN. For a = d,
↔

L(a, b, c, d, SL, EL) = ~a� represents the
unoriented crisp number a ∈ R. Summing up, we see that

K+
∪ R∪ K− = K (14)

Let us consider the mapping U : K→ K given by identity

U

(
↔

L(a, b, c, d, SL, EL)
)
=
↔

L(d, c, b, a, EL, SL) (15)

This mapping meets following conditions:

↔

L ∈ K+
⇒U

(
↔

L

)
∈ K− (16)

↔

L ∈ K− ⇒U
(
↔

L

)
∈ K+ (17)

↔

L ∈ R⇒U
(
↔

L

)
=
↔

L (18)

It shows that the mapping (15) is axial symmetry on the space K of all OFNs. Then the symmetry
axis is identical with family R of all real numbers. Moreover, Theorem 1 together with Definition
2 implies that the space F of FNs and the space K+ of all positively oriented OFNs are isomorphic.
Therefore, we can say that the space K may be determined as symmetry closure of the space F.

In the studies planned here, we limit discussion to a special kind of OFNs defined as follows.

Definition 3 [3]. For any monotonic sequence (a, b, c, d) ⊂ R, the trapezoidal OFN (TrOFN)
↔

Tr(a, b, c, d) =
↔

T

is the pair of the orientation
→

a, d = (a, d) and a fuzzy set T ∈ F (R) determined by membership functions
µT ∈ [0, 1]R as follows

µT(x) = µTr(x|a, b, c, d) =


0, x < [a, d] ≡ [d, a],
x−a
b−a , x ∈ [a, b] ≡ [b, a],
1, x ∈ [b, c] ≡ [c, b],
x−d
c−d , x ∈ [c, d] ≡ [d, c].

(19)

The symbol KTr denotes the space of all TrOFNs.On the space KTr, a relation
↔

K .G̃E.Lwas defined
as follows

↔

K .G̃E.
↔

L ⇔ “TrOFN
↔

K is greater than or equal to TrOFN
↔

L (20)

This is a fuzzy preorder G̃E ∈ F (KTr ×KTr) described by membership function νGE ∈ [0, 1]KTr×KTr

described in detail in [6]. Due to these results, for any pair (
↔

Tr(a, b, c, d), h) ∈ KTr ×R we have:

νGE

(
↔

Tr(a, b, c, d), ~h�
)
=


0, h > max{a, d},

h−max{a,d}
max{b,c}−max{a,d} , max{a, d} ≥ h > max{b, c},

1, max{b, c} ≥ h,
(21)
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νGE

(
~h�,

↔

Tr(a, b, c, d)
)
=


0, h < min{a, d},

h−min{a,d}
min{b,c}−min{a,d} min{a, d} ≤ h < min{b, c},

1, min{b, c} ≤ h.
(22)

3. Oriented Present Value

The present value (PV) is defined as a current equivalent of a payment due at fixed point in
time [41]. Therefore, we commonly accept that PV of future payments may be imprecise. This means
that PV should be assessed with FNs. Such PV is called a fuzzy one. Buckley [52], Gutierrez [55],
Kuchta [56] and Lesage [57] show the soundness of using TrFNs as an imprecise financial arithmetic
tool. Moreover, PV estimation should be supplemented by a forecast of PV closest price changes.
These price changes may be subjectively predicted. Moreover, closest price changes may be predicted
with the help of the prediction tables presented in [82]. For these reasons, an imprecise PV should be
evaluated by OFN [7,70]. Such PV is called an oriented PV (O-PV). Any O-PV is estimated by TrOFN

↔

PV =
↔

Tr
(
Vs, V f , Vl, Ve

)
(23)

where the monotonic sequence
(
Vs, V f , P̌, Vl, Ve

)
is defined as follows

• P̌ is a quoted price,
• [Vs, Ve] ⊂ R+ is the set of all possible values of PV,

•

[
V f , Vl

]
⊂ [Vs, Ve] is the set of all values that do not noticeably differ from the quoted price P̌.

If we predict a rise in price then O-PV is described by a positively oriented TrOFN. If we predict a
fall in price, then O-PV is described by a negatively oriented OFN.

Example 1. We observe the portfolio π composed of company shares included in WIG20 quoted on the Warsaw
Stock Exchange (WSE). Based on a session closing on the WSE on 28 January 2020, for each observed share we
assess its O-PV equal to TrOFN describing its Japanese candle [83]. Shares’ O-PVs, obtained in such a manner,
are presented in Table 1. For each portfolio component Ŝ, we determine its quoted price P̌s as an initial price on
29.01.2020.

Table 1. Recorded values of the portfolio π components.

Stock Company Present Value
↔

PVs Quoted Price P̌s

ALR
↔

Tr(27.42; 27.30; 27.00; 26.84) 27.00

CCC
↔

Tr(83.35; 88.00; 88.00; 89.65) 88.00

CDR
↔

Tr(271.50; 271.50; 276.30; 276.30) 277.00

CPS
↔

Tr(26.42; 26.60; 27.04; 27.34) 27.20

DNP
↔

Tr(155.00; 155.00; 155.10; 157.30) 155.30

JSW
↔

Tr(18.60; 19.36; 20.14; 20.14) 20.32

KGH
↔

Tr(91.78; 93.60; 93.70; 94.90) 94.24

LTS
↔

Tr(83.88; 83.40; 81.16; 80.26) 81.44

LPP
↔

Tr(8205.00; 8380.00; 8395.00; 8460.00) 8385.00

MBK
↔

Tr(367.00; 366.00; 359.80; 357.00) 359.00

OPL
↔

Tr(7.01; 7.05; 7.20; 7.35) 7.17

PEO
↔

Tr(97.22; 97.70; 98.20; 98.66) 98.20

PGE
↔

Tr(7.08; 7.15; 7.30; 7.40) 7.30

PGN
↔

Tr(3.91; 3.88; 3.86; 3.82) 3.87
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Table 1. Cont.

Stock Company Present Value
↔

PVs Quoted Price P̌s

PKN
↔

Tr(83.22; 83.00; 81.62; 81.18) 81.90

PKO
↔

Tr(34.59; 34.68; 34.90; 35.26) 34.93

PLY
↔

Tr(35.82; 35.94; 36.76; 37.20) 36.70

PZU
↔

Tr(40.72; 40.73; 40.89; 41.11) 40.88

SPL
↔

Tr(276.20; 278.00; 281.80; 283.80) 287.00

TPE
↔

Tr(1.51; 1.53; 1.56; 1.56) 1.56

CCC, CDR, CPS, DNP, JWS, KGH, LPP, OPL, PEO, PGE, PKO, PLY, PZU, SPL and TPE are
evaluated by a positively oriented PV, which predicts a rise in a quoted price. Similarly, the stock
companies ALR, LTS, MBK, PGN and PKN are evaluated by a negatively oriented PV, which predicts a
fall in the quoted price.

4. Oriented Expected Discount Factor

We assume that duration t > 0 of an investment is fixed. Then, the considered security is
determined by two values: a foreseen FV = Vt and an estimated PV = V0. The benefits from owning
this security are characterised by the simple return rate (RR) defined by the identity

rt =
Vt −V0

V0
(24)

Variable FV is described by a relation

Ṽt(ω) = P̌·(1 + r̃t(ω)) (25)

where the simple RR r̃t : Ω→ R is determined for PV assessed as the quoted price P̌. After
Markowitz [9] we assume that the RR r̃ rate is the gaussian probability distribution N(r, σ).

In our case PV is determined as O-PV
↔

PV =
↔

Tr
(
Vs, V f , Vl, Ve

)
represented by its membership

function µ↔
Pv
∈ [0; 1]R given by the identity

µ ↔
PV

(x) = µ↔
Tr

(
x
∣∣∣Vs, V f , Vl, Ve

)
(26)

According to (10), the simple RR calculated for the O-PV is a fuzzy probabilistic set represented
by membership function ρ̃ ∈ [0; 1]R×Ω given as follows

ρ̃(r,ω) = sup
{
µ ↔

PV
(x) : r =

Vt(ω) − x
x

, x ∈ R
}
= µ ↔

PV

(
Vt(ω)

1 + r

)
= µ ↔

PV

(
P̌·

1 + r(ω)
1 + r

)
(27)

Then, the membership function ρ ∈ [0; 1]R of the expected RR is computed in the following manner

ρ(r) =
∫ +∞

−∞

µ ↔
PV

(
P̌·

1 + y
1 + r

)
dFr(y) = µ ↔

PV

(
P̌·

1 + r
1 + r

)
(28)

In [48] it is shown that the fuzzy expected discount factor (EDF) is a better tool for appraising any
securities than the expected fuzzy RR. Therefore, we determine EDF for the case of O-PV. In general,
for a given RR rt, the discount factor vt is explicitly determined by the identity
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vt =
1

1 + rt
(29)

We consider the EDF v ∈ R defined by the identity:

v =
1

1 + r
(30)

In line with (28), the membership function δ ∈ [0, 1]R of an oriented fuzzy EDF (O-EDF)
↔

V ∈ K is
given by the identity:

δ(v) = ρ
(

1
v − 1

)
= µ ↔

PV

(
P̌· 1+r

1+ 1
v−1

)
= µ ↔

PV

(
P̌· vv

)
= µ↔

Tr

(
v
∣∣∣∣∣Vs·υ

P̌
,

V f ·υ

P̌
, Vl·υ

P̌
, Ve·υ

P̌

) (31)

Then, O-EDF is given as follows:

↔

V =
↔

Tr
(

Vs

P̌
·υ,

V f

P̌
·υ,

Vl

P̌
·υ,

Ve

P̌
·υ

)
(32)

Example 2. All considerations in the paper are run for the quarterly period of the investment time t = 1 quarter.
We research the components of the portfolio π presented in Table 1. Using the one-year time series of quotations,
for each portfolio component Ŝ we calculate the following parameters:

• Expected RR rs,
• CAPM directional factor βs,
• Variance σ2

s ,
• Downside semi variance ς2

s .

With the application of (30) and (32), we calculated quarterly O-EDF for each component of the
portfolio π. All evaluations obtained in this way are presented in Table 2.

The O-EDF of a security described in this way is a TrOFN with the identical orientation as the
O-PV used for estimation. It is worth stressing that the maximum criterion of the expected RR can be
equivalently replaced by the minimum criterion of the EDF.

Table 2. Characteristic of portfolio π components.

Stock
Company

Expected
Return Rate

rs

CAPM
Factor βs

Variance σ2
s

Downside
Semi

Variance ς2
s

EDF
¯
vs OEDF

↔

Vs

ALR 0.0263 1.706 0.000031 0.000018 0.9744
↔

Tr(0.9896; 0.9852; 0.9744; 0.9686)
CCC 0.0367 2.160 0.000048 0.000026 0.9646

↔

Tr(0.9136; 0.9646; 0.9646; 0.9827)
CDR 0.2490 9.925 0.000311 0.000189 0.8006

↔

Tr(0.7847; 0.7847; 0.7986; 0.7986)
CPS 0.0594 3.852 0.000093 0.000050 0.9439

↔

Tr(0.9168; 0.9231; 0.9384; 0.9488)
DNP 0.0672 3.465 0.000011 0.000006 0.9370

↔

Tr(0.9352; 0.9352; 0.9358; 0.9491)
JSW 0.0199 −0.598 0.000016 0.000010 0.9805

↔

Tr(0.8975; 0.9342; 0.9718; 0.9718)
KGH 0.0567 2.699 0.000063 0.000039 0.9463

↔

Tr(0.9216; 0.9399; 0.9409; 0.9529)
LTS 0.1054 3.643 0.000161 0.000092 0.9047

↔

Tr(0.9318; 0.9265; 0.9016; 0.8916)
LPP 0.0872 1.958 0.000126 0.000071 0.9198

↔

Tr(0.9001; 0.9193; 0.9209; 0.9280)
MBK 0.0674 6.243 0.000097 0.000059 0.9369

↔

Tr(0.9578; 0.9552; 0.9390; 0.9317)
OPL 0.0278 1.9406 0.000028 0.000017 0.9730

↔

Tr(0.9513; 0.9567; 0.9771; 0.9974)
PEO 0.0459 1.348 0.000068 0.000036 0.9561

↔

Tr(0.9466; 0.9512; 0.9561; 0.9606)
PGE 0.0674 4.392 0.000099 0.000071 0.9369

↔

Tr(0.9087; 0.9177; 0.9369; 0.9497)
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Table 2. Cont.

Stock
Company

Expected
Return Rate

rs

CAPM
Factor βs

Variance σ2
s

Downside
Semi

Variance ς2
s

EDF
¯
vs OEDF

↔

Vs

PGN 0.0751 3.976 0.000109 0.000065 0.9302
↔

Tr(0.9398; 0.9326; 0.9278; 0.9182)
PKN 0.0408 2.674 0.000049 0.000029 0.9608

↔

Tr(0.9763; 0.9737; 0.9575; 0.9524)
PKO 0.1974 5.463 0.000216 0.000099 0.8351

↔

Tr(0.8270; 0.8291; 0.8344; 0.8430)
PLY 0.2607 6.2156 0.000589 0.000312 0.7932

↔

Tr(0.7742; 0.7768; 0.7945; 0.8040)
PZU 0.1952 5.541 0.000301 0.000181 0.8367

↔

Tr(0.8334; 0.8336; 0.8369; 0.8414)
SPL 0.3001 8.867 0.000563 0.000391 0.7692

↔

Tr(0.7403; 0.7451; 0.7553; 0.7606)
TPE 0.0432 2.991 0.000056 0.000035 0.9586

↔

Tr(0.9279; 0.9402; 0.9586; 0.9586)

5. Investment Recommendations

We understand an investment recommendation as a counsel given by the advisors to the investor.
After evaluating the stocks, the advisor compares the obtained assessment with the current market
value of the stocks. The difference between those values determines the potential of the investment
return rate. Advisors give various recommendations depending on the volume of the return rate
potential and its direction. Experts also define the potential of the return rate in different ways. We will
here consider the collection of standardised recommendations, which are applied in [46]. The rating
scale is given as the set A =

{
A++, A+, A0, A−, A−−

}
, where

• A++ denotes the advice Buy suggesting that the expected price is well above the current
quoted price,

• A+ denotes the advice Accumulate suggesting that the expected price is above the current
quoted price,

• A0 denotes the advice Hold suggesting that the expected price is similar to the current quoted price,
• A− denotes the advice Reduce suggesting that the expected price is below the current quoted price,
• A−− denotes the advice Sell suggesting that the expected price is well below the current quoted price.

The investor attributes each recommendation with the appropriate way of entering the transaction
and the value of its volume. The way of entering the transaction describes the investment strategy.
Investors can differ among one another by the implemented strategies.

Let fixed security Š be represented by the pair (rs, $s), where rs is an expected RR on Š and $s is
other parameter characterising Š. The symbol S denotes the set of all considered securities. Adviser’s
counsel depends on the expected RR. The criterion for a competent choice of advice can be presented as
a comparison of the profit index g(rs

∣∣∣$s) and the profitability threshold (PT) Ǧ, where g(·|$s ) : R→ R
is an increasing function of the expected RR. The advice choice function Λ : S×R→ 2A was given in
the following way [46]

A++
∈ Λ

(
Š, Ǧ

)
⇔ g(rs

∣∣∣$s) > Ǧ⇔ ¬g(rs
∣∣∣$s) ≤ Ǧ (33)

A+
∈ Λ

(
Š, Ǧ

)
⇔ g(rs

∣∣∣$s) ≥ Ǧ (34)

A0
∈ Λ

(
Š, Ǧ

)
⇔ g(rs

∣∣∣$s) = Ǧ⇔ ∧g(rs
∣∣∣$s) ≥ Ǧ∧ g(rs

∣∣∣$s) ≤ Ǧ (35)

A− ∈ Λ
(
Š, Ǧ

)
⇔ g(rs

∣∣∣$s) ≤ Ǧ (36)

A−− ∈ Λ
(
Š, Ǧ

)
⇔ g(rs

∣∣∣$s) < Ǧ⇔ ¬g(rs
∣∣∣$s) ≥ Ǧ (37)

This way, the advice set Λ
(
Š, Ǧ

)
⊂ A was assigned. We interpret the advice set Λ

(
Š, Ǧ

)
as the

investment recommendation given for the security Š.
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The security Š may be equivalently represented by the ordered pair (vs, $s), where vs is the EDF
determined by (30). Then the identity (30) implies

g(rs
∣∣∣$s) ≥ Ǧ⇔ vs ≤

1

1 + g−1
(
Ǧ
∣∣∣$s

) = Hs
(
Ǧ
)

(38)

g(rs
∣∣∣$s) ≤ Ǧ⇔ vs ≥ Hs

(
Ǧ
)

(39)

The value Hs is used as a specific profitability threshold (SPT) appointed for the security Š. Then,
the advice choice function Λ : S×R→ 2A is equivalently described in the following way

A++
∈ Λ

(
Š, Ǧ

)
⇔ ¬vs ≥ Hs

(
Ǧ
)

(40)

A+
∈ Λ

(
Š, Ǧ

)
⇔ vs ≤ Hs

(
Ǧ
)

(41)

A0
∈ Λ

(
Š, Ǧ

)
⇔ vs ≤ Hs

(
Ǧ
)
∧ vs ≥ Hs

(
Ǧ
)

(42)

A− ∈ Λ
(
Š, Ǧ

)
⇔ vs ≥ Hs

(
Ǧ
)

(43)

A−− ∈ Λ
(
Š, Ǧ

)
⇔ ¬vs ≤ Hs

(
Ǧ
)

(44)

We consider the case when the security Š is characterised by the ordered pair (
↔

Vs, $s) where
↔

Vs ∈ KTr is O-EDF calculated with use (32). Then the advice choice function Λ̃
(
Š, Ǧ

)
is FS described by

membership function λ
(
·

∣∣∣Š, Ǧ
)

: A→ [0, 1] determined in line with (40)–(44) in the following way:

λ
(
A++

∣∣∣Š, Ǧ
)
= 1− νGE

(
↔

Vs, ~Hs
(
Ǧ
)
�
)

(45)

λ
(
A+

∣∣∣Š, Ǧ
)
= νGE

(
~Hs

(
Ǧ
)
�,
↔

Vs

)
(46)

λ
(
A0

∣∣∣Š, Ǧ
)
= min

{
νGE

(
~Hs

(
Ǧ
)
�,
↔

Vs

)
, νGE

(
↔

Vs, ~Hs
(
Ǧ
)
�
)}

(47)

λ
(
A−

∣∣∣Š, Ǧ
)
= νGE

(
↔

Vs, ~Hs
(
Ǧ
)
�
)

(48)

λ
(
A−−

∣∣∣Š, Ǧ
)
= 1− νGE

(
~Hs

(
Ǧ
)
�,
↔

Vs

)
(49)

where νGE : KTr ×KTr → [0, 1] is membership function of relation “less than or equal” (20). The required
values of this function are computed with the use of (21) and (22).

From the point of view of invest-making, the value λ
(
A
∣∣∣Š, Ǧ

)
is understood as a recommendation

degree of the advice A ∈ A, i.e., a declared participation of the advisor’s responsibility in the case of
a final invest-made according to the advice A ∈ A. It implies that the investment recommendation
Λ̃
(
Š, Ǧ

)
is emphasised as a FS in the rating scale A.

In turn, the final decision is taken by the investors. Their personal responsibility for taking this
investment decision decreases along with the increase in the recommendation degree related to the
decision taken.

The increase in the ambiguity of the recommendation Λ̃
(
Š, Ǧ

)
∈ F (A) suggests a higher number

of alternative recommendations to choose from. This is an increase in the risk of choosing an incorrect
decision from recommended ones. This may result in obtaining a profit lower than maximal, that is
with a loss of chance. Such risk is called an ambiguity risk. The ambiguity risk burdening the
recommendation Λ̃

(
Š, Ǧ

)
∈ F (A) is assessed with an energy measure d

(
Λ̃
(
Š, Ǧ

))
computed with the

use of (5).
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An increase in the indistinctness of the recommendation Λ̃
(
Š, Ǧ

)
∈ F (A) suggests that the explicit

distinction between recommended and not recommended decisions is more difficult. This causes
an increase in the indistinctness risk understood as risk of choosing a not recommended decision.
The indistinctness risk burdening the recommendation Λ̃

(
Š, Ǧ

)
∈ F (A) is measured by the entropy

measure e
(
Λ̃
(
Š, Ǧ

))
computed with the use of (6).

An imprecision risk is always determined as a combination of indistinctness and ambiguity
risks combined.

6. The Profitability Criteria for Investments

We evaluate chosen securities traded on a fixed capital market. We always assume that there
exists a risk-free bond instrument represented by the pair (r0, 0). Moreover, we distinguish the market
portfolio represented by the pair (rM, σM).

Example 3. We focus on the WSE. We take into account a risk-free bound instrument determined as quarterly
treasure bonds with a risk-free RR r0 = 0.0075. The market portfolio is determined as the portfolio determining a
stock exchange index WIG. The RR from WIG has the normal distribution N

(
rM, σM

2
)
= N(0.0200, 0.000025).

6.1. Sharpe Ratio

The profit index is defined as Sharpe’s ratio estimating the amount of the premium per overall
risk unit. Then Sharpe’s PT is equal to the unit premium of the market portfolio risk [84].

If the security Š is represented by the pair (rs, σs), then, in line to Sharpe, the profit index
g(·|σs ) : R→ R and the PT Ǧ are defined as follows:

g(rs
∣∣∣σs) =

rs − r0

σs
(50)

Ǧ =
rM − r0

σM
(51)

We compute SPT Hs with the use of (38) in the following manner:

Hs =
σM

σs·(rM − r0) + σM·(r0 + 1)
(52)

Example 4. Using Equation (52), we compute an SPT Hs for all components of the portfolio π described in
Examples 1 and 2. Obtained SPT values are compared with O-EDFs in Table 3.

If we estimate PV by TrOFN presented in Table 1, then using the Sharpe criterion is simply
comparing an imprecise O-EDF with the precise SPT. By means of Equations (45)–(49), we compute the
values of the recommendation choice function presented in Table 4. Table 4 also presents information
on the imprecision risk burdening individual recommendations. That information will be used to
choose the recommendation.

Investment recommendations for ALR, CCC, OPL and PKN are burdened with the increased
ambiguity risk. Moreover, the recommendations for CCC, OPL and PKN carry the indistinctness
risk. For that reason, those recommendations are rejected. Eventually, only the following stocks are
attributed with “Buy” or “Accumulate” recommendation: CDR, CPS, DNP, JSW, KGH, LTS, LPP, MBK,
PEO, PGE, PGN, PKO, PLY, PZU, SPL and TPE. Thus, the disclosure of imprecision of PV estimations
allows rejecting riskier recommendations.
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Table 3. Specific profitability threshold (SPT) Hs for the Sharpe criterion.

Stock Company OEDF
↔

Vs SPT Hs

ALR
↔

Tr(0.9896; 0.9852; 0.9744; 0.9686) 0.9790

CCC
↔

Tr(0.9136; 0.9646; 0.9646; 0.9827) 0.9758

CDR
↔

Tr(0.7847; 0.7847; 0.7986; 0.7986) 0.9509

CPS
↔

Tr(0.9168; 0.9231; 0.9384; 0.9488) 0.9694

DNP
↔

Tr(0.9352; 0.9352; 0.9358; 0.9491) 0.9845

JSW
↔

Tr(0.8975; 0.9342; 0.9718; 0.9718) 0.9828

KGH
↔

Tr(0.9216; 0.9399; 0.9409; 0.9529) 0.9734

LTS
↔

Tr(0.9318; 0.9265; 0.9016; 0.8916) 0.9623

LPP
↔

Tr(0.9001; 0.9193; 0.9209; 0.9280) 0.9657

MBK
↔

Tr(0.9578; 0.9552; 0.9390; 0.9317) 0.9689

OPL
↔

Tr(0.9513; 0.9567; 0.9771; 0.9974) 0.9797

PEO
↔

Tr(0.9466; 0.9512; 0.9561; 0.9606) 0.9727

PGE
↔

Tr(0.9087; 0.9177; 0.9369; 0.9497) 0.9686

PGN
↔

Tr(0.9398; 0.9326; 0.9278; 0.9182) 0.9675

PKN
↔

Tr(0.9763; 0.9737; 0.9575; 0.9524) 0.9756

PKO
↔

Tr(0.8270; 0.8291; 0.8344; 0.8430) 0.9576

PLY
↔

Tr(0.7742; 0.7768; 0.7945; 0.8040) 0.9362

PZU
↔

Tr(0.8334; 0.8336; 0.8369; 0.8414) 0.9516

SPL
↔

Tr(0.7403; 0.7451; 0.7553; 0.7606) 0.9461

TPE
↔

Tr(0.9279; 0.9402; 0.9586; 0.9586) 0.9745

Table 4. Imprecise recommendations determined with the use of the Sharpe ratio.

Recommendation Choice Function
Stock Company A−− A− A0 A+ A++ Energy Measure Entropy Measure

ALR 0 1 1 1 0 3 0
CCC 0 0.3812 0.3812 1 0.6188 2.3812 0.2966
CDR 0 0 0 1 1 2 0
CPS 0 0 0 1 1 2 0
DNP 0 0 0 1 1 2 0
JSW 0 0 0 1 1 2 0
KGH 0 0 0 1 1 2 0
LTS 0 0 0 1 1 2 0
LPP 0 0 0 1 1 2 0
MBK 0 0 0 1 1 2 0
OPL 0 0.8719 0.8719 1 0.1281 2.8719 0.0833
PEO 0 0 0 1 1 2 0
PGE 0 0 0 1 1 2 0
PGN 0 0 0 1 1 2 0
PKN 0 0.2692 0.2692 1 0.7308 2.2692 0.1926
PKO 0 0 0 1 1 2 0
PLY 0 0 0 1 1 2 0
PZU 0 0 0 1 1 2 0
SPL 0 0 0 1 1 2 0
TPE 0 0 0 1 1 2 0

6.2. Jensen’s Alpha

The profit index is defined as Jensen’s alpha [85], estimating the amount of the premium for
market risk. The security Š is represented by the pair (rs, βs), where βs is the directional factor of the
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CAPM model assigned to this instrument. Then, the profit index g(·|σs ) : R→ R and the PT Ǧ are
defined as follows:

g(rs
∣∣∣βs) = rs − βs(rM − r0) (53)

Ǧ = r0 (54)

We calculate SPT Hs with the use of (38) in the following manner

Hs =
1

1 + r0 + βs(rM − r0)
(55)

Example 5. Using (55), we calculate a specific profitability threshold SPT Hs for all components of the portfolio
π described in Examples 1 and 2. The CAPM directional factors for each portfolio component are presented in
Table 2. Evaluations obtained in this way are presented in Table 5.

Table 5. SPT Hs for the Jensen’s alpha.

Stock Company OEDF
↔

Vs SPT Hs

ALR
↔

Tr(0.9896; 0.9852; 0.9744; 0.9686) 0.9720

CCC
↔

Tr(0.9136; 0.9646; 0.9646; 0.9827) 0.9667

CDR
↔

Tr(0.7847; 0.7847; 0.7986; 0.7986) 0.8837

CPS
↔

Tr(0.9168; 0.9231; 0.9384; 0.9488) 0.9473

DNP
↔

Tr(0.9352; 0.9352; 0.9358; 0.9491) 0.9517

JSW
↔

Tr(0.8975; 0.9342; 0.9718; 0.9718) 1.0000

KGH
↔

Tr(0.9216; 0.9399; 0.9409; 0.9529) 0.9604

LTS
↔

Tr(0.9318; 0.9265; 0.9016; 0.8916) 0.9496

LPP
↔

Tr(0.9001; 0.9193; 0.9209; 0.9280) 0.9690

MBK
↔

Tr(0.9578; 0.9552; 0.9390; 0.9317) 0.9212

OPL
↔

Tr(0.9513; 0.9567; 0.9771; 0.9974) 0.9692

PEO
↔

Tr(0.9466; 0.9512; 0.9561; 0.9606) 0.9762

PGE
↔

Tr(0.9087; 0.9177; 0.9369; 0.9497) 0.9413

PGN
↔

Tr(0.9398; 0.9326; 0.9278; 0.9182) 0.9459

PKN
↔

Tr(0.9763; 0.9737; 0.9575; 0.9524) 0.9607

PKO
↔

Tr(0.8270; 0.8291; 0.8344; 0.8430) 0.9296

PLY
↔

Tr(0.7742; 0.7768; 0.7945; 0.8040) 0.9215

PZU
↔

Tr(0.8334; 0.8336; 0.8369; 0.8414) 0.9287

SPL
↔

Tr(0.7403; 0.7451; 0.7553; 0.7606) 0.8942

TPE
↔

Tr(0.9279; 0.9402; 0.9586; 0.9586) 0.9570

If now we estimate PV with the use of TrOFN presented in Table 1 then using the Jensen’s alpha
goes down to the comparison of an imprecise O-EDF with the precise SPT. By means of (45)–(49) we
estimate the values of a recommendation choice function presented in Table 6.

Investment recommendations for ALR, CCC, CPS, OPL, PGE, PKN and TPE are burdened with
the increased ambiguity risk. Moreover, the recommendations for ALR, CCC, CPS and PGE carry an
indistinctness risk. For that reason, those recommendations are rejected. Eventually, only the following
stocks are attributed with “Buy” or “Accumulate” advice: CDR, DNP, JSW, KGH, LTS, LPP, PEO, PGN,
PKO, PLY, PZU and SPL. Advice “Sell” or “Reduce” were associated with MBK. Thus, the disclosure
of imprecision of PV estimations allows rejecting riskier recommendations.
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Table 6. Imprecise recommendations determined with the use of Jensen’s alpha.

Recommendation Choice Function
Stock Company A−− A− A0 A+ A++ Energy Measure Entropy Measure

ALR 0.4138 1 0.5862 0.5862 0 2.5862 0.3303
CCC 0 0.8840 0.8840 1 0.1160 2.8840 0.0748
CDR 0 0 0 1 1 2 0
CPS 0 0.1442 0.1442 1 0.8558 2.1442 0.0947
DNP 0 0 0 1 1 2 0
JSW 0 0 0 1 1 2 0
KGH 0 0 0 1 1 2 0
LTS 0 0 0 1 1 2 0
LPP 0 0 0 1 1 2 0
MBK 1 1 0 0 0 2 0
OPL 0 1 1 1 0 3 0
PEO 0 0 0 1 1 2 0
PGE 0 0.6563 0.6563 1 0.3437 2.6563 0.2598
PGN 0 0 0 1 1 2 0
PKN 0 1 1 1 0 3 0
PKO 0 0 0 1 1 2 0
PLY 0 0 0 1 1 2 0
PZU 0 0 0 1 1 2 0
SPL 0 0 0 1 1 2 0
TPE 0 1 1 1 0 3 0

6.3. Treynor Ratio

The profit index is defined as the Treynor ratio [86], which estimates the amount of premium for
the market risk. The security Š is represented by the pair (rs, βs), where βs is the directional factor of
the CAPM model assigned to this instrument. Then the profit index g(·|σs ) : R→ R and the PT Ǧ are
defined as follows:

g(rs
∣∣∣βs) =

rs − r0

βs
(56)

Ǧ = rM − r0 (57)

We compute SPT Hs with the use of (38) in the following manner

Hs =
1

1 + rs + βs(rM − r0)
(58)

Example 6. Using (58), we calculate SPT for all components of the portfolio π described in Examples 1 and 2.
Evaluations obtained in this way are presented in Table 7.

If we estimate PV with the use of TrOFN presented in Table 1 then using the Treynor ratio criterion
goes down to the comparison of an imprecise O-EDF with the precise SPT. By means of (45)–(49) we
estimate the values of the recommendation choice function presented in Table 8.

Investment recommendation for CCC is burdened with an increased ambiguity risk and carries
an indistinctness risk. For that reason, this recommendation is rejected. Eventually, only the following
stocks are attributed with “Sell” or “Reduce” advice: ALR, CDR, CPS, DNP, KGH, LTS, LPP, MBK,
OPL, PEO, PGE, PGN, PKN, PKO, PLY, PZU, SPL and TPE. Advice “Buy” or “Accumulate” were
associated just with the stock of JSW. Thus, the disclosure of imprecision of PV estimations allows
rejecting riskier recommendations.
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Table 7. SPT Hs for the Treynor ratio.

Stock Company OEDF
↔

Vs SPT Hs

ALR
↔

Tr(0.9896; 0.9852; 0.9744; 0.9686) 0.9545

CCC
↔

Tr(0.9136; 0.9646; 0.9646; 0.9827) 0.9401

CDR
↔

Tr(0.7847; 0.7847; 0.7986; 0.7986) 0.7283

CPS
↔

Tr(0.9168; 0.9231; 0.9384; 0.9488) 0.9029

DNP
↔

Tr(0.9352; 0.9352; 0.9358; 0.9491) 0.9005

JSW
↔

Tr(0.8975; 0.9342; 0.9718; 0.9718) 0.9877

KGH
↔

Tr(0.9216; 0.9399; 0.9409; 0.9529) 0.9171

LTS
↔

Tr(0.9318; 0.9265; 0.9016; 0.8916) 0.8689

LPP
↔

Tr(0.9001; 0.9193; 0.9209; 0.9280) 0.8995

MBK
↔

Tr(0.9578; 0.9552; 0.9390; 0.9317) 0.8730

OPL
↔

Tr(0.9513; 0.9567; 0.9771; 0.9974) 0.9505

PEO
↔

Tr(0.9466; 0.9512; 0.9561; 0.9606) 0.9410

PGE
↔

Tr(0.9087; 0.9177; 0.9369; 0.9497) 0.8910

PGN
↔

Tr(0.9398; 0.9326; 0.9278; 0.9182) 0.8891

PKN
↔

Tr(0.9763; 0.9737; 0.9575; 0.9524) 0.9309

PKO
↔

Tr(0.8270; 0.8291; 0.8344; 0.8430) 0.7901

PLY
↔

Tr(0.7742; 0.7768; 0.7945; 0.8040) 0.7472

PZU
↔

Tr(0.8334; 0.8336; 0.8369; 0.8414) 0.7909

SPL
↔

Tr(0.7403; 0.7451; 0.7553; 0.7606) 0.7088

TPE
↔

Tr(0.9279; 0.9402; 0.9586; 0.9586) 0.9254

Table 8. Imprecise recommendations determined with use Treynor ratio.

Recommendation Choice Function
Stock Company A−− A− A0 A+ A++ Energy Measure Entropy Measure

ALR 1 1 0 0 0 2 0
CCC 0.4804 1 0.5196 0.5196 0 2.5196 0.4050
CDR 1 1 0 0 0 2 0
CPS 1 1 0 0 0 2 0
DNP 1 1 0 0 0 2 0
JSW 0 0 0 1 1 2 0
KGH 1 1 0 0 0 2 0
LTS 1 1 0 0 0 2 0
LPP 1 1 0 0 0 2 0
MBK 1 1 0 0 0 2 0
OPL 1 1 0 0 0 2 0
PEO 1 1 0 0 0 2 0
PGE 1 1 0 0 0 2 0
PGN 1 1 0 0 0 2 0
PKN 1 1 0 0 0 2 0
PKO 1 1 0 0 0 2 0
PLY 1 1 0 0 0 2 0
PZU 1 1 0 0 0 2 0
SPL 1 1 0 0 0 2 0
TPE 1 1 0 0 0 2 0

6.4. Sortino Ratio

The Sortino ratio [87] is a tool for risk management under a financial equilibrium. In this model
we compare the expected RR rs from considered security and the expected return rate rM from the
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distinguished market portfolio. We consider the advice choice function where the profit index and
the limit value are determined by the Sortino ratio. Then, the profit index evaluates the amount of a
specific unit premium for the loss risk. Moreover, the limit value evaluates an amount of the market
unit premium for the loss risk. The benchmark of our assessment is a market portfolio represented by
such an ordered pair

(
rM, ςM

2
)
, where the downside semi variance ςM

2 evaluates the market loss risk.
The reference point is a risk-free bond instrument represented by the ordered pair (r0, 0), where r0 is a
risk-free return rate.

The considered security Š is represented by the ordered pair
(
rs, ς2

S

)
, where downside semi variance

ςS
2 evaluates the loss risk. Then, Sortino and Price (1997) define the profit index g(·|ςs ) : R→ R and

the limit value PT Ǧ as follows:
g(rs

∣∣∣ςs) =
rs − r0

ςs
(59)

Ǧ =
rM − r0

ςM
(60)

We compute SPT Hs
(
Ǧ
)

with the use of (38) in the following manner

Hs
(
Ǧ
)
=

ςM

ςs·(rM − r0) + ςM·(r0 + 1)
(61)

Example 7. The market portfolio is represented by the ordered pair
(
rM, ςM

2
)
= (0.0200, 0.000015). Using

(61), we calculate SPT for all securities belonging to the portfolio π described in Examples 1 and 2. Evaluations
obtained in this way are presented in Table 9.

Table 9. SPT Hs for the Sortino ratio.

Stock Company OEDF
↔

Vs SPT Hs

ALR
↔

Tr(0.9896; 0.9852; 0.9744; 0.9686) 0.9793

CCC
↔

Tr(0.9136; 0.9646; 0.9646; 0.9827) 0.9766

CDR
↔

Tr(0.7847; 0.7847; 0.7986; 0.7986) 0.9507

CPS
↔

Tr(0.9168; 0.9231; 0.9384; 0.9488) 0.9706

DNP
↔

Tr(0.9352; 0.9352; 0.9358; 0.9491) 0.9848

JSW
↔

Tr(0.8975; 0.9342; 0.9718; 0.9718) 0.9826

KGH
↔

Tr(0.9216; 0.9399; 0.9409; 0.9529) 0.9731

LTS
↔

Tr(0.9318; 0.9265; 0.9016; 0.8916) 0.9630

LPP
↔

Tr(0.9001; 0.9193; 0.9209; 0.9280) 0.9665

MBK
↔

Tr(0.9578; 0.9552; 0.9390; 0.9317) 0.9687

OPL
↔

Tr(0.9513; 0.9567; 0.9771; 0.9974) 0.9796

PEO
↔

Tr(0.9466; 0.9512; 0.9561; 0.9606) 0.9738

PGE
↔

Tr(0.9087; 0.9177; 0.9369; 0.9497) 0.9665

PGN
↔

Tr(0.9398; 0.9326; 0.9278; 0.9182) 0.9676

PKN
↔

Tr(0.9763; 0.9737; 0.9575; 0.9524) 0.9757

PKO
↔

Tr(0.8270; 0.8291; 0.8344; 0.8430) 0.9619

PLY
↔

Tr(0.7742; 0.7768; 0.7945; 0.8040) 0.9394

PZU
↔

Tr(0.8334; 0.8336; 0.8369; 0.8414) 0.9516

SPL
↔

Tr(0.7403; 0.7451; 0.7553; 0.7606) 0.9334

TPE
↔

Tr(0.9279; 0.9402; 0.9586; 0.9586) 0.9741
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For each considered security, by means of (45)–(49) we calculate membership functions of
investment recommendations presented in Table 10.

Table 10. Imprecise recommendations determined with the use of the Sortino ratio.

Recommendation Choice Function
Stock Company A−− A− A0 A+ A++ Energy Measure Entropy Measure

ALR 0 1 1 1 0 3 0
CCC 0 0.3370 0.3370 1 0.663 2.3370 0.0228
CDR 0 0 0 1 1 2 0
CPS 0 0 0 1 1 2 0
DNP 0 0 0 1 1 2 0
JSW 0 0 0 1 1 2 0
KGH 0 0 0 1 1 2 0
LTS 0 0 0 1 1 2 0
LPP 0 0 0 1 1 2 0
MBK 0 0 0 1 1 2 0
OPL 0 0.8769 0.8769 1 0.1231 2.8769 0.0798
PEO 0 0 0 1 1 2 0
PGE 0 0 0 1 1 2 0
PGN 0 0 0 1 1 2 0
PKN 0 0.2308 0.2308 1 0.7692 2.2308 0.1607
PKO 0 0 0 1 1 2 0
PLY 0 0 0 1 1 2 0
PZU 0 0 0 1 1 2 0
SPL 0 0 0 1 1 2 0
TPE 0 0 0 1 1 2 0

Investment recommendations for ALR, CCC, OPL and PKN are burdened with the increased
ambiguity risk. Moreover, the recommendations for CCC, OPL and PKN carry the indistinctness
risk. For that reason, those recommendations are rejected. Eventually, only the following stocks are
attributed with “Buy” or “Accumulate” advice: CDR, CPS, DNP, JSW, KGH, LTS, LPP, MBK, PEO,
PGE, PGN, PKO, PLY, PZU, SPL and TPE. Thus, the disclosure of the imprecision of PV estimations
allows rejecting riskier recommendations.

6.5. Modiglianis’ Coefficient

In the crisp case, the Modiglianis’ Coefficient Criterion is equivalent to Sharpe Ratio Criterion.
In this model, the compared values are the expected RR on a security and the expected RR on the
market portfolio. Modiglianis’ profit coefficient estimates the bonus over market profits. Modiglianis’
limit value equals zero.

If the security Š is represented by the pair
(
rs, σ2

S

)
, then Modigliani [88] defines the profit index

g(·|σs ) : R→ R and the PT Ǧ as follows:

g(rs
∣∣∣σs) = r0 − rM +

rs − r0

σs
·σM (62)

Ǧ = 0 (63)

We compute SPT Hs with the use of (38) in the following manner

Hs =
σM

σs·(rM − r0) + σM·(r0 + 1)
(64)

We see that in a fuzzy case, the Modiglianis’ Coefficient Criterion is also equivalent to the Sharpe
Ratio Criterion. In this case, the recommendations obtained with the use of Modiglianis’ Coefficient
can be found in Table 4.
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6.6. Roy’s Criterion

Roy [89] has consider a fixed security Š, represented by the pair (rs, σs), where rs is an
expected return on Š and σ2

S is the variance of a return rate of the considered financial instrument.
After Markowitz [9] we assume that the considered security Š has a simple return rate with Gaussian
distribution N(rs, σs). This distribution is described by its increasing and continuous cumulative
distribution function F

(
·

∣∣∣rs, σs
)

: R→ [0; 1] given by the identity

F(x
∣∣∣rs, σs) = Φ

(
x− rs

σs

)
(65)

where the function Φ : R→ [0; 1] is the cumulative distribution function of the Gaussian distribution
N(0, 1). The Safety Condition [89] is given as follows:

F(L
∣∣∣rs, σs) = ε (66)

where

• L—a minimum acceptable RR,
• ε—the probability of RR realisation below the minimum acceptable rate.

The RR realisation below the minimum acceptable rate is identified with a loss. The Roy’s criterion
minimises the probability of a loss for a set minimum acceptable rate of return [46]. Additionally,
the investor assumes the maximum level ε∗ of the loss probability. Then the Roy’s criterion is described
by the inequality

F(L
∣∣∣rs, σs) = Φ

(
L− rs

σs

)
≤ ε∗ <

1
2

(67)

It implies that
rs ≥ L− σs·Φ−1(ε∗) (68)

In line with (38), SPT is given as follows

Hs =
1

1 + L− σs·Φ−1(ε∗)
(69)

Example 8. We study recommendations implied by Roy’s criterion all components of portfolio π described in
Example 1. The investor assumes the minimal acceptable RR L = 0.0075. Additionally, the investor assumes
the maximum level of a loss probability ε∗ = 0.05. Then, we have Φ−1(0.05) = −1.64. Table 2 lists the values
of O-EDF. Using (69), we compute SPT for all components of the portfolio π described in Examples 1 and 2.
Evaluations obtained in this way are presented in Table 11.

If we estimate PV with the use of TrOFN presented in Table 1 then using the Roy’s criterion goes
down to the comparison of an imprecise OEF with the precise SPT [70]. By means of (45)–(49) we then
estimate the values of a recommendation choice function presented in Table 12.

Investment recommendations for ALR and CCC are burdened with an increased ambiguity
risk. Moreover, the recommendations for CCC carry the indistinctness risk. For that reason, those
recommendations are rejected. Eventually, only the following stocks are attributed with “Buy” or
“Accumulate” advice: CDR, CPS, DNP, JSW, KGH, LTS, LPP, MBK, OPL, PEO, PGE, PGN, PKN,
PKO, PLY, PZU, SPL and TPE. Thus, the disclosure of imprecision of PV estimations allows rejecting
riskier recommendations.
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Table 11. SPT Hs for the Roy’s criterion.

Stock Company OEDF
↔

Vs SPT Hs

ALR
↔

Tr(0.9896; 0.9852; 0.9744; 0.9686) 0.9836

CCC
↔

Tr(0.9136; 0.9646; 0.9646; 0.9827) 0.9815

CDR
↔

Tr(0.7847; 0.7847; 0.7986; 0.7986) 0.9649

CPS
↔

Tr(0.9168; 0.9231; 0.9384; 0.9488) 0.9772

DNP
↔

Tr(0.9352; 0.9352; 0.9358; 0.9491) 0.9873

JSW
↔

Tr(0.8975; 0.9342; 0.9718; 0.9718) 0.9861

KGH
↔

Tr(0.9216; 0.9399; 0.9409; 0.9529) 0.9799

LTS
↔

Tr(0.9318; 0.9265; 0.9016; 0.8916) 0.9725

LPP
↔

Tr(0.9001; 0.9193; 0.9209; 0.9280) 0.9748

MBK
↔

Tr(0.9578; 0.9552; 0.9390; 0.9317) 0.9769

OPL
↔

Tr(0.9513; 0.9567; 0.9771; 0.9974) 0.9841

PEO
↔

Tr(0.9466; 0.9512; 0.9561; 0.9606) 0.9794

PGE
↔

Tr(0.9087; 0.9177; 0.9369; 0.9497) 0.9767

PGN
↔

Tr(0.9398; 0.9326; 0.9278; 0.9182) 0.9760

PKN
↔

Tr(0.9763; 0.9737; 0.9575; 0.9524) 0.9814

PKO
↔

Tr(0.8270; 0.8291; 0.8344; 0.8430) 0.9694

PLY
↔

Tr(0.7742; 0.7768; 0.7945; 0.8040) 0.9548

PZU
↔

Tr(0.8334; 0.8336; 0.8369; 0.8414) 0.9653

SPL
↔

Tr(0.7403; 0.7451; 0.7553; 0.7606) 0.9557

TPE
↔

Tr(0.9279; 0.9402; 0.9586; 0.9586) 0.9806

Table 12. Imprecise recommendations.

Recommendation Choice Function
Stock Company A−− A− A0 A+ A++ Energy Measure Entropy Measure

ALR 0 1 1 1 0 3 0
CCC 0 0.0663 0.0663 1 0.9337 2.0663 0.0414
CDR 0 0 0 1 1 2 0
CPS 0 0 0 1 1 2 0
DNP 0 0 0 1 1 2 0
JSW 0 0 0 1 1 2 0
KGH 0 0 0 1 1 2 0
LTS 0 0 0 1 1 2 0
LPP 0 0 0 1 1 2 0
MBK 0 0 0 1 1 2 0
OPL 0 1 1 1 0 3 0
PEO 0 0 0 1 1 2 0
PGE 0 0 0 1 1 2 0
PGN 0 0 0 1 1 2 0
PKN 0 0 0 1 1 2 0
PKO 0 0 0 1 1 2 0
PLY 0 0 0 1 1 2 0
PZU 0 0 0 1 1 2 0
SPL 0 0 0 1 1 2 0
TPE 0 0 0 1 1 2 0

6.7. Discussions

This chapter presented the recommendations obtained by means of ratios representing various
criteria of assessment of the current financial efficiency of a considered asset. Here we have
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• Sharpe ratio and Sortino ratio used to maximise the premium per overall risk unit,
• Jensen’s alpha and Treynor ratio used to maximise the premium for market risk.
• Roy’s criterion used to minimise the probability of bearing the unacceptable loss.

This opulence of the used criteria explains to some extent the variety of recommendations
attributed by the mentioned criteria to the same financial instrument. However, this is not the
only reason of the differentiation between those recommendations. We should pay attention to a
big differentiation of the recommendations established by Jensen’s alpha and Treynor ratio used
to maximise the premium for risk. This phenomenon is difficult to explain substantively. Hence,
we deduce that while managing the chosen financial instruments, we should take into account a fixed
set of recommendations that attributed to them. The next chapter will be dedicated to the issue of
managing the fixed set of investment recommendations.

7. Management of Investment Recommendation Set

In Sections 5 and 6, the proposed procedure for recommendations was always considered in
the case of one established criterion. Due to that we could mark all recommendations with a single
symbol. In this chapter we will consider the relations between recommendations with various criteria
attributed to them. For a bigger transparency of those considerations we will introduce a modified
system of recommendation labels.

Any FS Λ̃γ ∈ F (A) is called a recommendation. The subscript γ means any set of symbols
identifying the kind of distinguished recommendation. Any recommendation Λ̃γ is represented by its
membership function λγ : A→ [0, 1] . Also, each recommendation can be noted as

Λ̃γ =
λγ(A−−)

A−−
+
λγ(A−)

A−
+
λγ

(
A0

)
A0 +

λγ(A+)

A+
+
λγ(A++)

A++
(70)

In special cases we have

Λ̃γ =
0

A−−
+

0
A−

+
0

A0 +
0

A+
+

0
A++

= ∅ (71)

Λ̃γ =
1

A−−
+

1
A−

+
1

A0 +
1

A+
+

1
A++

= A (72)

Moreover, in notation (70) of recommendation Λ̃γ we can omit every advice A ∈ A satisfying the
condition µγ(A) = 0. Each security Š is assigned a recommendation Λ̃S,1, Λ̃S,2 . . . , Λ̃S,5 ∈ F (A), where

• Λ̃S,1—recommendations obtained with the use of the Sharpe ratio,

• Λ̃S,2—recommendations obtained with the use of Jensen’s alpha,

• Λ̃S,3—recommendations obtained with the use of the Treynor ratio,

• Λ̃S,4—recommendations obtained with the use of the Sortino ratio,

• Λ̃S,5—recommendations obtained with the use of Roy’s criterion.

Example 9. Table 12 presents the recommendation

Λ̃CCC,5 =
0

A−−
+

0.0663
A−

+
0.0663

A0 +
1

A+
+

0.9337
A++

=
0.0663

A−
+

0.0663
A0 +

1
A+

+
0.9337
A++

Let us note that various criteria assign different recommendations to the same security.
Each recommendation can bear a different imprecision risk. We propose to limit the acceptable
recommendations to those that are characterised by the minimal risk of imprecision. However,



Symmetry 2020, 12, 1672 21 of 34

imprecision is evaluated by the means of two indices, which should be minimised. In this case, to
minimise the risk, a multicriterial approach was implemented.

Each recommendation Λ̃S,i is given a pair
(
d
(
Λ̃S,i

)
, e

(
Λ̃S,i

))
where d

(
Λ̃S,i

)
and e

(
Λ̃S,i

)
respectively

mean energy and entropy measures. On the recommendation set we define two preorders
“Λ̃S,i is more acceptable than Λ̃S, j” :

Λ̃S,i Q1Λ̃S, j ⇔ d
(
Λ̃S,i

)
≤ d

(
Λ̃S, j

)
(73)

Λ̃S,i Q2Λ̃S, j ⇔ e
(
Λ̃S,i

)
≤ e

(
Λ̃S, j

)
(74)

Those preorders are formal models of ambiguity and indistinctness of information minimisation
criterion. A multicriterial comparison defined by the preorders Q1 and Q2 is a model of satisfying the
postulate of minimisation of both factors.

Using the multicriterial comparison (73) and (74) for each security Š we determine the Pareto
optimum Os which includes all acceptable recommendations. To solve this optimisation task, we use
an algorithm described in Appendix A.

Example 10. For each security Ŝ described in Example 1, using respectively Sharpe ratio, Jensen’s alpha, Treynor
ratio, Sortino ratio, and Roy’s criterion, we determined recommendations Λ̃S,1, Λ̃S,2, Λ̃S,3, Λ̃S,4, Λ̃S,5. Those
recommendations are presented in Tables 4, 6, 8, 10 and 12. Using the multidimensional comparison (73) and
(74), for each security Ŝ we determine the Pareto optimum Os containing the information of a minimum risk.
Those optima are shown in Table 13.

Table 13. Pareto optimum of portfolio π components.

Stock Company Pareto Optimum

ALR
{
Λ̃ALR,3

}
CCC

{
Λ̃CCC,4, Λ̃CCC,5

}
CDR

{
Λ̃CDR,1, Λ̃CDR,2, Λ̃CDR,3, Λ̃CDR,4, Λ̃CDR,5

}
CPS

{
Λ̃CPS,1, Λ̃CPS,3, Λ̃CPS,4, Λ̃CPS,5

}
DNP

{
Λ̃DNP,1, Λ̃DNP,2, Λ̃DNP,3, Λ̃DNP,4, Λ̃DNP,5

}
JSW

{
Λ̃JSW,1, Λ̃JSW,2, Λ̃JSW,3, Λ̃JSW,4, Λ̃JSW,5

}
KGH

{
Λ̃KGH,1, Λ̃KGH,2, Λ̃KGH,3, Λ̃KGH,4, Λ̃KGH,5

}
LTS

{
Λ̃LTS,1, Λ̃LTS,2, Λ̃LTS,3, Λ̃LTS,4, Λ̃LTS,5

}
LPP

{
Λ̃LPP,1, Λ̃LPP,2, Λ̃LPP,3, Λ̃LPP,4, Λ̃LPP,5

}
MBK

{
Λ̃MBK,1, Λ̃MBK,2, Λ̃MBK,3, Λ̃MBK,4, Λ̃MBK,5

}
OPL

{
Λ̃OPL,3

}
PEO

{
Λ̃PEO,1, Λ̃PEO,2, Λ̃PEO,3, Λ̃PEO,4, Λ̃PEO,5

}
PGE

{
Λ̃PGE,1, Λ̃PGE,3, Λ̃PGE,4, Λ̃PGE,5

}
PGN

{
Λ̃PGN,1, Λ̃PGN,2, Λ̃PGN,3, Λ̃PGN,4, Λ̃PGN,5

}
PKN

{
Λ̃PKN,3, Λ̃PKN,5

}
PKO

{
Λ̃PKO,1, Λ̃PKO,2, Λ̃PKO,3, Λ̃PKO,4, Λ̃PKO,5

}
PLY

{
Λ̃PLY,1, Λ̃PLY,2, Λ̃PLY,3, Λ̃PLY,4, Λ̃PLY,5

}
PZU

{
Λ̃PZU,1, Λ̃PZU,2, Λ̃PZU,3, Λ̃PZU,4, Λ̃PZU,5

}
SPL

{
Λ̃SPL,1, Λ̃SPL,2, Λ̃SPL,3, Λ̃SPL,4, Λ̃SPL,5

}
TPE

{
Λ̃TPE,1, Λ̃TPE,2, Λ̃TPE,3, Λ̃TPE,4, Λ̃TPE,5

}

The results obtained in Example 10 show that in the case of many securities there is a big variety
in the sets of optimum recommendations.

To unify the final recommendations for each security Ŝ we determine:
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• A weakly justified recommendation (WJR) Λ̃S,WJR defined as the union of such Pareto optimal
recommendations, which are linked to the security Ŝ;

• A strongly justified recommendation (SJR) Λ̃S,SJR defined as the intersection of such Pareto optimal
recommendations, which are linked to the security Ŝ.

The WJR Λ̃S,WJR and the SJR Λ̃S,SJR are determined respectively by their membership functions
given as follows

λS,WJR(A) = max
{
λS,i(A) : Λ̃S,i ∈ OS

}
(75)

λS,SJR(A) = min
{
λS,i(A) : Λ̃S,i ∈ OS

}
(76)

Example 11. Separatelyfor each security Ŝ described in Example 1, imprecise recommendations Λ̃S,1, Λ̃S,2,
Λ̃S,3, Λ̃S,4, Λ̃S,5 are compared in more detail in Tables 14–33. In the two bottom rows of Tables 14–33 WJRs and
SJRs are given along with their imprecision estimates. All Tables 14–33 are linked to the comments by using the
names of discussed stock companies.

Table 14. Imprecise and Pareto optimal recommendations for ALR.

Criterion A−− A− A0 A+ A++ d(
~
ΛALR,i) e(

~
ΛALR,i)

Λ̃ALR,1 0 1 1 1 0 3 0
Λ̃ALR,2 0.4138 1 0.5862 0.5862 0 2.5862 0.3303
Λ̃ALR,3 1 1 0 0 0 2 0
Λ̃ALR,4 0 1 1 1 0 3 0
Λ̃ALR,5 0 1 1 1 0 3 0

Λ̃ALR,WJR 1 1 0 0 0
Λ̃ALR,SJR 1 1 0 0 0

For the ALR shares only the following recommendation is Pareto optimal

Λ̃ALR,3 =
1

A−−
+

1
A−

= Λ̃ALR,WJR = Λ̃ALR,SJR (77)

which was obtained by means of the Treynor ratio. In such situation, for this recommendation, WJR and
SJR are identical. The advice Sell and Reduce is recommended by the advisor with the degree that
equals 1. It means that the advisor is prepared to take full responsibility for making the investment
decisions resulting from the suggested advice. The other recommendations are rejected by the advisor.
In such case it is the investor who takes full responsibility for making any other decision resulting
from the rejected recommendations of Buy, Accumulate and Hold.

Table 15. Imprecise and Pareto optimal recommendations for CCC.

Criterion A−− A− A0 A+ A++ d(
~
ΛCCC,i) e(

~
ΛCCC,i)

Λ̃CCC,1 0 0.3812 0.3812 1 0.6188 2.3812 0.2966
Λ̃CCC,2 0 0.8840 0.8840 1 0.1160 2.8840 0.0748
Λ̃CCC,3 0.4804 1 0.5196 0.5196 0 2.5196 0.4050
Λ̃CCC,4 0 0.3370 0.3370 1 0.6630 2.3370 0.0228
Λ̃CCC,5 0 0.0663 0.0663 1 0.9337 2.0663 0.0414

Λ̃CCC,WJR 0 0.3370 0.3370 1 0.9337
Λ̃CCC,SJR 0 0.0663 0.0663 1 0.6630
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For the CCC shares, WJR and SJR are as follows

Λ̃CCC,WJR =
0.337
A−

+
0.337

A0 +
1

A+
+

0.9337
A++

, (78)

Λ̃CCC,SJR =
0.0663

A−
+

0.0663
A0 +

1
A+

+
0.663
A++

. (79)

From the distribution of a recommendation degree represented by WJR it shows that the
advisor definitely rejects the Sell recommendation. WJR also tells us that the Accumulate and Buy
recommendations can be taken into consideration. Additional information on the distribution of the
responsibility for the decisions taken is reflected in SJR. It supplements the picture with the following
information:

• The investor bears almost all the responsibility for making an investment decision resulting from
the Reduce and Hold recommendations,

• The advisor bears full responsibility for making an investment decision resulting from the
Accumulate recommendations,

• The investor and the advisor share the responsibility among themselves for making the investment
decision based on the Buy recommendation, however, the advisor bear approximately two-thirds
of that responsibility.

After analysing the information and interpretations, the investor takes the decision. We can
suspect that the investor characterised by risk-aversion will choose the Accumulate recommendation
while the investor who is a risk-taker will choose the Buy advice.

Table 16. Imprecise and Pareto optimal recommendations for CDR.

Criterion A−− A− A0 A+ A++ d(
~
ΛCDR,i) e(

~
ΛCDR,i)

Λ̃CDR,1 0 0 0 1 1 2 0
Λ̃CDR,2 0 0 0 1 1 2 0
Λ̃CDR,3 1 1 0 0 0 2 0
Λ̃CDR,4 0 0 0 1 1 2 0
Λ̃CDR,5 0 0 0 1 1 2 0

Λ̃CDR,WJR 1 1 0 1 1
Λ̃CDR,SJR 0 0 0 0 0

For the CDR shares the following WJR and SJR were determined

Λ̃CDR,WJR =
1

A−−
+

1
A−

+
1

A+
+

1
A++

, (80)

Λ̃CDR,SJR = ∅ (81)

From the distribution of a recommendation degree represented by WJR it shows that the advisor
definitely rejects the Hold recommendation. It means that the advisor recommends an investment
activity without defining its kind. SJR shows that it is the investor who bears full responsibility for any
decisions made. It is obvious that such a recommendation is not useful so in such a situation we state
that there is no useful recommendation.
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Table 17. Imprecise and Pareto optimal recommendations for CPS.

Criterion A−− A− A0 A+ A++ d(
~
ΛCPS,i) e(

~
ΛCPS,i)

Λ̃CPS,1 0 0 0 1 1 2 0
Λ̃CPS,2 0 0.1442 0.1442 1 0.8558 2.1442 0.0947
Λ̃CPS,3 1 1 0 0 0 2 0
Λ̃CPS,4 0 0 0 1 1 2 0
Λ̃CPS,5 0 0 0 1 1 2 0

Λ̃CPS,WJR 1 1 0 1 1
Λ̃CPS,SJR 0 0 0 0 0

For the CPS shares, WJR and SJR are determined by (80) and (81). In this situation we state that
there is no useful recommendation.

Table 18. Imprecise and Pareto optimal recommendations for DNP.

Criterion A−− A− A0 A+ A++ d(
~
ΛDNP,i) e(

~
ΛDNP,i)

Λ̃DNP,1 0 0 0 1 1 2 0
Λ̃DNP,2 0 0 0 1 1 2 0
Λ̃DNP,3 1 1 0 0 0 2 0
Λ̃DNP,4 0 0 0 1 1 2 0
Λ̃DNP,5 0 0 0 1 1 2 0

Λ̃DNP,WJR 1 1 0 1 1
Λ̃DNP,SJR 0 0 0 0 0

For the DNP shares, WJR and SJR are determined by (80) and (81). In this situation we state that
there is no useful recommendation.

Table 19. Imprecise and Pareto optimal recommendations for JSW.

Criterion A−− A− A0 A+ A++ d(
~
ΛJSW,i) e(

~
ΛJSW,i)

Λ̃JSW,1 0 0 0 1 1 2 0
Λ̃JSW,2 0 0 0 1 1 2 0
Λ̃JSW,3 0 0 0 1 1 2 0
Λ̃JSW,4 0 0 0 1 1 2 0
Λ̃JSW,5 0 0 0 1 1 2 0

Λ̃JSW,WJR 0 0 0 1 1
Λ̃JSW,SJR 0 0 0 1 1

For the JSW shares, the following WJR and SJR were determined

Λ̃JSW,WJR =
1

A+
+

1
A++

(82)

Λ̃JSW,SJR =
1

A+
+

1
A++

(83)

From the distribution of a recommendation degree represented by WJR it shows that the advisor
definitely rejects the Sell, Reduce and Hold recommendations. The advisor strongly recommends
Accumulate or Buy. SJR shows that it is the advisor who is willing to take full responsibility for taking
the investment decisions resulting from the advised recommendations.
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Table 20. Imprecise and Pareto optimal recommendations for KGH.

Criterion A−− A− A0 A+ A++ d(
~
ΛKGH,i) e(

~
ΛKGH,i)

Λ̃KGH,1 0 0 0 1 1 2 0
Λ̃KGH,2 0 0 0 1 1 2 0
Λ̃KGH,3 1 1 0 0 0 2 0
Λ̃KGH,4 0 0 0 1 1 2 0
Λ̃KGH,5 0 0 0 1 1 2 0

Λ̃KGH,WJR 1 1 0 1 1
Λ̃KGH,SJR 0 0 0 0 0

For the KGH shares, WJR and SJR are determined by (80) and (81). In this situation we state that
there is no useful recommendation.

Table 21. Imprecise and Pareto optimal recommendations for LTS.

Criterion A−− A− A0 A+ A++ d(
~
ΛLTS,i) e(

~
ΛLTS,i)

Λ̃LTS,1 0 0 0 1 1 2 0
Λ̃LTS,2 0 0 0 1 1 2 0
Λ̃LTS,3 1 1 0 0 0 2 0
Λ̃LTS,4 0 0 0 1 1 2 0
Λ̃LTS,5 0 0 0 1 1 2 0

Λ̃LTS,WJR 1 1 0 1 1
Λ̃LTS,SJR 0 0 0 0 0

For the LTS shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 22. Imprecise and Pareto optimal recommendations for LPP.

Criterion A−− A− A0 A+ A++ d(
~
ΛLPP,i) e(

~
ΛLPP,i)

Λ̃LPP,1 0 0 0 1 1 2 0
Λ̃LPP,2 0 0 0 1 1 2 0
Λ̃LPP,3 1 1 0 0 0 2 0
Λ̃LPP,4 0 0 0 1 1 2 0
Λ̃LPP,5 0 0 0 1 1 2 0

Λ̃LPP,WJR 1 1 0 1 1
Λ̃LPP,SJR 0 0 0 0 0

For the LPP shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 23. Imprecise and Pareto optimal recommendations for MBK.

Criterion A−− A− A0 A+ A++ d(
~
ΛMBK,i) e(

~
ΛMBK,i)

Λ̃MBK,1 0 0 0 1 1 2 0
Λ̃MBK,2 1 1 0 0 0 2 0
Λ̃MBK,3 1 1 0 0 0 2 0
Λ̃MBK,4 0 0 0 1 1 2 0
Λ̃MBK,5 0 0 0 1 1 2 0

Λ̃MBK,WJR 1 1 0 1 1
Λ̃MBK,SJR 0 0 0 0 0
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For the MBK shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 24. Imprecise and Pareto optimal recommendations for OPL.

Criterion A−− A− A0 A+ A++ d(
~
ΛOPL,i) e(

~
ΛOPL,i)

Λ̃OPL,1 0 0.8719 0.8719 1 0.1281 2.8719 0.0833
Λ̃OPL,2 0 1 1 1 0 3 0
Λ̃OPL,3 1 1 0 0 0 2 0
Λ̃OPL,4 0 0.8769 0.8769 1 0.1231 2.8769 0.0798
Λ̃OPL,5 0 1 1 1 0 3 0

Λ̃OPL,WJR 1 1 0 0 0
Λ̃OPL,SJR 1 1 0 0 0

For the OPL shares, Pareto optimal recommendation (77) is only the one determined by the
Treynor ratio. From the distribution of a recommendation degree represented by WJR it shows that
the advisor definitely rejects the Hold, Accumulate and Buy recommendations. The advisor strongly
recommends Sell or Reduce. SJR shows that the advisor is willing to take full responsibility for taking
the investment decisions resulting from the advised recommendations.

Table 25. Imprecise and Pareto optimal recommendations for PEO.

Criterion A−− A− A0 A+ A++ d(
~
ΛPEO,i) e(

~
ΛPEO,i)

Λ̃PEO,1 0 0 0 1 1 2 0
Λ̃PEO,2 0 0 0 1 1 2 0
Λ̃PEO,3 1 1 0 0 0 2 0
Λ̃PEO,4 0 0 0 1 1 2 0
Λ̃PEO,5 0 0 0 1 1 2 0

Λ̃PEO,WJR 1 1 0 1 1
Λ̃PEO,SJR 0 0 0 0 0

For the PEO shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 26. Imprecise and Pareto optimal recommendations for PGE.

Criterion A−− A− A0 A+ A++ d(
~
ΛPGE,i) e(

~
ΛPGE,i)

Λ̃PGE,1 0 0 0 1 1 2 0
Λ̃PGE,2 0 0.6563 0.6563 1 0.3437 2.6563 0.2598
Λ̃PGE,3 1 1 0 0 0 2 0
Λ̃PGE,4 0 0 0 1 1 2 0
Λ̃PGE,5 0 0 0 1 1 2 0

Λ̃PGE,WJR 1 1 0 1 1
Λ̃PGE,SJR 0 0 0 0 0

For the PGE shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.
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Table 27. Imprecise and Pareto optimal recommendations for PGN.

Kryterium A−− A− A0 A+ A++ d(
~
ΛPGN,i) e(

~
ΛPGN,i)

Λ̃PGN,1 0 0 0 1 1 2 0
Λ̃PGN,2 0 0 0 1 1 2 0
Λ̃PGN,3 1 1 0 0 0 2 0
Λ̃PGN,4 0 0 0 1 1 2 0
Λ̃PGN,5 0 0 0 1 1 2 0

Λ̃PGN,WJR 1 1 0 1 1
Λ̃PGN,SJR 0 0 0 0 0

For the PGN shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 28. Imprecise and Pareto optimal recommendations for PKN.

Criterion A−− A− A0 A+ A++ d(
~
ΛPKN,i) e(

~
ΛPKN,i)

Λ̃PKN,1 0 0.2692 0.2692 1 0.7308 2.2692 0.1926
Λ̃PKN,2 0 1 1 1 0 3 0
Λ̃PKN,3 1 1 0 0 0 2 0
Λ̃PKN,4 0 0.2308 0.2308 1 0.7692 2.2308 0.1607
Λ̃PKN,5 0 0 0 1 1 2 0

Λ̃PKN,WJR 1 1 0 1 1
Λ̃PKN,SJR 0 0 0 0 0

For the PKN shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 29. Imprecise and Pareto optimal recommendations for PKO.

Criterion A−− A− A0 A+ A++ d(
~
ΛPKO,i) e(

~
ΛPKO,i)

Λ̃PKO,1 0 0 0 1 1 2 0
Λ̃PKO,2 0 0 0 1 1 2 0
Λ̃PKO,3 1 1 0 0 0 2 0
Λ̃PKO,4 0 0 0 1 1 2 0
Λ̃PKO,5 0 0 0 1 1 2 0

Λ̃PKO,WJR 1 1 0 1 1
Λ̃PKO,SJR 0 0 0 0 0

For the PKO shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 30. Imprecise and Pareto optimal recommendations for PLY.

Criterion A−− A− A0 A+ A++ d(
~
ΛPLY,i) e(

~
ΛPLY,i)

Λ̃PLY,1 0 0 0 1 1 2 0
Λ̃PLY,2 0 0 0 1 1 2 0
Λ̃PLY,3 1 1 0 0 0 2 0
Λ̃PLY,4 0 0 0 1 1 2 0
Λ̃PLY,5 0 0 0 1 1 2 0

Λ̃PLY,WJR 1 1 0 1 1
Λ̃PLY,SJR 0 0 0 0 0



Symmetry 2020, 12, 1672 28 of 34

For the PLY shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 31. Imprecise and Pareto optimal recommendations for PZU.

Criterion A−− A− A0 A+ A++ d(
~
ΛPZU,i) e(

~
ΛPZU,i)

Λ̃PZU,1 0 0 0 1 1 2 0
Λ̃PZU,2 0 0 0 1 1 2 0
Λ̃PZU,3 1 1 0 0 0 2 0
Λ̃PZU,4 0 0 0 1 1 2 0
Λ̃PZU,5 0 0 0 1 1 2 0

Λ̃PZU,WJR 1 1 0 1 1
Λ̃PZU,SJR 0 0 0 0 0

For the PZU shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 32. Imprecise and Pareto optimal recommendations for SPL.

Criterion A−− A− A0 A+ A++ d(
~
ΛSPL,i) e(

~
ΛSPL,i)

Λ̃SPL,1 0 0 0 1 1 2 0
Λ̃SPL,2 0 0 0 1 1 2 0
Λ̃SPL,3 1 1 0 0 0 2 0
Λ̃SPL,4 0 0 0 1 1 2 0
Λ̃SPL,5 0 0 0 1 1 2 0

Λ̃SPL,WJR 1 1 0 1 1
Λ̃SPL,SJR 0 0 0 0 0

For the SPL shares, WJR and SJR are determined by (80) and (81). In this situation there is no
useful recommendation.

Table 33. Imprecise and Pareto optimal recommendations for TPE.

Criterion A−− A− A0 A+ A++ d(
~
ΛTPE,i) e(

~
ΛTPE,i)

Λ̃TPE,1 0 0 0 1 1 2 0
Λ̃TPE,2 0 1 1 1 0 3 0
Λ̃TPE,3 1 1 0 0 0 2 0
Λ̃TPE,4 0 0 0 1 1 2 0
Λ̃TPE,5 0 0 0 1 1 2 0

Λ̃TPE,WJR 1 1 1 1 1
Λ̃TPE,SJR 0 0 0 0 0

For the TPE shares, WJR and SJR were determined as follows

Λ̃TPE,WJR = A (84)

and (81). WJR informs us that the advisor does not exclude any recommendation. SJR shows that full
responsibility for taking any investment decision goes to the investor. Therefore, there is no useful
recommendation.

Summing up, for the public companies considered in the examples, in most cases there was no
useful recommendation. Such a situation occurred in the case of CDR, CPS, DNP, KGH, LTS, LPP, MBK,
PEO, PGE, PGN, PKN, PKO, PLY, PZU, SPL and TPE. Only for three following companies: ALR, CCC
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and OPL the recommendations could be considered useful. This situation does not differ from the real
phenomena in financial markets. The number of useless recommendations can be decreased by limiting
the number of assessment criteria. Also, another set of criteria can be implemented. The solution to
those problems should be searched based on finance.

An observation can be useful that each pair of WJR and SJR might be presented as an intuitionistic
fuzzy set [90] representing a justified recommendation (JR). Then any JR is defined by its membership
function equal to the SJR membership function and by its non-membership function equal to the
membership function of WJR complement.

8. Conclusions

In the subject literature it is shown that OFNs are a more convenient tool for financial analysis
than FNs. Therefore, the most important achievement of this work is the implementation of OFNs
into the algorithmic system supporting investment decisions. In my best knowledge, the obtained
algorithmic system is the only one that applies any set of profitability criteria evaluated with the use
of OFNs. Until now, only an analogous system was known to be linked to the Sharpe’s criterion.
For any security, this simple system assigns exactly one imprecise recommendation. The algorithmic
system described in Sections 5 and 6 assigns each security many different imprecise recommendations.
For this reason, in Section 7, the proposed system is equipped with an imprecise recommendation
management module.

Obtained results may provide theoretical foundations for constructing a robo-advice system
supporting investment decisions. Then, we can use determined recommendations as behavioural
premises for investment decisions. The attempt to use chosen recommendations multiple times leads to
establishing an investing strategy. In Example 11, the interpretation of determined recommendations
was presented. The shown case study is the reflection of only a little share of the set of all possible
recommendations. Therefore, taking up research on a wider spectrum of recommendations established
by the described algorithms seems justified. It should be an empirical research leading to establishing
the heuristic investment strategy.

In financial practice, we can meet with the situation when part of PV securities is imprecisely
evaluated without a subjective forecast of future quotation changes. Such PV should be evaluated by
unoriented FNs. Against imprecisely evaluated PV, other securities may be equipped with a subjective
forecast of rise in quotation. Such PV should be evaluated by positively oriented OFNs. In both of
these cases the membership functions are identical. This results in the impossibility of a simultaneous
comparison of oriented PV and unoriented PV. This is a significant disadvantage of the proposed
algorithmic system supporting invest-making. The intention to deal with this inconvenience points to
another direction of research into the OFNs theory.

The obtained results may as well be a starting point for future research on the impact of the PV
imprecision and orientation on the investment recommendation determined with the use of algorithms
presented in this paper. The implementation of intuitionistic fuzzy sets should be preceded by a
theoretical and empirical research of the expediency of such approach for a representation of the
justified recommendations mentioned in Section 7.
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Appendix A

Given security Š is assigned recommendations Λ̃S,γ ∈ F (A), where the subscript γ = 1, 2, . . . n
identifies the method used to derive this recommendation. The acceptability of any recommendation
increases along with the decrease of its ambiguity and with the decrease of indistinctness. Therefore,
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the subset of the most acceptable recommendation systems is distinguished as the Pareto’s optimum,
determined as a two-criteria comparison of minimisation recommendation ambiguity and minimisation
recommendation indistinctness.

The ambiguity of recommendation Λ̃S,γ is valued by energy measure d
(
Λ̃S,γ

)
calculated with the

use of (5). The indistinctness of recommendation Λ̃S,γ is valued by energy measure d
(
Λ̃S,γ

)
determined

by (6). Therefore, we represent each recommendation by the pair(
d
(
Λ̃S,γ

)
, e

(
Λ̃S,γ

))
=

(
dS,γ, eS,γ

)
(A1)

On the recommendation set we define two preorders “Λ̃S,i is more than Λ̃S, j” :

Λ̃S,i Q1Λ̃S, j ⇔ dS, i ≤ dS, j (A2)

Λ̃S,i Q2Λ̃S, j ⇔ eS, i ≤ eS, j (A3)

The set of all acceptable recommendations we appoint as Pareto’s optimum OS determined by
multi-criterial comparison Q1 ∩ Q2. To solve this optimisation task, we adapt an analogous algorithm
presented in [91]. In order to determine the Pareto optimum OS, we execute the following algorithm:

STEP 1:
OS :=

{
Λ̃S,1

}
(A4)

STEP 2:
i := 2 (A5)

STEP 3: (
∀Λ̃S, j∈OS

: ( dS, j ≤ dS,i ∧ eS, j ≥ eS,i
)
∨

(
dS, j ≥ dS,i ∧ eS, j ≤ eS,i

)
∨

(
dS, j ≥ dS,i ∧ eS, j ≥ eS,i

))
⇓

OS := OS ∪
{
Λ̃S,i

}
(A6)

STEP 4:
∀Λ̃S, j∈OS

:
((

dS, j< dS,i ∧ eS, j >eS,i
)
⇒ OS := OS /

{
Λ̃S, j

})
(A7)

STEP 5:
i := i + 1 (A8)

STEP 6:
i > n⇒ go to STOP (A9)

STEP 7:
go to STEP 3 (A10)

STOP.

In this way, we obtain the sequence OS of partial optima of Pareto.
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Tarczyński, W., Nermend, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 189–213.

50. Siwek, J. Multiple asset portfolio with present value given as a discrete fuzzy number. In Proceedings of
the 35th International Conference Mathematical Methods in Economics MME 2017, Hradec Králové, Czech
Republic, 13–15 September 2017; Prazak, P., Ed.; Gaudeamus, University of Hradec Kralove: Hradec Králové,
Czech Republic, 2017.

51. Ward, T.L. Discounted fuzzy cash flow analysis. In Proceedings of the 1985 Fall Industrial Engineering
Conference, Stuttgart, Germany, 11–13 June 1985; pp. 476–481.

52. Buckley, J.J. The fuzzy mathematics of finance. Fuzzy Sets Syst. 1987, 21, 257–273. [CrossRef]

http://dx.doi.org/10.1007/s10700-012-9126-9
http://dx.doi.org/10.1016/j.insmatheco.2013.09.005
http://dx.doi.org/10.1016/j.econmod.2013.07.023
http://dx.doi.org/10.1016/j.ins.2012.07.005
http://dx.doi.org/10.1016/j.ins.2016.01.042
http://dx.doi.org/10.1016/j.ejor.2016.04.055
http://dx.doi.org/10.1016/j.asoc.2015.11.005
http://dx.doi.org/10.1016/j.knosys.2017.10.019
http://dx.doi.org/10.1016/j.knosys.2017.12.020
http://dx.doi.org/10.1002/int.22052
http://dx.doi.org/10.1080/10170660509509282
http://dx.doi.org/10.2478/slgr-2014-0024
http://dx.doi.org/10.5604/01.3001.0014.0535
http://dx.doi.org/10.1016/0165-0114(87)90128-X


Symmetry 2020, 12, 1672 33 of 34

53. Greenhut, J.G.; Norman, G.; Temponi, C.T. Towards a fuzzy theory of oligopolistic competition. In Proceedings
of the IEEE ISUMA-NAFIPS, College Park, MD, USA, 17–20 September 1995; pp. 286–291.

54. Sheen, J.N. Fuzzy financial profitability analyses of demand side management alternatives from participant
perspective. Inf. Sci. 2005, 169, 329–364. [CrossRef]

55. Gutierrez, I. Fuzzy numbers and Net Present Value. Scand. J. Mgmt. 1989, 5, 149–159. [CrossRef]
56. Kuchta, D. Fuzzy capital budgeting. Fuzzy Sets Syst. 2000, 111, 367–385. [CrossRef]
57. Lesage, C. Discounted cash-flows analysis. An interactive fuzzy arithmetic approach. Eur. J. Econ. Soc. Syst.

2001, 15, 49–68. [CrossRef]
58. Hiroto, K. Concepts of probabilistic sets. Fuzzy Sets Syst. 1981, 5, 31–46. [CrossRef]
59. Roszkowska, E.; Kacprzak, D. The fuzzy SAW and fuzzy TOPSIS procedures based on ordered fuzzy

numbers. Inf. Sci. 2016, 369, 564–584. [CrossRef]
60. Rudnik, K.; Kacprzak, D. Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a

manufacturing system. Appl. Soft Comput. 2017, 52, 1020–1041. [CrossRef]
61. Piasecki, K.; Roszkowska, E. On application of ordered fuzzy numbers in ranking linguistically evaluated

negotiation offers. Adv. Fuzzy Syst. 2018, 2018, 1569860. [CrossRef]
62. Kacprzak, D. A doubly extended TOPSIS method for group decision making based on ordered fuzzy numbers.

Expert Syst. Appl. 2018, 116, 243–254. [CrossRef]
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