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Abstract: A 3D computational fluid dynamics method is used in the current study to investigate the
hybrid nanofluid (HNF) flow and heat transfer in an annulus with hot and cold rods. The chief goal of
the current study is to examine the influences of dissimilar Reynolds numbers, emissivity coefficients,
and dissimilar volume fractions of nanoparticles on hydraulic and thermal characteristics of the
studied annulus. In this way, the geometry is modeled using a symmetry scheme. The heat transfer
fluid is a water, ethylene–glycol, or water/ethylene–glycol mixture-based Cu-Al2O3 HNF, which is a
Newtonian NF. According to the findings for the model at Re = 3000 and φ1 = 0.05, all studied cases
with different base fluids have similar behavior. φ1 and φ2 are the volume concentration of Al2O3

and Cu nanoparticles, respectively. For all studied cases, the total average Nusselt number (Nuave)
reduces firstly by an increment of the volume concentrations of Cu nanoparticles until φ2 = 0.01 or
0.02 and then, the total Nuave rises by an increment of the volume concentrations of Cu nanoparticles.
Additionally, for the case with water as the base fluid, the total Nuave at φ2 = 0.05 is higher than the
values at φ2 = 0.00. On the other hand, for the other cases, the total Nuave at φ2 = 0.05 is lower than
the values at φ2 = 0.00. For all studied cases, the case with water as the base fluid has the maximum
Nuave. Plus, for the model at Re = 4000 and φ1 = 0.05, all studied cases with different base fluids have
similar behavior. For all studied cases, the total Nuave reduces firstly by an increment of the volume
concentrations of Cu nanoparticles until φ2 = 0.01 and then, the total Nuave rises by an increment of
the volume concentrations of Cu nanoparticles. The Nuave augments are found by an increment of
Reynolds numbers. Higher emissivity values should lead to higher radiation heat transfer, but the
portion of radiative heat transfer in the studied annulus is low and therefore, has no observable
increment in HNF flow and heat transfer.

Keywords: steady-state solution; forced convection; hybrid nanofluid; Nusselt number; streamlines

Symmetry 2020, 12, 1873; doi:10.3390/sym12111873 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-3636-6605
https://orcid.org/0000-0002-4360-0159
https://orcid.org/0000-0003-0184-4849
https://orcid.org/0000-0002-0631-3046
http://dx.doi.org/10.3390/sym12111873
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/11/1873?type=check_update&version=2


Symmetry 2020, 12, 1873 2 of 22

1. Introduction

Heat exchangers are types of equipment that have many industrial applications and this factor
makes their performance improvement an attractive subject for researchers. Extensive research in this
field has led to the development of new methods to improve the performance of heat exchangers, some of
the most important of which are the use of corrugated surfaces [1–3], turbulators [4–6], fins [7–9],
magnetic fields [10–12], and the replacement of common coolants with nanofluids (NFs) [13–15].
The suspension of nanoparticles in conventional coolants improves their cooling performance, and this
fact has been confirmed in many laboratory-based and numerical studies [16–18].

All of the above methods, in turn, improve the performance of heat exchangers, but researchers are
always looking for ideas to improve the effectiveness of these methods. A group of researchers posed
the question: if adding one nanoparticle to a coolant improves its cooling performance, does adding
two types of nanoparticles to the coolants not lead to a further improvement in cooling performance?
Numerous experimental [19–21] and numerical [22–24] studies were conducted to answer this question,
and it was finally found that the cooling performance of hybrid nanofluids (HNFs) was generally better
than that of conventional NFs. Li et al. [25] investigated numerically different features of convection
heat transfer inside a cavity equipped with a twin-web turbine disk and pin fins. Their obtained results
indicate that there is a clockwise circular fluid flow inside the studied cavity which influences the front
and back web for the improvement of the local convection heat transfer coefficients. The back web,
Nu, is strangely higher than the Nu of the front web, and the back web temperature is perceptibly
lower than the front web temperature. Chorin et al. [26] studied experimentally free convective heat
transfer in a differentially heated cavity equipped with localized turbulators. The turbulator was
located in the warm boundary coating of the cavity fluid flow. Experiments were carried out in heat
transfers, temperature profiles, and velocity fields terms. The effect of the vertical location and the
length for a conducting turbulator and an insulator was investigated. For the insulator turbulator,
a fluid flow part diverged inside the colder turbulator region, leading to a downstream heat transfer
upsurge. Giwa et al. [27] investigated experimentally and numerically different uniform magnetic
induction effects on heat transfer presentation of a rectangular cavity equipped with aqueous HNF.
The aqueous HNF’s thermal properties had been studied for different nanoparticle volume fractions
and various temperature ranges. Their obtained results show that by employing the vertically magnetic
field on the cavity-side walls, the maximum Nu improvement was attained in compression with
the model which did not have a magnetic field. Furthermore, it was realized that an increment in
the magnetic field can improve the heat transfer characteristics significantly. Mansouri et al. [28]
considered numerically conjugate conduction–convection heat transfer in a cavity filled with air and
equipped with a rhombus conducting block exposed to subdivision, such as opposing and cooperating
roles. The temperature and flow results were obtained by employing the Lattice Boltzmann technique
with the finite volume method and the multi-relaxation time collision scheme. The influences of
the initial solid block thermal conductivity on heat transfer and fluid flow inside the cavity were
studied. Their obtained results present that the initial block subdivision leads to a reduction in heat
transfer inside the cavity. Thiers et al. [29] studied numerical heat transfer improvement inside a
rectangular differentially heated cavity with different thermal perturbations on cold and hot walls.
The different effects of wave characteristics such as phase shift, frequency, and amplitude, and also
the disturbance area’s vertical location, were studied in the range of different Rayleigh numbers.
The key aim of their study was to find the optimum location of differentially heated sources for heat
transfer improvement. Ataei-Dadavi et al. [30] considered experimental fluid flow and heat transfer
characteristics in a differential side-heated coarse porous media cavity. Their findings illustrated
that the presence of a porous medium in the cavity leads to heat transfer reduction compared to
the cavity without porous media. They attained a novel correlation method to predict the Nu for
coarse porous media-based cavities. Farsani et al. [31] investigated heat transfer improvement in
cavities using baffles melting, which were filled with gallium. They modeled the process of the phase
using the fixed grid-based enthalpy–porosity technique coupled with the Semi-Implicit Method for
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Pressure Linked Equations (SIMPLE) algorithm. They reported the streamlines and isotherm lines,
and also, Nu values, on hot walls to investigate and analyze the problem. Vishnu et al. [32] examined
numerically different conditions of heat transfer inside an oblique cavity located in supersonic flow.
They simulated a 2D compressible unsteady turbulent flow field using the finite volume method and
the Harten-Lax-van Leer-Contact (HLLC) scheme. They also validated their numerical procedure
with available empirical and mathematical data. Sadaghiani et al. [33] examined parametrically and
experimentally different influences of bubble coalescence on critical heat flux and pool boiling heat
transfer in a cavity. They examined different surface wettability effects on the structured surfaces’
performance by employing a Teflon film with a thickness of 50 nm. Additionally, they examined
bubble dynamics by employment of a high-speed camera. Pan et al. [34] experimentally considered
the heat transfer features of a heat exchanger equipped with microchannel and fan-shaped cavities.
Their obtained data illustrated that the microchannel heat exchanger’s performance, which is equipped
with fan-shaped cavities, is sharply better than the heat exchangers without fan-shaped cavities and also,
their pressure drop is lower than the heat exchangers without fan-shaped cavities. Balotaki et al. [35]
modeled numerically, and by employing the lattice Boltzmann method, the heat transfer of free natural
convections in a triangular cavity filling with different operating fluids, including water, TiO2-H2O,
Al-H2O, and Cu-H2O, and equipped with double distribution functions. They reported various
interesting results such as average predicted Nu, heat lines, an isothermal line, streamlines, and entropy
generation values. Liu and Huang [36] studied numerically different effects using different linear
thermal forcing models on fluid flow and convective heat transfer in a rectangular finned enclosure.
The results showed fluctuations in the flow above the fin. Seo et al. [37] numerically analyzed the
performance of a naturally cooled rectangular enclosure with a sinusoidal cylinder. The outcomes
revealed the significant impact of cylinder diameter and Rayleigh number on the performance features
of the enclosure. Razzaghpanah and Sarunac [38] simulated the free convection from a bundle of
heated cylinders submerged in molten salt. They proposed a correlation set for Nusselt number in
terms of Rayleigh number. Krakov and Nikiforov [39] employed numerical data to reveal the impact
of interior cylinder shape on thermomagnetic convection heat transfer through a horizontal annulus.
It was demonstrated that the shape of the interior cylinder can increase the heat transfer by 40–50%.
Pawar et al. [40] numerically investigated convection heat transfer and forced laminar steady state
flow inside a cylindrical finned cavity at various incidence angles. Due to analyzing aerodynamic
characteristics, factors such as local time-averaged flux and vorticity, length of recirculation, Strouhal
number and moment, and lift and drag coefficients were reported by them. Alam et al. [41] considered
the flow around a cylinder with variable cross-sections and analyzed the dependence of velocity and
temperature field on corner radius and attack angle. The dramatic role of boundary layers in improving
heat transfer was reported. The main reason for this behavior is that the primary wake bubbles are
mostly linked to the forces. Vyas et al. [42] conducted an experimental numerical assessment on fluid
flow in the wake region of a cylinder submerged in a conduit, considering the impacts of blockage
ratio. It was realized that the highest downstream distance traveled by the vortices was at a blockage
ratio of 0.38. Hadžiabdić et al. [43] simulated the flow and heat transfer around a rotating cylinder.
They reported the high local rates of heat transfer in the cylinder. Furthermore, they found that the
overall mean predicted Nu values of rotational cylinder did not have a significant variation inside the
cylinder but its time-average presented some changes in comparison with the basic cylinder.

The literature review clarifies that even though the influence of using NF for electrical heat
exchangers was evaluated, to the best knowledge of the authors, there is not any research which
examines the symmetry simulation of forced HNF flow and heat transfer in a three-dimensional
annulus equipped with hot and cold rods. The chief goal of the current study is to examine the
influences of dissimilar Reynolds numbers, emissivity coefficients, and dissimilar volume fractions of
nanoparticles on hydraulic and thermal characteristics of the studied annulus. Moreover, in this study,
the geometry is modeled using symmetry scheme.
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2. Methodology

2.1. Problem Statement and Governing Equations

Figure 1 demonstrates a basic and simulated three-dimensional cylindrical shape cavity (annulus)
equipped with hot and cold rods in the present study. In the present paper, this geometry is analyzed
using a symmetry boundary condition. Figure 1 shows, on the right side, a schematic diagram
of the studied configuration. The height of the cylinder is changed from 300 mm. Additionally,
the height of the square is changed from 46.03 to 70.71 mm, the length of the square is 1000 mm,
and the gravity influences are determined in z direction. This is a hypothetical geometry and was
designed by the authors of the article. However, it has many applications in electrical components
and electronics industries. The system is made of an insulator in the center and outer sides of the
cylinder, with a boundary condition of zero heat flux. However, this material is presumed with
two dissimilar emissivity values of 0.2 and 0.5 for analyzing its influences on radiation heat transfer.
Moreover, two dissimilar Reynolds numbers, Re = 3000 and 4000, are in transient regime. The initial
NF temperature is Tinitial = 350 K and the cold side temperature is Tc = 300 K. The hot side temperature
can be Th = 430 K. The heat transfer fluid is a water-, ethylene–glycol-, or water/ethylene–glycol
mixture-based Cu-Al2O3 HNF, which creates a Newtonian NF. To attain the most proficient Newtonian
NF in the current research, Cu and Al2O3 nanoparticles were added to the base fluid in different
volume concentrations of 0.01 to 0.05 with diameters of 24 nm. Table 1 presents the thermophysical
features of the base fluid and nanoparticles.Symmetry 2020, 12, x FOR PEER REVIEW 5 of 23 
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Table 1. Base fluid and nanoparticle numerical values for thermophysical properties (T = 298 K) [44].

Thermophysical Properties k (W/m·K) cp (J/kg·K) ρ (kg/m3)

Cu 400 385 8933
Al2O3 40 765 3970

Ethylene-glycol 0.252 2415 1114.4
H2O 0.613 4179 997.1

H2O/ethylene-glycol mixture 0.3799 3300 1067.5

The equations presented in Table 2 have been used to calculate the thermophysical properties of
NF. The density (ρhn f ) and specific heat (cP,hn f ) of the HNF at each section temperature (Tm) were
calculated using the equations presented in Table 2 [44], where φ1 is the volume concentration of Al2O3

and φ2 is the volume concentration of Cu nanoparticles. Moreover, the effective dynamic viscosity and
thermal conductivity of HNF were obtained by the equations in Table 2.

Table 2. Useful equations to model the studied nanofluid (NF) in the present work [44].

Density ρhn f = (1−φ2)
[
(1−φ1)ρb f + φ1ρnp,1

]
+ φ2ρnp,2

Specific heat
(
ρcp

)
hn f

= (1−φ2)
[
(1−φ1)

(
ρcp

)
b f

+ φ1
(
ρcp

)
np,1

]
+ φ2

(
ρcp

)
np,2

Thermal conductivity khn f = kn f

[
knp,2 + 2kn f − 2φ2

kn f−knp,2

knp,2
+ 2kn f + φ2

(
kn f − knp,2

)]
kn f = kb f

[
knp,1 + 2kb f −

2φ1(kb f−knp,1)
knp,1

+ 2kb f + φ1
(
kb f − knp,1

)]
Dynamic viscosity µhn f =

µb f

(1−φ1)
2.5(1−φ2)

2.5

A 3D numerical analysis has been used in the current research to examine the transient HNF
flow and heat transfer in an annulus with hot and cold rods. Given that the Reynolds number is
more than 2300, the flow regime is considered transient. The Reynolds-averaged Navier–Stokes
(RANS) equations with the shear-stress (SST) k–ω turbulence model were used for simulating the
turbulence regime. The used equations can be defined as reported in Table 3. As mentioned earlier,
in the current modeling, the SST k–ω turbulence model [45] has been presumed as the turbulence
model [46–53]. This is used to have a better forecast of the flow conditions, such as large normal strain,
strong acceleration, reverse pressure gradients, and separating flow, which can occur in the HNF flow
appearances adjacent to the rods and walls. Based on the SST k–ωmodel, the turbulence kinetic energy
(k) and specific dissipation rate (ω) can be attained by the equations reported in Table 3, where Ωi j
is the mean rate-of-rotation tensor and F1 and F2 are the blending functions. Additionally, D+

ω is the
positive portion of the cross-diffusion term. The constant values reported in Table 3 are defined in
Table 4. All equations were resolved until the maximum residual of grid control volume became
smaller than 10−7.

The Monte Carlo method has been used for modeling the radiation in the annulus gap. In this
model, the radiation has been determined to affect the domain by heating its surface, without radiant
energy transfer directly to the domain (Surface-to-Surface transfer mode (S2S)). The spectral dependency
of the radiative heat transfer equation was estimated using the Gray Model (GM), which determines
whether all radiation amounts are closely uniform through the spectrum. The inner rod and outer wall
are determined as insulators and no heat transfer occurs in these sections.

It was also predictable that the radiation mechanism could not play a decisive role in heat transfer.
However, the goal was to model the problem with the least assumptions and the most accurate details.
Therefore, despite the low share of radiation in heat transfer, its effect was considered.

In order to simulate the nanofluid flow inside the cylinder, the single-phase technique was
employed. Just the thermophysical characteristics were calculated at different temperatures and
nanoparticle volume fractions and have been entered into software.
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Table 3. Governing equations and parameters of interest [45].

Continuity equation ∂
∂xi

(ρui) = 0

Momentum equation

∂
∂xi

(
ρuiu j

)
= −

∂p
∂xi

+
∂τi j

∂x j
+ ρgi

τi j =
µ∗∂ui
∂x j

µ∗ = µ+ µt

Energy equation

∂
∂xi

(
ρcpuiT

)
= ∂

∂xi

(
λ∗∂T
∂xi

)
+ Qi

λ∗ = λ+ λt

λt =
cpµt
σt

Turbulence equations

∂
∂xi

(ρuik) = ∂
∂xi

[(
µ+

µt
σk

)
∂k
∂xi

]
+ Gk −Yk

∂
∂xi

(ρuiω) =
∂
∂xi

[(
µ+

µt
σω

)
∂k
∂xi

]
+ Gω −Yω + Dω

µt =
ρk
ω

1

max
{

1
α∗ , ΩF2

a1ω

}
Ω =

√
2Ωi jΩi j

Ωi j =
1
2

(
∂ui
∂x j
−
∂u j

∂xi

)
σk =

1
F1
σk,1

+
1−F1
σk,2

σω = 1
F1
σω,1

+
1−F1
σω,2

F1 = tanh
(
Φ4

1

)
F2 = tanh

(
Φ2

2

)
Φ1 = min

{
max

{ √
k

0.09ωy , 500µ
ρy2ω

}
, 4ρk
σω,2D+

ω y2

}
Φ2 = max

{
2
√

k
0.09ωy , 500µ

ρy2ω

}
D+
ω = max

{ 2ρ
ωρω,2

∂k
∂xi

∂ω
∂xi

, 10−20
}

α∗ = α∗∞

(
α∗0+

Ret
Rk

1+ Ret
Rk

)
, α∗0 =

βi
3 , Ret =

ρk
µω , βi = F1βi,1 + (1− F1)βi,2

Gk = τt,i j
∂ui
∂x j

, τt,i j = µt

(
∂ui
∂x j

+
∂u j

∂xi

)
−

2
3ρkδi j

Yk = ρβ∗kω, Gω =
ρα
µt

Gk, Y∞ = ρβiω
2

α = α∞
α∗ =

(
α∗0+

Ret
Rk

1+ Ret
Rk

)
,α∞ = F1α∞,1 + (1− F1)α∞,2

α∞,1 =
βi,1
β∗∞
−

κ2

σω,1
√
β∗∞

,α∞,2 =
βi,2
β∗∞
−

κ2

σω,2
√
β∗∞

Parameters of interest αn f =
kn f

(ρcp) n f
, Re =

Ure f Dh
ν f

, Nu =
kn f

k f

∫
∂T
∂x

Table 4. Constant values of the shear-stress (SST) k–ω turbulence model [45].

σt αk,1 αk,2 αω,1 αω,2 a1 βi,1 βi,2 β*
∞ κ Rk

0.85 1.176 1.000 2.000 1.168 0.31 0.0750 0.0828 0.0900 0.41 6

2.2. Validation

As displayed in Figure 2, a grid independency study was implemented for the studied cavity
containing Al2O3-Cu/water HNF to examine the influences of mesh sizes on the findings. For the
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validation, the emissivity of the cylinder is constant and equal to 0.2. Additionally, the volume fraction
of the Al2O3 nanoparticles is 0.05. A non-uniform structured mesh was used for the channel. Moreover,
the near-wall mesh was fine enough to be able to resolve the viscous sublayer (y+ ≤ 1). As observed,
several meshes have been tested versus different Reynolds numbers and volume concentrations of
Cu nanoparticles. Finally, it was determined that the mesh configurations, including 113,285 nodes,
had acceptable precision with a maximum error of 3%.
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Figure 3 shows code validation in the present study. Figure 3a illustrates dimensionless temperature
dissimilarity versus dimensionless distance to validate the obtained results in the present work and
the empirical data of Kuehn and Goldstein [54]. Due the lack of empirical results for natural heat
transfer in a cylinder, the numerical process has been validated with the presented empirical data of
Kuehn and Goldstein [54] for ∆T = 0.371 K, Pr = 5.45, RaL = 2.09 × 105, L/2ri = 0.8, and Tavg = 303.18 K,
providing Ti > To. The judgments for different temperature profiles at various angles are indicated in
Figure 3. It is seen clearly that there is a remarkable coincidence between the obtained results from
reference [54] and the numerical data in the present investigation.

In addition, Figure 3b illustrates Nusselt number variation versus Reynolds number (2500 < Re < 3900)
to validate the obtained results in the present work and the numerical data of Liu and Yu [55] in the
transient flow regime. It is seen clearly that there is a good agreement between the obtained results
from reference [55] and the numerical data in the present investigation.

Due to the specific geometric conditions of the problem, the boundary conditions, and the
explanations in the manual of ANSYS-Fluent software, using the symmetry boundary condition in
the present work is a very effective and appropriate method for modeling. In order to validate the
boundary condition, Figure 3c is plotted. In this diagram, the results of modeling a full cylinder and a
half cylinder modeled with the symmetry condition are presented. The good agreement of the answers
is well observed, which indicates the correctness of the boundary conditions used.
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symmetry boundary condition.

3. Results and Discussion

Figure 4 illustrates streamlines and isotherm lines at different cross-sections of the studied cylinder
for the case filled with Al2O3-Cu/water HNF at φ1 = 0.05, φ2 = 0.01, ε = 0.2, and Re = 3000. As seen
in this figure, HNF flow and heat transfer through the z-direction of the cylinder are developed.
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Additionally, the calculations show that different vortexes are through the annulus. The main heat
transfer mechanism in the annulus is convection and the next one is radiation. However, the portion
of radiation heat transfer is sharply lower than the convective mechanism. In addition, the presence
of rods leads to more heat transfer because of vortexes being made. Rods are like obstacles that
destroy the laminar sublayers and make local turbulence which enhance the convective heat transfer
coefficient in the annulus and intensify the Nu. Figure 5 illustrates streamlines and isotherm lines at
different cross-sections of the studied cylinder for the case filled with Al2O3-Cu/water HNF at φ1 = 0.05,
φ2 = 0.01, ε = 0.2, and Re = 4000. As seen in this figure, HNF flow and heat transfer through the
z-direction of the cylinder are developed. Additionally, the calculations show that different vortexes
are through the annulus. The main heat transfer mechanism in the annulus is convection and the next
one is radiation. However, the portion of radiation heat transfer is sharply lower than the convective
mechanism. Additionally, the presence of rods leads to more heat transfer because of vortexes being
made. Rods are like obstacles that destroy the laminar sublayers and make local turbulence which
enhance the convective heat transfer coefficient in the annulus and augment the Nu. Additionally, it is
realized that higher Reynolds numbers lead to more heat transfer coefficients because of more vortexes
and turbulence through the cylindrical annulus. By comparing the streamlines and isotherm lines in
Figures 4 and 5, some similarities between them are clearly seen.

Figure 6 illustrates the streamlines and isotherm lines at different cross-sections of the studied
cylinder for the case filled with Al2O3-Cu/water HNF at φ1 = 0.05, φ2 = 0.05, ε = 0.2, and Re = 4000.
As seen in this figure, HNF flow and heat transfer through the z-direction of cylinder are developed.
Additionally, the calculations show that different vortexes are through the annulus. The main heat
transfer mechanism in the annulus is convection and the next one is radiation. However, the portion of
radiation heat transfer is sharply lower than the convective mechanism. In addition, the presence of
rods leads to more heat transfer because of vortexes being made. Rods are like obstacles that destroy
the laminar sublayers and make local turbulence which enhance the convective heat transfer coefficient
in the annulus and augment the Nu. Furthermore, it is realized that higher volume concentrations of
nanoparticles lead to more heat transfer coefficients because of the higher thermal conductivity of HNF
flow and also more vortexes and turbulence through the cylindrical annulus because of more dynamic
viscosity values. By comparing the streamlines and isotherm lines in Figures 5 and 6, some similarities
between them are clearly seen.

Figure 7 illustrates the streamlines and isotherm lines at different cross-sections of the studied
cylinder for the case filled with Al2O3-Cu/water HNF at φ1 = 0.05, φ2 = 0.01, ε = 0.7, and Re = 3000.
As seen in this figure, HNF flow and heat transfer through the z-direction of the cylinder are developed.
Additionally, the calculations show that different vortexes are through the annulus. The main heat
transfer mechanism in the annulus is convection and the next one is radiation. However, the portion
of radiation heat transfer is sharply lower than the convective mechanism. In addition, the presence
of rods leads to more heat transfer because of vortexes being made. Rods are like obstacles that
destroy the laminar sublayers and make local turbulence which enhance the convective heat transfer
coefficient in the annulus and augment the Nu. Figure 8 illustrates streamlines and isotherm lines
at different cross-sections of the studied cylinder for the case filled with Al2O3-Cu/water HNF at
φ1 = 0.05, φ2 = 0.01, ε = 0.7, and Re = 4000. As seen in this figure, HNF flow and heat transfer through
the z-direction of cylinder are developed. Additionally, the calculations show that different vortexes
are through the annulus. The main heat transfer mechanism in the annulus is convection and the next
one is radiation. However, the portion of radiation heat transfer is sharply lower than the convective
mechanism. Additionally, the presence of rods leads to more heat transfer because of vortexes being
made. Rods are like obstacles that destroy the laminar sublayers and make local turbulence which
enhance the convective heat transfer coefficient in the annulus and augment the Nu. Additionally, it is
realized that higher Reynolds numbers lead to more heat transfer coefficients because of more vortexes
and turbulence through the cylindrical annulus. By comparing the streamlines and isotherm lines in
Figures 7 and 8, some similarities between them are clearly seen. As noted previously, the portion
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of radiation heat transfer inside the studied cylinder is significantly lower than the convection heat
transfer. Therefore, variations in emissivity values do not have an important influence on HNF flow
and heat transfer distribution inside the cylindrical annulus, which is shown clearly by comparing
Figures 4–8 with each other. Higher emissivity values should lead to higher radiation heat transfer,
but the portion of radiative heat transfer in the studied annulus is low and therefore, does not have an
observable increment in HNF flow and heat transfer.Symmetry 2020, 12, x FOR PEER REVIEW 11 of 23 
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Figure 9 illustrates streamlines and isotherm lines at different cross-sections of the studied cylinder
for the case filled with Al2O3-Cu/water HNF at φ1 = 0.05, φ2 = 0.05, ε = 0.7 and Re = 4000. As seen
in this figure, HNF flow and heat transfer through the z-direction of the cylinder are developed.
Additionally, the calculations show different vortexes are through the annulus. The main heat transfer
mechanism in the annulus is convection and the next one is radiation. However, the portion of radiation
heat transfer is sharply lower than the convective mechanism. Additionally, the presence of rods
leads to more heat transfer because of vortexes being made. Rods are like obstacles that destroy the
laminar sublayers and make local turbulence which enhance the convective heat transfer coefficient
in the annulus and augment the Nu. In addition, it is realized that higher volume concentrations of
nanoparticles lead to more heat transfer coefficients because of more thermal conductivity of HNF
flow and also, more vortexes and turbulence through the cylindrical annulus because of more dynamic
viscosity values. By comparing the streamlines and isotherm lines in Figures 6 and 9, some similarities
between them are clearly seen. As noted previously, the portion of radiation heat transfer inside
the studied cylinder is significantly lower than the convection heat transfer. Therefore, variations in
emissivity values do not have an important influence on HNF flow and heat transfer distribution
inside the cylindrical annulus, which is shown clearly by comparing Figures 6 and 9 with each other.
Higher emissivity values should lead to higher radiation heat transfer, but the portion of radiative heat
transfer in the studied annulus is low and therefore, does not have an observable increment in HNF
flow and heat transfer.

Figure 10 demonstrates the effects of using different base fluids on variation of predicted Nuave

versus different volume fractions of Cu nanoparticles for the studied cylinder for the case filled with
Al2O3-Cu HNF at φ1 = 0.05 or 0.10, ε = 0.2, and Re = 3000 or 4000. As seen in Figure 10a, for the
model at Re = 3000 and φ1 = 0.05, all studied cases with different base fluids have similar behavior.
For all studied cases, the total Nuave reduces firstly by an increment of the volume concentrations of
Cu nanoparticles until φ2 = 0.01 or 0.02 and then, the total Nuave rises by an increment of the volume
concentrations of Cu nanoparticles. Additionally, it is seen that for the case with water as the base
fluid, the total Nuave at φ2 = 0.05 is more than the values at φ2 = 0.00, while for the other cases, the total
Nuave at φ2 = 0.05 is less than the values at φ2 = 0.00. Furthermore, for all studied cases, the case with
water as the base fluid has the maximum Nuave. As seen in Figure 10b, for the model at Re = 4000
and φ1 = 0.05, all studied cases with different base fluids have similar behavior. For all studied cases,
the total Nuave reduces firstly by an increment of the volume concentrations of Cu nanoparticles
until φ2 = 0.01 and then, the total Nuave rises by an increment of the volume concentrations of Cu
nanoparticles. Additionally, it is seen that for the case with water as the base fluid, the total Nuave at
φ2 = 0.05 is more than the values at φ2 = 0.00, while for the other cases, the total Nuave at φ2 = 0.05
is less than the values at φ2 = 0.00. Additionally, it is seen that by increment of Reynolds numbers,
the Nuave augments, as found by the comparison of Figure 10a,b.
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As seen in Figure 10c, for the model at Re = 3000 and φ1 = 0.10, all studied cases with different
base fluids have similar behavior. For all studied cases, the total Nuave increases firstly by an increment
of the volume concentrations of Cu nanoparticles until φ2 = 0.01, 0.02, or 0.03 and then, the total Nuave

diminishes by the intensification of volume concentrations of Cu nanoparticles. Additionally, it is seen
that for the case with water as the base fluid, the total Nuave at φ2 = 0.05 is more than the values at
φ2 = 0.00, while for the other cases, the total Nuave at φ2 = 0.05 is less than the values at φ2 = 0.00.
Furthermore, for all studied cases, the highest Nuave belongs to the case with water as the base fluid.
As seen in Figure 10d, for the model at Re = 4000 and φ1 = 0.10, all studied cases with different base
fluids have similar behavior. For all studied cases, the total Nuave reduces firstly by an increment of the
volume concentrations of Cu nanoparticles until φ2 = 0.01, 0.02, and 0.03, and then, the total Nuave

rises by an increment of the volume concentrations of Cu nanoparticles. Additionally, it is seen that for
the case with water as the base fluid, the total Nuave at φ2 = 0.05 is more than the values at φ2 = 0.00,
while for the other cases, the total Nuave at φ2 = 0.05 is less than the values at φ2 = 0.00. Furthermore,
for all studied cases, the case with water as the base fluid has the maximum Nuave. Additionally, it is
seen that by increment of Reynolds numbers, the Nuave augments, as found by the comparison of
Figure 10c,d.

Figure 11 shows different portions of the predicted Nu versus different volume fractions of Cu
nanoparticles of the studied cylinder for the case filled with ethylene glycol-based HNF at φ1 = 0.05,
ε = 0.2, and Re = 3000. It is seen that just about 5 to 7% of the total average Nusselt number is related to
radiation heat transfer and a huge portion is related to convection heat transfer. This is why variations
of emissivity coefficient do not have a significant effect on the final results.
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Figure 11. Different portions of the predicted Nu versus different volume fractions of Cu nanoparticles
of the studied cylinder for the case filled with EG-based HNF at φ1 = 0.05, ε = 0.2, and Re = 3000.

4. Conclusions

The present paper investigates symmetry simulation of transient forced HNF flow and heat
transfer in a three-dimensional annulus equipped with hot and cold rods. The chief goal of the current
study is to model the geometry using a symmetry scheme and also examine the influences of dissimilar
Reynolds numbers, emissivity coefficients, and dissimilar volume fractions of nanoparticles on the
thermal and hydraulic characteristics of the studied annulus. The height of cylinder is changed from
300 mm. Additionally, the height of square is changed from 46.03 to 70.71 mm, the length of square is
1000 mm, and the gravity influences are determined in z direction. The system is made of an insulator
in the center and outer sides of the cylinder, with a boundary condition of zero heat flux. However, this
material is assumed with two different emissivity values, ε = 0.2 and ε = 0.5, in order to analyze the
effects of emissivity values on radiation heat transfer, in addition to two different Reynolds numbers,
Re = 3000 and 4000. For all studied models, the initial NF temperature is Tinitial = 350 K and the cold
side temperature is Tc = 300 K. The hot side temperature can be Th = 430 K. The heat transfer fluid is
a water-, ethylene–glycol- or water/ethylene–glycol mixture-based Cu-Al2O3 HNF, which makes a
Newtonian NF. The RANS equations with the shear-stress (SST) k–ω turbulence model have been used
for simulating the turbulence regime. The most important obtained results are as follows:

• For the model at Re = 3000 and φ1 = 0.05, all studied cases with different base fluids have similar
behavior. For all studied cases, the total Nuave reduces firstly by an increment of the volume
concentrations of Cu nanoparticles until φ2 = 0.01 or 0.02 and then, the total Nuave rises by an
increment of the volume concentrations of Cu nanoparticles.

• For the case with water as the base fluid, the total Nuave at φ2 = 0.05 is more than the values at
φ2 = 0.00, while for the other cases, the total Nuave at φ2 = 0.05 is less than the values at φ2 = 0.00.

• For all studied cases, the case with water as the base fluid has the maximum Nuave.
• For the model at Re = 4000 and φ1 = 0.05, all studied cases with different base fluids have similar

behavior. For all studied cases, the total Nuave reduces firstly by an increment of the volume
concentrations of Cu nanoparticles until φ2 = 0.01 and then, the total Nuave rises by an increment
of the volume concentrations of Cu nanoparticles.

• By increment of Reynolds numbers, the Nuave augments.
• Higher emissivity values should lead to higher radiation heat transfer, but the portion of radiative

heat transfer in the studied annulus is low and therefore, does not have an observable increment
in HNF flow and heat transfer.
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Nomenclature

cp Specific heat (J/kg·K)
Cu Copper
dnp Nanoparticles size
→
g Gravity
k Thermal conductivity (W/m·K)
Ra Rayleigh number
M Molecular weight of the base fluid
N Avogadro number
Nu Nusselt number
→

P Pressure

Tc Cold side temperature
T f r liquid freezing point of base fluid
Th Hot side temperature
Tinitial Initial nanofluid temperature
Tm Each section-temperature
→

Udr,b f Nanoparticles drift velocity
→

Udr,s Base fluid drift velocity

uB Average Brownian velocity
Greek Symbols
→
α Acceleration
ρ Density (kg/m3)
ε emissivity
φ volume concentration of nanoparticles
µ Dynamic viscosity
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