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Abstract: This paper reports evidence that the antiferromagnetic and insulating ground state of MnO
is caused by a nonadiabatic atomic-like motion, as is evidently the case in NiO. In addition, it is shown
that experimental findings on the displacements of the Mn and O atoms in the antiferromagnetic
phase of MnO corroborate the presented suggestion that the rhombohedral-like distortion in
antiferromagnetic MnO, as well as in antiferromagnetic NiO is an inner distortion of the monoclinic
base-centered Bravais lattice of the antiferromagnetic phases.

Keywords: MnO; antiferromagnetic eigenstate; Mott insulator; atomic-like motion; nonadiabatic
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1. Introduction

The isomorphic transition-metal monoxides MnO and NiO are antiferromagnetic with the Néel
temperatures TN = 122 K and TN = 523 K, respectively. Above TN , both monoxides possess
the fcc structure Fm3m = Γ f

c O5
h (225) (in parentheses, the international number), and below TN ,

the antiferromagnetic structure in both materials is invariant under the monoclinic base-centered
magnetic group Cc2/c given in Equation (1) [1–4]. In both MnO and NiO, the antiferromagnetic state is
accompanied by a small rhombohedral-like [5] contraction of the crystal. In addition, both compounds
are Mott insulators in the antiferromagnetic, as well as in the paramagnetic phase [6].

1.1. Problem Statement

Since the discovery of antiferromagnetism and Mott insulation in the transition-metal monoxides
MnO, NiO, CoO, and FeO, the striking electronic properties of these and similar materials have been
considered as a manifestation of strongly correlated electrons [6–12]. However, the strongly correlated
nonadiabatic atomic-like motion defined within the nonadiabatic Heisenberg model (NHM) [13] was
not yet taken into consideration.

In two forgoing papers [5,14], I can provide evidence that, first, the nonadiabatic atomic-like
motion in a special partly-filled energy band of NiO is responsible for both the antiferromagnetic
and the insulating state and that, secondly, the (small) rhombohedral-like distortion of the crystal is
necessary to stabilize an antiferromagnetic eigenstate in a system invariant under time inversion.

The present paper reports evidence that the electronic features and the distortion of MnO have
the same physical origin as in NiO.

1.2. Organization of the Paper

The physical origin of the rhombohedral-like contraction in MnO is the same as in NiO because
the concerned magnetic groups are identical. Therefore, in Sections 2 and 3, only a brief summary
of Sections 3 and 4 of [5] is given to make the paper self-contained. These sections provide the
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magnetic group of the antiferromagnetic state and repeat the definition of the term “rhombohedral-like
contraction” used in the following sections.

In Section 4, the experimental findings of Goodwin et al. [15] on MnO will be interpreted.
They corroborate the concept of the rhombohedral-like contraction being an inner deformation of the
monoclinic base-centered Bravais lattice of antiferromagnetic MnO (and NiO).

In Section 5, the characteristics of the “conventional band structures” used within the NHM
will be explained. On the basis of the symmetry of the Bloch functions in the conventional band
structure of MnO, in Section 6, the NHM is applied to paramagnetic and antiferromagnetic MnO.
First, in Section 6.1, it is shown that there exist optimally localized symmetry-adapted Wannier
functions at the Fermi level of paramagnetic MnO, qualifying this material to be a Mott insulator. In the
following Section 6.2, I provide evidence that the nonadiabatic atomic-like motion of the electrons in
antiferromagnetic MnO is responsible for both the antiferromagnetism and the Mott insulation.

2. Magnetic Group of the Antiferromagnetic State

This section is a brief summary of Section 3 of [5] providing the terms needed in Sections 4 and 6.
The symmetry operations of the type IV Shubnikov magnetic group [4]:

Cc2/c = C2/c + K{E|τ}C2/c, (1)

leave invariant the antiferromagnetic structure of both NiO [4] and MnO. K denotes the anti-unitary
operator of time inversion; E stands for the identity operation; and

τ =
1
2

T1 (2)

is the non-primitive translation in the group C2/c, as indicated in Figure 1.
The unitary subgroup C2/c (15) of Cc2/c is based on the monoclinic base-centered Bravais lattice

Γb
m and contains (besides the pure translations) the four elements given in Equation (2) of [5]. As in [5],

I refer to the magnetic group Cc2/c as:
M15 = Cc2/c, (3)

emphasizing in this way the international number 15 of unitary subgroup C2/c. An electron system
with the symmetry of the group M15 cannot have antiferromagnetic eigenstates if it is invariant under
time inversion. Instead, it is the subgroup:

M9 = Cc + K{C2b|0}Cc (4)

of M15 allowing the system to have eigenstates with the experimentally observed antiferromagnetic
structure [5]. The symmetry operation C2b is the rotation through π as indicated in Figure 1. Just as
M15, M9 is based on the monoclinic base-centered Bravais lattice Γb

m. The unitary subgroup Cc (9) of
M9 contains (besides the pure translations) two elements,

Cc =
{
{E|0}, {σdb|τ}

}
, (5)

where σdb stands for the reflection σdb = IC2b and I denotes the inversion.
Consequently, the crystal is distorted in such a way that the Hamiltonian of the nonadiabatic

electron system still commutes with the elements of M9, but does not commute with the symmetry
operations of M15 −M9. This distortion is produced by a dislocation of the Mn atoms [5]: they are
shifted in±(T2− T3) direction from their positions at the lattice points tMn in Equation (6); see Figure 1.
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Figure 1. Manganese atoms in distorted antiferromagnetic MnO. The O atoms are not shown. The Mn
atoms bear magnetic moments parallel or antiparallel to [112]. The atoms marked by the same
color (red or green) have parallel magnetic moments, and two atoms marked by different colors bear
antiparallel moments. The vectors Ti are the basic translations of Γb

m.

3. Rhombohedral-Like Distortion

As well as antiferromagnetic NiO, antiferromagnetic MnO is slightly deformed by a
rhombohedral-like distortion, which may be interpreted as an inner distortion of the base-centered
monoclinic Bravais lattice Γb

m [5]. With “inner distortion”, I want to emphasize that the
rhombohedral-like distortion does not break the symmetry of the magnetic group M9. Figure 1 shows
the dislocations of the Mn atoms stabilizing, on the one hand, the antiferromagnetic structure and
producing, on the other hand, the rhombohedral-like distortion, as was substantiated in [5]. The crystal
is distorted as a whole whereby the vectors T1, T2, and T3 remain the basic vectors of Γb

m. The lattice
points tMn plotted in Figure 1 are not the positions of Mn in the fcc lattice, but are defined by
the equations:

tMn = n1T1 + n2T2 + n3T3 or

tMn =
1
2

T1 + n1T1 + n2T2 + n3T3,
(6)

where T1, T2, and T3 are the basic vectors of Γb
m and n1, n2, and n3 are integers.

4. Interpretation of the Experimental Findings of Goodwin et al.

Goodwin et al. [15] determined the displacements of the Mn and O atoms in the true monoclinic
structure from their positions in an assumed rhombohedral structure and gave the result in Table I of
their paper. They used the coordinates a′, b′, and c′ depicted in Figure 1 by the blue vectors, depending
on the translations of the base-centered monoclinic Bravais lattice according to:

a′ = 2T2 − T3 (7)

b′ = −T3

c′ = −3T1 + 2T2 + 2T3;
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see Figure 1. From Table I of [15], we get for the displacement ∆ of a Mn1 atom:

∆ = αa′ + βb′ + γc′ (8)

which may be written as:

∆ = −3γT1 +
3α + β

2
(T2 − T3) +

α− β + 4γ

2
(T2 + T3), (9)

leading with α = −2.072 · 10−3, β = 10.11 · 10−3, and γ = 2.708 · 10−3 (Table I of [15]) to:

∆ = −8.124T1 + 1.947(T2 − T3)− 0.675(T2 + T3), (10)

omitting the common factor 10−3.
The vectors T1 and (T2 + T3) lie in the plane related to the reflection σdb, referred to as “the plane

σdb”, as depicted in Figure 1. Hence, the first and the third summand in (10) describe a displacement
of the Mn atoms parallel to the plane σdb resulting from a modification of the translations T1, T2,
and T3 occurring in such a way that the Ti stay basis vectors of the base-centered monoclinic Bravais
lattice [5]. Consequently, these summands are caused by a deformation of the crystal as a whole being
still invariant under the translations of the monoclinic lattice.

The second summand, on the other hand, describes a shift of the Mn atoms perpendicular
to the plane σdb. It cannot be the result of a modification of the lattice vectors Ti because such a
modification would destroy the base-centered monoclinic Bravais lattice. These shifts of the Mn atoms
in the ±(T2 − T3) directions clearly identify the base-centered monoclinic magnetic group M9 as the
magnetic group of antiferromagnetic MnO because M9 is the only magnetic group invariant under
both the antiferromagnetic structure and a shift of the Mn atoms perpendicular to the plane σdb [5].
Thus, we may interpret this result of Goodwin et al. as follows:

(i) The significant shifts of the Mn atoms in the ±(T2 − T3) direction realize the magnetic group M9

and stabilize in this way the antiferromagnetic structure; see Section 2.
(ii) The observed displacements of the Mn atoms in Equation (10) are greatest in the T1 direction;

they are even 12 times greater than in the (T2 + T3) direction. This corroborates my supposition [5]
that the mutual attraction between Mn atoms with opposite shifts in the ±(T2 − T3) direction is
mainly responsible for the rhombohedral-like deformation of the crystal. The displacements are
maximal in the T1 direction since in this direction, they are parallel to the plane σdb and, thus,
do not destroy the magnetic group M9, as illustrated by the red line in Figure 1.

Furthermore, Goodwin et al. found that the symmetry of the threefold rotational axis implicit
in a rhombohedral lattice is (slightly) broken in MnO. This demonstrates again that we only have a
rhombohedral-like deformation rather than an (exact) rhombohedral symmetry in antiferromagnetic
MnO (just as in antiferromagnetic NiO [5]). On the other hand, a break of the monoclinic base-centered
symmetry with the magnetic group M9 must not happen because this would destabilize the magnetic
structure of MnO.

The small dislocations of the O atoms in the c′ direction (i.e., parallel to σdb) observed by
Goodwin et al. are simply the result of the modification of the translations T1, T2, and T3 produced by
the Mn atoms. The O atoms do not actively deform the crystal.

5. Conventional Band Structure

The band structure of paramagnetic MnO in Figure 2 is calculated by the FHI-aims (“Fritz Haber
Institute ab initio molecular simulations”) [16,17] computer program. It may be called a “conventional”
band structure, because it is a one electron band structure not taking into account correlation effects.
The correlation effects responsible for the stable antiferromagnetic state and the nonmetallic behavior
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of MnO enter by the postulates [13] of the group-theoretical NHM defining a strongly correlated
nonadiabatic atomic-like motion at the Fermi level.

The NHM uses only a more qualitative run of the energy Ek in the Brillouin zone. It is the
symmetry of the Bloch states in the points of symmetry of the Brillouin zone that characterizes an
energy band. The FHI-aims program uses spherical harmonics as basis functions and may output the
special linear combinations of these functions used at a point k. Therefore, I am able (by means of
a C++ program) to determine the symmetry of the Bloch functions at the points of symmetry in the
Brillouin zone using the symmetry of the spherical harmonics as given in [18].

6. Symmetry-Adapted and Optimally Localized Wannier Functions in MnO

The group-theoretical NHM defines in narrow, partly filled electronic energy bands an atomic-like
motion that cannot be described within the adiabatic approximation because it is stabilized by
that part of the motion of the atomic cores following non-adiabatically the electronic motion [13].
The related localized states are represented by symmetry-adapted and optimally localized Wannier
functions [19]. When the band is roughly half filled and one of narrowest bands in the band structure,
the special symmetry and the spin-dependence of these Wannier functions qualify a material to be
superconducting [19,20], magnetic [19,21–23], or a Mott insulator [5,23]. In the following Section 6.1,
it is shown that paramagnetic MnO possesses optimally localized Wannier functions including all the
electrons at the Fermi level and adapted to the fcc symmetry of the paramagnetic phase. These functions
define a nonadiabatic atomic-like motion evidently responsible for the Mott insulation. In the second
Section 6.2, it is shown that the electrons near the Fermi level of antiferromagnetic MnO can be
represented by Wannier functions comprising all the electrons at the Fermi level and adapted to the
magnetic group M9 of the antiferromagnetic phase.

6.1. Optimally Localized Wannier Functions Symmetry-Adapted to the Paramagnetic fcc Structure

Figure 2 and Table 1 provide the information we need to apply the NHM to paramagnetic MnO.
In Figure 2, the band structure of paramagnetic MnO is depicted, and Table 1 is an excerpt of Table 1
of [14]. While Table 1 of [14] lists all the optimally localized symmetry-adapted Wannier functions in
MnO centered at the Mn or O atoms and adapted to the paramagnetic space group Fm3m (225), Table 1
lists only the two bands with Wannier functions of Γ+

3 and Γ+
5 symmetry centered at the Mn atoms.

The bands have two and three branches, respectively, yielding together five Wannier functions at each
Mn atom.

Table 1. Symmetry labels of two energy bands in the Brillouin zone for paramagnetic MnO
with Bloch functions that can be unitarily transformed into optimally localized Wannier functions
symmetry-adapted to the space group Fm3m (225) and centered at the Mn atoms.

Mn (000) Γ X L W

Band 5 Γ+
3 Γ+

3 X+
1 + X+

3 L+
3 W1 + W4

Band 8 Γ+
5 Γ+

5 X+
4 + X+

5 L+
1 + L+

3 W3 + W5

Notes to Table 1:

(i) The notations of the points of symmetry in the Brillouin zone for Γ f
c follow Figure 3.14 of [18],

and the symmetry notations of the Bloch functions were defined in Table A1 of [5].
(ii) The bands are determined by means of Theorem 5 of [19]; cf. Section 2 of [14].
(iii) The point group G0Mn of the positions [19] of the Mn atoms is equal to the full cubic point group

Oh. The Wannier functions belong to the representation of G0Mn included below the atom.
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Figure 2. Conventional (Section 5) band structure of paramagnetic fcc MnO as calculated by the
FHI-aims program [16,17], using the length a = 4.426 A of the fcc paramagnetic unit cell given in [2].
The symmetry labels (as defined in Table A1 of [5]) are determined by the author. The notations of
the points of symmetry follow Figure 3.14 of [18]. The band highlighted by the bold lines forms an
insulating band of d symmetry consisting of five branches.

The band highlighted in Figure 2 by the bold lines is characterized by the symmetry:

Γ+
3 + Γ+

5 , L+
3 + L+

1 + L+
3 , X+

5 + X+
1 + X+

3 + X+
4 , W1 + W3 + W4 + W5 (11)

of the two bands listed Table 1. The related five Wannier functions are centered at the Mn atoms and
have d symmetry; see Table 2.7 of [18]. On the other hand, in Table 1b of [14], we find no band crossing
the Fermi level in the band structure of paramagnetic MnO. Hence, the energy band (11) originates
entirely from a d orbital of Mn. This d band is an insulating band qualifying paramagnetic MnO to be
a Mott insulator because it consists of all the branches crossing the Fermi level [14].

6.2. Optimally Localized Wannier Functions Symmetry-Adapted to the Antiferromagnetic Structure

Figure 3 and Table 2 provide the information we need to apply the NHM to antiferromagnetic
MnO. Table 2 is a shortened copy of Table A2 of [5] omitting the detailed notes to this table in [5]
(of course, these notes are also valid for Table 2 in this paper when “Ni” is replaced by “Mn”).
Table 2 lists all the bands with optimally localized Wannier functions centered at the Mn or O atoms
and symmetry-adapted to the magnetic group M9. In both cases, there exists only one band with
coinciding symmetries.
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Figure 3. The band structure of MnO given in Figure 2 folded into the Brillouin zone for the monoclinic
base-centered Bravais lattice Γb

m. The symmetry labels (as defined in Table A4 of [5]) are obtained from
Table A5 of [5]. The notations of the points of symmetry are defined in Figure 3.4 of [18]. The bold
lines highlight the magnetic super band consisting of six branches. The midpoint ΛM of the line
ΓZ is equivalent to the points W ′( 1

4
1
4

1
2 ) and Σ′( 1

4
1
4 0) in the Brillouin zone for the paramagnetic fcc

lattice. The number “1” on the line AΓV indicates that here, only one branch belongs to the magnetic
super band.

Figure 3 shows the band structure of paramagnetic MnO folded into the Brillouin zone of the
monoclinic base-centered magnetic structure. The narrow band highlighted by the bold lines comprises
six branches with the symmetry:

3Γ1 + 3Γ2, 3Z1 + 3Z2, 3M1 + 3M2, 3A1 + 3A2. (12)

Thus, Band 1 (with two branches) listed in Table 2a, as well as Band 1 in Table 2b exist three times in the
band structure of antiferromagnetic MnO. Hence, in the highlighted band, we may transform the Bloch
functions into optimally localized Wannier functions symmetry adapted to the magnetic group M9.
In doing so, we first have four possibilities: we may generate either six Wannier functions centered
at the two manganese atoms (with three Wannier functions at Mn1 and three Wannier functions at
Mn2), four Wannier functions centered at the manganese atoms and two Wannier functions centered
at the oxygen atoms, two Wannier functions centered at the manganese atoms and four Wannier
functions centered at the oxygen atoms, or six Wannier functions centered at the oxygen atoms in the
unit cell. The first possibility certainly does not lead to a stable atomic-like state as a consequence
of the Coulomb repulsion between localized states at the same position, and the last possibility has
no physical significance because it does not provide localized states at the Mn atoms that bear the
magnetic moments. In the remaining two cases, the highlighted band is a magnetic band. The localized
Wannier states belonging to this band define a nonadiabatic atomic-like motion stabilizing a magnetic
state with the magnetic group M9 [5,21]. Moreover, it is a magnetic super band since it contains
all the branches crossing the Fermi level. Thus, it qualifies MnO to be a Mott insulator also in the
antiferromagnetic phase [5].
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Table 2. Symmetry labels of all energy bands in the Brillouin zone for antiferromagnetic MnO
with Bloch functions that can be unitarily transformed into optimally localized Wannier functions
symmetry-adapted to the magnetic group M9 = Cc + K{C2b|0}Cc and centered at the Mn

(
Table (a)

)
or O

(
Table (b)

)
atoms, respectively.

(a) Mn Mn1 (000) Mn2 ( 1
2 00) K{C2b|0} Γ A Z M L V

Band 1 d1 d1 OK Γ1 + Γ2 A1 + A2 Z1 + Z2 M1 + M2 2L1 2V1

(b) O O1 ( 1
4

1
2

1
2 ) O2 ( 3

4
1
2

1
2 ) K{C2b|0} Γ A Z M L V

Band 1 d1 d1 OK Γ1 + Γ2 A1 + A2 Z1 + Z2 M1 + M2 2L1 2V1

Notes to Table 2:

(i) The symmetry labels were defined in Table A4 of [5], and the notations of the points of symmetry
were defined in Figure 3.4 of [18].

(ii) The bands are determined by means of Theorem 5 of [19].
(iii) The point groups G0Mn and G0O of the positions [19] of the Mn respective O atoms contain,

in each case, only the identity operation:

G0Mn = G0O =
{
{E|0}

}
. (13)

Thus, the Wannier functions at the Mn or O atoms belong to the simple representation:

{E|0}
d1 1

of G0Mn and G0O.
(iv) The symmetry of Band 1 in Table 2(a) coincides fully with the symmetry of Band 1 in Table 2(b).
(v) The entry “OK” indicates that the Wannier functions follow not only Theorem 5, but also Theorem

7 of [19]. Consequently, they may not only be chosen symmetry-adapted to the space group Cc,
but also to the complete magnetic group M9.

cf. the more detailed notes to Table A2 in [5] (and replace everywhere “Ni” by “Mn”).

7. Results

The paper is concerned with three striking features of MnO:

(i) The insulating ground state of both paramagnetic and antiferromagnetic MnO,
(ii) the stability of the antiferromagnetic state,
(iii) the rhombohedral-like deformation in the antiferromagnetic phase,

characterizing likewise the isomorphic transition-metal monoxide NiO. The aim of this paper is to
show that these striking electronic properties of MnO have the same physical origin as in NiO:

Just as in NiO [5],

• The antiferromagnetic state in MnO is evidently stabilized by strongly correlated atomic-like
electrons in a magnetic band. The magnetic band in MnO is even a magnetic super band because
it comprises all the electrons at the Fermi level. Thus, the special atomic-like motion in this band
qualifies antiferromagnetic MnO to be a Mott insulator.

• The Bloch functions of a (roughly) half filled energy band in the paramagnetic band structure of
MnO can be unitarily transformed into optimally localized Wannier functions symmetry-adapted
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to the fcc symmetry of the paramagnetic phase. These Wannier functions are situated at the Mn
atoms, have d symmetry, and comprise all the electrons at the Fermi level. Thus, the atomic-like
motion represented by these Wannier functions qualifies also paramagnetic MnO to be a
Mott insulator.

• The magnetic structure is stabilized by a shift of the Mn atoms in the ±(T2 − T3) direction.
These shifts evidently produce the rhombohedral-like deformation of the crystal because the
attraction between the Mn atoms increases slightly when the Mn atoms are shifted in opposite
directions. This concept presented in [5] was corroborated by the experimental observations of
Goodwin et al. [15].

• The rhombohedral-like distortion does not possess a rhombohedral (trigonal) space group, but is
an inner distortion of the base-centered monoclinic magnetic group M9 in Equation (4). The group
M9, on the other hand, must not be broken because it stabilizes the antiferromagnetic structure.

8. Conclusions

The results of this paper demonstrate once more the physical reality of the nonadiabatic atomic-like
motion defined within the NHM. Therefore, they confirm my former findings suggesting that
superconductivity [19,20], magnetism [19,21–23], and Mott insulation [5,14,23] are produced by the
nonadiabatic atomic-like motion defined within the NHM.

In addition, the paper corroborates my former suggestion [5,21] that we can determine by group
theory whether or not a magnetic state with the magnetic group M may be an eigenstate in a system
invariant under time inversion.

The theory presented in this paper should also be applied to the other transition-metal monoxides
CoO and FeO.
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Abbreviations

The following abbreviations are used in this manuscript:

NHM Nonadiabatic Heisenberg model
E Identity operation
I Inversion
C2b Rotation through π, as indicated in Figure 1
σdb Reflection IC2b
K Anti-unitary operator of time inversion
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