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Abstract: In many engineering problems associated with various physical phenomena, there occurs
a necessity of analysis of signals that are described by multidimensional functions of more than one
variable such as time t or space coordinates x, y, z. Therefore, in such cases, we should consider
dynamical models of two or more dimensions. In this paper, a new two-dimensional (2D) model
described by the Roesser type of state-space equations will be considered. In the introduced model,
partial differential operators described by the Conformable Fractional Derivative (CFD) definition
with respect to the first (horizontal) and second (vertical) variables will be applied. For the model
under consideration, the general response formula is derived using the inverse fractional Laplace
method. Next, the properties of the solution will be considered. Usefulness of the general response
formula will be discussed and illustrated by a numerical example.

Keywords: 2D system; conformable fractional derivative; CFD; Roesser model; general
response formula

1. Introduction

In the analysis of many real-world problems that arise in modern engineering, considerations
cannot be limited to only one dimension, predominately the time variable. The researchers should
consider these issues in a broader aspect, in more than one dimension, i.e., time and some spatial
variables. Therefore, for the last few decades in control theory, we observe a growing interest
of multidimensional dynamic systems. The state-of-the-art in this class of dynamic systems,
their properties and control methods are presented in the monographs [1–3].

In control theory two-dimensional systems (2D systems) are most often modelled by 2D state-space
differential or difference equations. For discrete two-dimensional (2D) systems, the most popular
are the structures of the state-space models proposed by Roesser [4], Fornasini and Marchesini [5,6], and
Kurek [7]. These models are also adopted for continuous domain in [8–11].

Recently, in the analysis of many physical phenomena, researchers consider partial differential
equations in two dimensions using fractional (non-integer) order partial differential operators.
The most interesting areas where this approach has found application are two-dimensional
models describing the dynamics of dislocation of atoms in crystals [12], processes of anomalous
diffusion [13–16], nonlinear cable equations used in electrophysiology [17] or in investigating of
problems connected with thermoelasticity [18]. The non-integer order of derivation introduces an
additional degree of freedom to the model. Therefore, its accuracy is much better in comparison with
the classical integer-order models of different phenomena.

There are many different definitions of non-integer (fractional) order derivatives
such as Riemann–Liouville, Grünwald–Letnikov or Caputo fractional derivatives [19–22].
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The symmetry properties of fractional differential equations have been considered by many
researchers. Gazizov et al. investigated Lie point symmetries of nonlinear anomalous diffusion
equations with time-domain Riemann–Liouville and Caputo fractional derivatives in [23]. The obtained
symmetries are applied for constructing exact solutions of the equations. In [24], the radial symmetry
of standing waves for a nonlinear Schrödinger equation involving the fractional Laplacian and Hardy
potential has been investigated. An application of Lie groups to solve the space-time fractional Burgers’
equation has been presented in [25], where the authors have shown that the Lie symmetry method may
be used to reduce the partial fractional-order differential equations to the system described by ordinary
differential equations. Therefore, the Lie group method is one of the most effective techniques to find
exact solutions of partial differential equations. The processes considered in the above papers may be
described by the model that will be introduced in this article.

In the last few years, many new well-behaved fractional and pseudo-fractional
derivatives definitions appeared. The Conformable Fractional Derivative (CFD) was introduced
by Khalil et al. in [26], and in [27] it was shown that this new definition has similar properties as
classical (integer) order derivatives including the chain rule, integration by parts, Taylor power
series expansion and Laplace transforms. A generalisation of the CFD operator and its physical
interpretation has been presented in [28].

In this paper, a new two-dimensional continuous non-integer order Roesser-type model with
partial derivatives described by the Conformable Fractional Derivative definition will be introduced.
Next, the 2D inverse fractional Laplace transform method will be used to derive the general response
formula for the system. It will be shown that the classical Cayley–Hamilton theorem can be extended
for such a new class of 2D fractional order systems. Finally, a numerical example will be presented,
where the step response of the system will be investigated.

Similar considerations were conducted for Roesser and Fornasini–Marchesini structures
of 2D fractional order systems in [29,30], where a Caputo-type fractional differential operator was used.
A non-integer order CFD derivative is more comfortable in theoretical analysis and more efficient
in numerical computations; therefore, it may be useful in the modelling of multidimensional problems
in control theory.

To the best knowledge of the author, the two-dimensional continuous CFD pseudo-fractional
systems described by the Roesser model have not been considered yet.

2. Conformable Fractional Derivative Definition and Its Properties

In this section, we will present a basic definition of CFD non-integer order derivative in one
and two dimensions and briefly recall some properties of this mathematical differential operator.
Next, we will show that the modified (fractional) Laplace transform is very useful in further
consideration of the models consisting CFD derivatives.

Let Rn×m be the set of n × m real matrices, the n × n identity matrix will be denoted by In

and n× n matrix with all zero elements by 0n.

Definition 1 ([26]). The Conformable Fractional Derivative (CFD) of a real continuous-time function f (t),
t ∈ [0, ∞) of order α ∈ (0, 1) is defined by

Dα f (t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

, (1)

where Dα f (0) = limt→0+ Dα f (t).

We say that the function f (t) is α-differentiable if there exists the CFD derivative Dα f (t). It is also
well-known [26,27] that if the function f (t) is differentiable, then

Dα f (t) = t1−α d
dt

f (t). (2)
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The properties of the mathematical operator CFD were investigated in [27] and its physical
interpretation was discussed in [28]. Moreover, it was shown there that the modified type of Laplace
transform may be useful for the analysis of analytical problems related to CFD derivatives.

Definition 2 ([27]). Let 0 < α ≤ 1 and f : [0, ∞) → R, then the fractional one-sided Laplace transform
of α-order of f (t) is defined by

Lα { f (t)} = Fα(s) =
∞∫

0

e−s tα
α f (t)tα−1dt. (3)

In [27], it has been shown that the fractional Laplace transform is a special case of the classical
Laplace transform, where the time variable is replaced by a modified variable (αt)1/α as follows
from the following lemma.

Lemma 1 ([27]). Let Fα(s) be the one-sided fractional Laplace transform of a function f (t). Then,

Fα(s) = L
{

f [(αt)1/α]
}

, (4)

where

L{ f (t)} = F(s) =
∞∫

0

e−st f (t)dt (5)

is the standard one-sided Laplace transform.

The greatest benefit of the fractional Laplace transform application for non-integer differential
equations solving is that the modified transform of a CFD operator is similar to the Laplace transform
of integer order derivative. Therefore, the analysis of CFD differential equations may be considered
using well-known methods from the classical integer order calculus, but one should remember that
the complex variable s in the fractional Laplace transform and s in the classical Laplace transform
are not isomorphic.

Theorem 1 ([27]). The fractional Laplace transform (3) of the Conformable Fractional Derivative operator (1)
is given by

Lα {Dα f (t)} = sFα(s)− f (0+), (6)

where α ∈ R is the non-integer order of CFD derivative.

Next, we will derive the convolution formula for the fractional Laplace transform. It is well
known that for the classical Laplace transform of two continuous-time functions f (t) and g(t), we have
the following convolution formula,

F(s)G(s) =L { f (t) ∗ g(t)}

=L


t∫

0

f (t− τ)g(τ)dτ

 .
(7)

Now, let us define the modified convolution integral called α-convolution integral.

Definition 3 ([31]). Let f (t) and g(t) be two continuous-time functions. We define the α-convolution of f (t)
and g(t) by

f (t) ∗α g(t) =
t∫

0

f
(
(tα − τα)

1
α

)
g(τ)

dτ

τ1−α
, (8)
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where α > 0 is an arbitrary non-integer order of the convolution.

The commutativity of the α-convolution of two functions is satisfied, as [31]

f (t) ∗α g(t) = g(t) ∗α f (t). (9)

Finally, we extend the convolution Formula (7) for the fractional Laplace transform.

Theorem 2 ([31]). Fractional Laplace transform of the α-convolution of functions f (t) and g(t), where α > 0
is the order of the transform, is given by

Lα { f (t) ∗α g(t)} = Fα(s)Gα(s). (10)

In this paper, we will investigate a dynamic system that is described in two dimensions (containing
two independent variables), therefore using Definition 1 we will introduce the following definition
of CFD non-integer order partial derivative of a 2D continuous function f (t1, t2) of two independent
variables t1 ≥ 0 and t2 ≥ 0.

Definition 4. The α ∈ (0, 1) order partial CFD derivative of a 2D continuous function f (t1, t2) with respect
to the variable t1 is defined by the formula

Dα
t1

f (t1, t2) =
∂α

∂t1
α f (t1, t2) = lim

ε→0

f (t1 + εt1
1−α, t2)− f (t1, t2)

ε
, (11)

In a similar way, we define the non-integer order partial CFD derivative of a function f (t1, t2)

with respect to the second variable t2.

3. The CFD Pseudo-Fractional 2D System Described by the Roesser Model

Now let us consider the CFD pseudo-fractional 2D continuous system described by the
state equations [

Dα
t1

xh(t1, t2)

Dβ
t2

xv(t1, t2)

]
=

[
A11 A12

A21 A22

] [
xh(t1, t2)

xv(t1, t2)

]
+

[
B1

B2

]
u(t1, t2), (12a)

y(t1, t2) = C

[
xh(t1, t2)

xv(t1, t2)

]
+ Du(t1, t2), (12b)

where xh(t1, t2) ∈ Rn1 , xv(t1, t2) ∈ Rn2 (n = n1 + n2) are the horizontal and vertical state vectors,
respectively; u(t1, t2) ∈ Rm is the input vector; and y(t1, t2) ∈ Rp is the vector of outputs and the
matrices Akl ∈ Rnk×nl , Bk ∈ Rnk×m for k, l = 1, 2; C ∈ Rp×n; D ∈ Rp×m. For each dimension, we
have different non-integer orders, 0 < α < 1 for horizontal and 0 < β < 1 for the vertical direction
of differentiation.

In the particular case, when we assume α = 1 and β = 1 in (11), we obtain

Dα
t1

f (t1, t2) =
∂

∂t1
f (t1, t2), Dα

t2
f (t1, t2) =

∂

∂t2
f (t1, t2). (13)

and the considered model becomes a continuous counterpart of a discrete integer-order Roesser model
described by [

∂
∂t1

xh(t1, t2)

∂
∂t2

xv(t1, t2)

]
=

[
A11 A12

A21 A22

] [
xh(t1, t2)

xv(t1, t2)

]
+

[
B1

B2

]
u(t1, t2). (14)

Using any discretisation method, we may express the state Equation (14) in the form of
well-known discrete Roesser model [4]. Therefore, the proposed model has a structure similar to the
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2D discrete Roesser model introduced in [4] and it is a generalisation of the integer-order model for
non-integer orders.

The boundary conditions for (12) are given in the following form,

xh(0, t2) = h(t2) ∈ Rn1 (15a)

and
xv(t1, 0) = v(t1) ∈ Rn2 (15b)

for t1, t2 ≥ 0, where h(t2) and v(t1) are assumed boundary continuous real functions.
Note that for the model (12) we assume only Dirichlet-type boundary conditions. This issue

is essential in the modelling of phenomena occurring in engineering, where the derivatives of functions
at the boundaries of the area of investigation are often difficult to define.

4. General Response Formula

In this section, we will derive a general response formula for the model (12) using the inverse
fractional Laplace transform method.

Let Fα(p, t2)
(

Fβ(t1, s)
)

be the fractional α-order (β-order) Laplace transform of a 2D continuous
function f (t1, t2) with respect to t1 (t2) defined by

Fα(p, t2) = Lα
t1
{ f (t1, t2)} =

∞∫
0

e−p
tα1
α f (t1, t2)tα−1

1 dt1 (16)

and

Fβ(t1, s) = Lβ
t2
{ f (t1, t2)} =

∞∫
0

e−s
tβ
2
β f (t1, t2)t

β−1
2 dt2. (17)

The two-dimensional (α, β)-orders fractional Laplace transform of a function f (t1, t2)

will be denoted by Fαβ(p, s) and defined by

Fαβ(p, s) = Lαβ
t1,t2
{ f (t1, t2)} = Lα

t1

{
Lβ

t2
[ f (t1, t2)]

}
= Lβ

t2

{
Lα

t1
[ f (t1, t2)]

}
=

∞∫
0

∞∫
0

e−p
tα1
α −s

tβ
2
β f (t1, t2)tα−1

1 tβ−1
2 dt1dt2.

(18)

Now applying the 2D fractional Laplace transform (18) to both sides of the state Equation (12)
and using (6) with respect to both variables t1 and t2 we obtain[

pXh
αβ(p, s)− Xh

β(s)
sXv

αβ(p, s)− Xv
α(p)

]
=

[
A11 A12

A21 A22

] [
Xh

αβ(p, s)
Xv

αβ(p, s)

]
+

[
B1

B2

]
Uαβ(p, s), (19)

where
Xh

αβ(p, s) = Lαβ
t1,t2

{
xh(t1, t2)

}
,

Xv
αβ(p, s) = Lαβ

t1,t2
{xv(t1, t2)}

and
Xh

β(s) = Xh
β(0, s) = Lβ

t2

{
xh(0, t2)

}
= Lβ

t2
{h(t2)} ,

Xv
α(p) = Xv

α(p, 0) = Lα
t1
{xv(t1, 0)} = Lα

t2
{v(t1)}

and Uαβ(p, s) = Lαβ
t1,t2
{u(t1, t2)}, where α (β) is the order of the fractional Laplace transform with

respect to t1 (t2).
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Premultiplying (19) by the matrix

blockdiag
[

p−1In1 , s−1In2

]
we obtain [

Xh
αβ(p, s)

Xv
αβ(p, s)

]
=G−1(p, s)

{[
p−1Xh

β(s)
s−1Xv

α(p)

]
+

[
p−1B1

s−1B2

]
Uαβ(p, s)

}
, (20)

where

G(p, s) =

[
In1 − p−1 A11 −p−1 A12

−s−1 A21 In2 − s−1 A22

]
. (21)

Assume that the inverse of the polynomial matrix G(p, s) has the form

G−1(p, s) =
∞

∑
i=0

∞

∑
j=0

Ti,j p−is−j, (22)

where Ti,j ∈ Rn×n are called the transition matrices.
It is well known that

G(p, s)G−1(p, s) = G−1(p, s)G(p, s) = In.

Therefore, using (21) and (22), we obtain

∞

∑
i=0

∞

∑
j=0

{
Ti,j − T1,0Ti−1,j − T0,1Ti,j−1

}
p−is−j = In, (23)

where

T1,0 =

[
A11 A12

0 0

]
, T0,1 =

[
0 0

A21 A22

]
. (24)

Comparing the coefficients of both sides of the equality (23) with respect to the corresponding
powers of variables p and s, we may formulate the following recursive formula for the computation of
transition matrices Tij,

Ti,j =


In for i = j = 0,
T1,0Ti−1,j + T0,1Ti,j−1 for i + j > 0 (i, j ∈ Z+),
0n for i < 0 and/or j < 0.

(25)

Substituting the expansion (22) into (20), we obtain[
Xh

αβ(p, s)
Xv

αβ(p, s)

]
=

∞

∑
i=0

∞

∑
j=0

{
Ti−1,j

[
Xh

β(s)
0

]
+ Ti,j−1

[
0

Xv
α(p)

]

+Ti−1,j

[
B1

0

]
Uαβ(p, s)Ti,j−1

[
0
B2

]
Uαβ(p, s)

}
p−is−j.

(26)

To find an inverse fractional Laplace transform of both sides of (26), we should derive the inverse
α-order Laplace transform of the expression s−1.
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First, using Definition 2, we will derive the fractional Laplace transform of a function tp for t > 0
and p > 0 as follows,

Lα {tp} =
∞∫

0

e−s tα
α tp+α−1dt (27)

By the substitution of x = s tα

α , we obtain

Lα {tp} = α
p
α

s1+ p
α

∞∫
0

e−xx
p
α dx

=
α

p
α

s1+ p
α

Γ
(

1 +
p
α

) (28)

for p > −α, as Γ(x) =
∞∫
0

tx−1e−tdt, where x > 0 is called the Euler gamma function.

If we assume that γ = 1 + p
α , we may form the expression for the inverse Laplace fractional

transform of the operator 1
sγ , where γ > 0 as follows,

L−1
α

{
1
sγ

}
=

tα(γ−1)

αγ−1Γ(γ)
. (29)

Applying the inverse fractional Laplace transform with respect to the variables p and s to (26)
and taking into account (29) and (10) we obtain

[
xh(t1, t2)

xv(t1, t2)

]
=

e
A11tα1

α 0

0 e
A22tβ

2
β

 [h(t2)

v(t1)

]
+

∞

∑
i=0

∞

∑
j=0

Ti,j+1
tαi
1

αii!

t2∫
0

(tβ
2 − τ

β
2 )

j

βj j!τ1−β
2

[
h(τ2)

0

]
dτ2

+
∞

∑
i=0

∞

∑
j=0

Ti+1,j
tβj
2

βj j!

t1∫
0

(
tα
1 − τα

1
)i

αii!τ1−α
1

[
0

v(τ1)

]
dτ1

+

t1∫
0

[
eA11

tα1−τα
1

α B1

0

]
τα−1

1 u(τ1, t2)dτ1 +

t2∫
0

 0

eA22
tβ
2−τ

β
2

β B2

 τ
β−1
2 u(t1, τ2)dτ2

+
∞

∑
i=0

∞

∑
j=0

(
Ti,j+1

[
B1

0

]
+ Ti+1,j

[
0
B2

]) t1∫
0

t2∫
0

(tα
1 − τα

1 )
i

αii!τ1−α
1

(tβ
2 − τ

β
2 )

j

βj j!τ1−β
2

u(τ1, τ2)dτ2dτ1,

(30)

since Γ(x) = (x− 1)! and

Ti,0 =

[
A11 A12

0 0

]i

and T0,j =

[
0 0

A21 A22

]j

. (31)

Therefore, the following theorem has been proved.

Theorem 3. The solution to the system (12) for arbitrary boundary conditions (15) and an arbitrary input
vector u(t1, t2) for t1 > 0 and t2 > 0 is given by (30), where the transition matrices Tij for i ≥ 0 and j ≥ 0
are defined by (24) and (25).

Substitution of (30) into (12b) yields the general response formula for the pseudo-fractional 2D
system (12) for arbitrary boundary conditions h(t2) and v(t1) and inputs u(t1, t2) for t1 ≥ 0 and t2 ≥ 0.
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5. Extension of Cayley–Hamilton Theorem

In this section, we will show that the well-known Cayley–Hamilton theorem is satisfied
for transition matrices (25) of CFD pseudo-fractional 2D systems described by the Roesser model (12).

Let us define a notion of a characteristic polynomial of the system (12) as follows,

detG(p, s) =

∣∣∣∣∣In1 − p−1 A11 −p−1 A12

−s−1 A21 In2 − s−1 A22

∣∣∣∣∣ = n1

∑
k=0

n2

∑
l=0

an1−k,n2−l p−ks−l . (32)

From the definition of the inverse of matrices, as well as (22) and (32), we have

AdjG(p, s) =

(
n1

∑
k=0

n2

∑
l=0

an1−k,n2−l p−ks−l

)(
∞

∑
i=0

∞

∑
j=0

Ti,j p−is−j

)

=
n1

∑
k=0

n2

∑
l=0

∞

∑
i=0

∞

∑
j=0

aklTi+k,j+1 p−(n1+i)s−(n2+j),

(33)

where AdjG(p, s) denotes the adjoint polynomial matrix of G(p, s).
Comparing coefficients of the same powers of variables p and s in (33) for i ≥ 0 and j ≥ 0

and taking into account that

AdjG(p, s) =
n1

∑
i=0

n2

∑
j=0

i+j 6=n1+n2

Dij p−is−j (34)

we may formulate the following Cayley–Hamilton theorem for CFD pseudo-fractional 2D continuous
systems described by the Roesser model.

Theorem 4. Let (32) be the characteristic polynomial of the system (12). Then, the transition matrices Tij
described by (25) satisfy the equality

n1

∑
k=0

n2

∑
l=0

aklTk+m1,l+m2 = 0, (35)

where m1, m2 = 0, 1, . . ..

Remark 1. From Theorem 4, for m1 = m2 = 0, we have

n1

∑
k=0

n2

∑
l=0

aklTk,l = 0, (36)

and it is obvious that only the transition matrices with indexes from rectangular [0, n1]× [0, n2] are linearly
independent. For k ≥ n1 and/or l ≥ n2 the matrices Tk,l are a linear combination of the transition matrices with
indexes smaller than n1 and n2.

6. Step Response

In this section, based on the solution (30), we will derive the step response of the system (12),
i.e., the solution to the system for zero initial conditions

xh(0, t2) = h(t2) = 0, xv(t1, 0) = v(t1) = 0 (37)

for t1, t2 ≥ 0 and the 2D unit step type function input

u(t1, t2) =

{
0 for t1 < 0 and t2 < 0,
1 for t1, t2 ≥ 0.

(38)
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We will assume that the system has only one input, i.e., m = 1. The considerations may be easily
extended for a greater number of inputs (m > 1).

Substitution of (37) and (38) into (30) yields

[
xh(t1, t2)

xv(t1, t2)

]
=

t1∫
0

[
eA11

tα1−τα
1

α B1

0

]
τα−1

1 dτ1 +

t2∫
0

 0

eA22
tβ
2−τ

β
2

β B2

 τ
β−1
2 dτ2

+
∞

∑
i=0

∞

∑
j=0

(
Ti,j+1

[
B1

0

]
+ Ti+1,j

[
0
B2

]) t1∫
0

t2∫
0

(tα
1 − τα

1 )
i

αii!τ1−α
1

(tβ
2 − τ

β
2 )

j

βj j!τ1−β
2

dτ2dτ1

=
∞

∑
k=0

1
(k + 1)!


(

tα
1
α

)k+1
Ak

11B1(
tβ
2
β

)k+1
Ak

22B2


+

∞

∑
i=0

∞

∑
j=0

(
Ti,j+1

[
B1

0

]
+ Ti+1,j

[
0
B2

])
1

(i + 1)!
1

(j + 1)!

(
tα
1
α

)i+1
(

tβ
2
β

)j+1

.

(39)

Note that if i, j −→ ∞ then the coefficients
1
(·)! −→ 0. Therefore, in practical cases, especially

in numerical analysis, we may assume that i and j are bounded by some natural numbers L1 and L2.

Example 1. Consider a non-integer order 2D system described by the state Equation (12) with α1 = 0.7,
α2 = 0.9 and matrices [

A11 A12

A21 A22

]
=

[
−0.9 0.7
0.1 a

]
,[

B1

B2

]
=

[
1
1

]
, C =

[
1 0
0 1

]
, D = [0]

(40)

for a = −0.7 and a = 0.7.
Find a step response of the system, i.e., y(t1, t2) for t1, t2 ≥ 0 and

u(t1, t2) = H(t1, t2) =

{
0 for t1 < 0 and/or t2 < 0
1 for t1, t2 ≥ 0

and zero boundary conditions

xh(0, t2) = h(t2) = 0 for t2 ≥ 0,

xv(t1, 0) = v(t1) = 0 for t1 ≥ 0.

Note that in this particular case we have

y(t1, t2) =

[
xh(t1, t2)

xv(t1, t2)

]
.

The plot of the step response (39) for the 2D system (12) with matrices (40), where L1 = 50 and L2 = 50
are shown in Figure 1 for a = −0.7 (stable case) and in Figure 2 for a = 0.7 (unstable case).
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Figure 1. State variables for a = −0.7.
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Figure 2. State variables for a = 0.7.

7. Concluding Remarks

In this paper, the continuous Roesser type two-dimensional model containing partial non-integer
order derivatives described by the Conformable Fractional Derivative definition has been considered
and the general solution formula has been derived. CFD system requires only the knowledge of the
boundary conditions of Dirichlet type in contrast to the models with Riemann–Liouville definition
of fractional-order derivative where the derivatives of boundary conditions should be assumed.

Many different partial differential equations may be expressed by the presented model.
Therefore, using the obtained solution, we are able to find a solution formula for this equation.
Moreover, the solution is very convenient for numerical computations. Despite the fact that the
obtained expression is an infinite sum of matrices and integrals of the boundary conditions and inputs,
in practical cases we may bound the higher limits of the sums by some finite numbers depending on
the dynamic properties of the system state matrix. The precision of the results in this case is satisfactory,
as the expression under the sum decreases rapidly when the indexes of the sum are increasing.

In the paper, the modified Laplace transform has been used to solve the two-dimensional
non-integer partial differential equations. It is a very efficient approach, as such transform has similar
properties as the classical one-sided Laplace transform. It is well-known that the CFD definition may
be expressed using the standard first-order derivative of a function with weighting factors depending
on time. This approach leads to the time varying system and the analytical solution becomes more
complex and difficult. Therefore, the method presented in this paper is more appropriate to find
a formula that describes the general response of the model.
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Using the general response formula, we are able to obtain the response of the system for different
input functions with arbitrary boundary conditions, especially the system step response, which plays
a key role in the study of the dynamics of real-world processes. Based on the solution to the model,
the asymptotic stability and other dynamical properties of such systems may be considered.

The presented in the paper results proves that the above considerations can be extended
for a general 2D model [7] or for the first and second Fornasini–Marchesini structure models [5,6].
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