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Abstract: In this paper, a novel heuristic search algorithm called Smart Root Search (SRS) is proposed.
SRS employs intelligent foraging behavior of immature, mature and hair roots of plants to explore
and exploit the problem search space simultaneously. SRS divides the search space into several
subspaces. It thereupon utilizes the branching and drought operations to focus on richer areas of
promising subspaces while extraneous ones are not thoroughly ignored. To achieve this, the smart
reactions of the SRS model are designed to act based on analyzing the heterogeneous conditions of
various sections of different search spaces. In order to evaluate the performance of the SRS, it was
tested on a set of known unimodal and multimodal test functions. The results were then compared
with those obtained using genetic algorithms, particle swarm optimization, differential evolution
and imperialist competitive algorithms and then analyzed statistically. The results demonstrated
that the SRS outperformed comparative algorithms for 92% and 82% of the investigated unimodal
and multimodal test functions, respectively. Therefore, the SRS is a promising nature-inspired
optimization algorithm.

Keywords: combinatorial optimization problem; heuristics method; nature-inspired algorithm;
NP-hard problem; plant root

1. Introduction

Nature is replete with intelligent and disciplined phenomena with impressive capabilities that
are being continuously discovered. The behavior of animals and insects has been observed for
centuries; however, the observed behaviors, which are represented by physics and particle dynamics,
represent only a small portion of the intelligent processes that exist in nature. The intelligent
behavior found in nature has inspired many intelligent search algorithms, such as genetic algorithms
(GAs) [1], particle swarm optimization (PSO) [2,3], ant colony optimization [4,5], the artificial fish
swarm algorithm [6], the artificial immune system [7], bacterial foraging optimization algorithm [8,9],
bat-inspired algorithm [10,11], imperialist competitive algorithm [12–14], and the gravitational
attraction search [15]. Although each of the intelligent search algorithms exhibits their own set
of efficiencies and can solve many types of optimization problems, there are some issues they have in
common for solving large-scale problems especially those possessing search spaces with staggering high
dimensions. Amongst these issues, local optima problem [16–18] and the absence of inborn exploitation
operations [19–21] are seemingly impossible to overcome. Thus, many researchers are searching for
unique methods to tackle these issues. Hybrid heuristic search and memetic algorithms [19,22,23]
have been proposing since years ago to tackle these problems. Innovative combinations of the Bee
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colony algorithm with other heuristics are also showing promising results in properly exploring search
spaces [24,25].

In the process of searching the soil for nutrients, such as minerals and water, plant roots
demonstrate highly intelligent behavior [26]. This intelligence must be creative to ensure the survival of
the plant in environments with low levels of water and insufficient nutrients. In these limited-resource
communities, roots, as explained in Section 1.1.1, often adapt and search a broad area before plant
dies due to absence of food or water. Therefore, the intelligent behavior of roots could be the basis
for a brand new, swift, effective, and appealing intelligent search algorithm able to efficiently search
large spaces.

A few attempts have been made to imitate plant root behavior and develop new search algorithms.
These studies resulted in four algorithms: the root growth model (RGM) [27], root mass optimization
(RMO) [28], the artificial root foraging model (ARFO) [29,30] and artificial root mass (ARM) [31].
Despite researchers’ efforts, the proposed algorithms have been unable to utilize plant intelligence in a
way that overcomes the weaknesses that affect other heuristic search algorithms (refer to Section 1.1.2
for more details).

Hence, to achieve high efficiency and overcome problems, a new, independent, growth-inspired
Smart Root Search (SRS) algorithm was proposed by the authors of this paper in [32]. The SRS is
equipped with unique features and well-defined operators that are extracted precisely from intelligence
of plant, and, unlike previous plant root-based search algorithms, is in absolute alignment with
optimization principles. The novelty of SRS can be summarized in three items including (1) dividing
the search space into a number of subspaces helping the algorithm to quickly find the more potential
areas of the search space, and control local convergence of the algorithm in those areas; (2) defining
three different types of roots, immature, mature and hair roots, that use different exploration approaches
together with a mechanism to convert immature to mature, in order to search more in promising areas
and provide embedded local search mechanism; and (3) proposing root drouth operator to control
local and global convergence of the algorithm simultaneously.

As the proposed SRS was a brief preliminary model, it required supplementary parts, revision,
implementation, test and comparison. To this end, in this paper the final version of the model
is proposed and explained in detail and represented in the form of flowchart and pseudocode.
Supported by graphical examples, a new structure is employed for roots for getting better performance,
and root drought equation is improved to protect promising roots more accurately. In addition to
that, a clear parameter initialization is added to the algorithm, and a precise explanation is provided
for Immature-to-Mature mechanism of the roots. Most importantly, a complete experimental test has
designed and applied to evaluate the performance of the algorithm and compare with introduced
comparative algorithms followed by an in-detail statistical test.

The remainder of the paper is structured according to the following. The literature on the
intelligent behavior of roots is reviewed in Section 1.1. A detailed explanation of the SRS algorithms
is then described in Section 2, followed by the experimental test and results in Section 3. Finally,
conclusion and suggestions for future work are provided in Section 4, followed by references.

1.1. Literature Review

From a general perspective, living things can be divided into two main groups: animals and plants.
Animals sense their environment using their senses, such as sight and touch. Similarly, plants perceive
their surrounding environment using a series of senses and reactions. To become more familiar with
plant physiology and their senses and reactions, this section provides information on how plant roots
sense their environment and the consequences of these reactions.
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1.1.1. Plant Senses and Reactions

Plants use the same five senses as humans: hearing [33], touching, tasting, seeing and smelling.
Furthermore, plants have evolved to use more senses than humans and, in fact, have approximately
twenty distinct senses. Indeed, plants are able to detect moisture, gravity, minerals, humidity, light,
wind, soil composition and structure, snow melt, pressure, temperature, and infection. Plants can
decide to react against environmental stimuli based on the information obtained by these senses. Thus,
plants are considered prototypical intelligent creatures [26,34] and exhibit their intelligence via shoot
and root growth.

A thorough review on the architecture of root system and the pathways and networks forming
root behavior was provided in [35]. Those authors showed that root growth is a reaction to the nutrients
of the soil depending on several changing factors. Hydrotropism, nutrient tropism, cell memory
and electrical impulse are some of the most interesting behaviors that demonstrate root intelligence.
These behaviors are summarized below.

Hydrotropism: Plant survival depends on the ability of roots to find water in soil. Hence, plant root
growth curves correspond to the moisture gradient (higher water potential) called hydrotropism [36,37].

In addition, when they encounter moisture in soil, roots absorb and store water to support all
plant activities. The plant loses stored water during plant growth or evapotranspiration. Roots can
also transfer water to dry parts of the soil and release it to promote root survival [38–40]. This release
occurs when the absorbed water is not sufficient for root survival because roots that cannot survive
will dry out.

Nutrient tropism: Nitrates and phosphates are considered the most important elements for
plant growth [41]. Important developmental processes, such as lateral root (LR) and hair root (HR)
formation as well as primary root (PR) elongation (length), are to a great extent sensitive to the nutrient
concentration changes.

Strong evidence shows that the nitrate concentration affects LR formation: development of
LR is hindered by high nitrate concentrations and stimulated by low concentrations of nitrate,
respectively [35,42]. PR elongation under the inhibitory impact of high nitrate concentrations is also
discussed in [43]. Accessibility and distribution of phosphate and Nitrate have been shown to have
contrasting effects on PR elongation and LR density but comparable impacts on LR elongation [44].
PR elongation is known to decrease with increasing nitrate availability but increase as the phosphate
supply increases. The LR density remains constant across varying concentrations of nitrates but
decreases as the phosphate supply increases. In contrast, LR elongation is suppressed by high
concentrations of nitrate as well as phosphate.

In this regard, Ref. [45] demonstrated that phosphate starvation enhances HR elongation
and density. Furthermore, research conducted at the Pennsylvania State University shows
that Arabidopsis thaliana roots grow more condensed and longer reacting to lower availability of
phosphate [46].

Memory: Although plants do not have a neural network, many studies show that they can
recall some conditions, which suggests that plants exhibit memory. Ref. [47] addressed traumatic
plant memories, related facts, and potential mechanisms. Stress factors make the plant impervious to
subsequent exposures. This stress-related feature indicates that every plant has a memory capacity.
In addition, plants also possess “stress memory” and “drought memory”. Surprisingly, the proportion
of live biomass after a late drought is higher in plants that were exposed to drought earlier in their
growing season contrasted with single-stressed plants [48].

Electrical Impulse: Plants also use a message-passing system [49]. Research on plants has shown
that electrical communication plays a significant role in root-to-shoot contact in the plants under water
stress. Furthermore, Ref. [50] showed that when one organ of a seedling is stimulated (i.e., the root
region), a characteristic response (electrical stimulus) is produced and would be recorded upward in
another organ from the stimulating area.
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1.1.2. Plant-Imitating Methods

A comprehensive analysis at plant root domains shows that only a few research studies have
focused on using the inherent intelligence of the plants as a search algorithm. The studies have been
leaded and conducted by Zhu Yunlong and his several research teams, respectively. In this section,
the small number of proposed plant root algorithms and the main ideas are assessed and discussed.

RGM is a proposed algorithm for numerical function optimization that simulates the interactions
between HR growth and the soil [27,51]. In each iteration of growth in RGM, high-functioning roots,
which have higher Morphactin (fitness function) values, are selected to branch areas distant from
the selected roots. New branches are called HRs. HRs follow random growth directions, and their
growth length depends on their growth direction. HRs are added to a set of roots, and then a set
of non-selected branching roots is removed. Accordingly, RGM could be known as a local search
algorithm that does not take advantage of the well-extracted root intelligence and is not suitable to
search in large search spaces. Furthermore, when local optima become trapped, the RGM method fails.

In 2013, an RGM for numerical optimization—the RMO algorithm—was proposed [28]. RMO is
the primary inspiration for two other algorithms: ARFO and ARM.

ARFO [29,30] was proposed for image segmentation problems and then generalized to address
other optimization problems. This algorithm uses the Auxin hormone levels of roots as the objective
function and employs branching, re-growing, hydrotropism and gravity-tropism operations. The ARFO
root system consists of three groups of roots, including main roots and lateral roots (large and small
elongated length units, respectively) and dead roots. Two main shortcomings of ARFO are evident:
first, absence of precise extraction and accurate modeling of plant intelligence in terms of root growth.
Second, optimization-averse behavior is inherent in the algorithm. A list of shortcomings of the ARFO
is presented in Table 1.

Table 1. Intelligent and optimization-averse behaviors of artificial root foraging model (ARFO) algorithm.

Optimization-Adversative Behaviors Common Intelligent Behaviors

Increasing root length in promising main
root areas

Using short-step movements/changes in promising
areas to identify additional search locations

Decreasing root length in non-promising
LR areas

Using large-step movements/changes in
non-promising areas to escape non-promising areas

LR are exploited in non-promising areas Exploitation occurs in promising areas

Applying short-length branches causes
very fast convergence Avoiding fast convergence

No chance for enhancing bad solutions Bad solutions have more chances for enhancement

ARM optimization was proposed to solve the data clustering problem. ARM is based on a
harmony-like search algorithm [52] that simulates plant root growth strategies, such as proliferation
and decision making, that depend on the growth direction [31]. ARM generates a set of roots randomly.
Some of the roots with better fitness values can continue their growth, while the rest stop growing.
For every root, one neighbor is selected randomly. If the fitness of the neighbor is better than that of
the root, then a new root will be generated between them in the search space; otherwise, a new root
will be generated randomly. The new root will be added to the set of roots with better fitness values
than its parent. Therefore, no intelligent root behaviors are applied in ARM.
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2. Smart Root Search Algorithm

2.1. Intelligence of Plant Root Growth

Root growth intelligence can be outlined as follows:

(a) Roots grow in the direction of the nutrient sources in the soil.
(b) Root growth accelerates and generates new branches and HRs depending on the nutrient

concentration of the soil.
(c) Each part of a root uses electrical impulses to send information about its current situation to the

other parts.
(d) Plants can memorize and respond to information.
(e) Water stress states cause roots to dry up.

These intelligence mechanisms motivated us to design the SRS optimization algorithm. The SRS
is described in detail in Section 2.2. Table 2 presents a mapping of the optimization with real plant root
growth (botany) terms.

Table 2. Mapping optimization terms and plant root mechanism.

Botany Terms Optimization Terms

Soil Search Space
Plant Root Set Solutions’ Vector
Root Solution
Nitrate Concentration Objective Function
Location of the Highest Nitrate Concentration Optimal Solution
Growth Step Iteration
Hair Roots Germination Local Search Operator
Root Growth Solution Movement
Root Drouth Solution Elimination
Root Growth Speed Velocity of Movement
Branching Solution Reproduction
Immature Root Limited-move Solution
Growth Direction Movement Coefficient Set

2.2. SRS Algorithm

The SRS has some characteristics that distinguish it from similar algorithms.

I. SRS divides the search space into several subspaces and distributes the first generation of roots
equally among them. This helps SRS to apply different search policies to different parts of the
search space. Similar algorithms do not provide such functions in their standard versions.

II. SRS-generated roots are immature upon germination but become mature after a few iterations.
Thus, the algorithm can apply different search policies by using the same roots based on their age.
In contrast, other algorithms use fixed exploratory policies during their execution.

III. SRS utilizes an embedded local search mechanism applied by a group of roots called HRs.
IV. SRS utilizes a dynamic population size. This gives the SRS the capability to decrease the number of

solutions in non-promising subspaces and to increase the number of solutions in promising areas.

Knowing that, the main procedures of the SRS algorithm are Parameter Initialization, Dividing
the Search Space, Initialization of the First Generation, Evaluation, Sorting and Ranking of the Roots,
Root Growth, Root Drouth and Root Branching followed by HRG and Termination Criteria that are
described in the following sections and visualized in Figure 1. In addition, the time complexity of the
algorithm is discussed in Appendix B.
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Figure 1. The smart root search (SRS) flowchart.
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2.2.1. Parameter Initialization

SRS search elements and operations can be adjusted by setting a few guiding parameters.
The parameter values depend on the problem specifications. Studying and understanding these
parameters and how they affect the algorithm are crucial for applying the algorithm successfully.
The parameters are defined in Sections 2.2.2–2.2.9 and initialized in Section 3.1.1 for the investigated
test functions.

2.2.2. Dividing the Search Space

In extensive search spaces, search algorithms must probe into a huge number of space points.
Total number of space points is considerably more than the number of initial solutions in the first
iteration of running the algorithm. As the initial solutions of the algorithm generate randomly,
the distribution of the solution in the search space is not often uniform throughout the search space,
and therefore, the search space would not be inspected thoroughly.

Thus, based on a divide-and-conquer strategy [53], SRS algorithm divides the problem search space
into Ns subspaces. The number of subspaces directly affects the SRS convergence speed. Therefore,
an effective Ns initialization value depends on the problem specifications including the structure of the
solutions, number of dimensions and sizes of the various search space dimensions. The user can use
any approach to divide the search space such that the boundary of each subspace can be determined.

2.2.3. Initialization of First Generation

The SRS randomly generates NumMinRoot number of solutions for initial generation so that the
number of solutions in every subspace is equal. If there are some remaining unassigned solutions,
they will be randomly assigned to the subspaces. Every solution in the SRS is mapped to a root, and the
location of root i in a D-dimensional problem search space is presented below (Equation (1)), where xd

i
represents the location of root i in dimension d. A basic structure of a root is also illustrated in Figure 2.
Once this step ends, all subspaces possess the same number of roots generated.

xi =
(
x1

i , x2
i , . . . , xd

i , . . . , xD
i

)
(1)

Figure 2. The basic structure of an SRS root. The first row represents the structure while the second
row explains what should be assigned to every element of the structure.

2.2.4. Evaluation of Roots

Nitrate is the most important factor of growth in plants, followed by phosphate [41]. Botany
research has demonstrated that concentration of nitrate and phosphate play critical roles in the root
growth speed, and the density of branches and HRs [35,41,44–46,54–56]. These roles are summarized
in Table 3. In terms of the similar effects of high nitrate and low phosphate concentration on root
growth speed, an aggregated effect of nitrate and phosphate can be extracted from Table 3, as shown
in Table 4. To simplify the proposed model, those combinations in which the nitrate and phosphate
concentrations exert the same effects on root growth speed are considered. Due to the importance of the
simplicity of the SRS model, we suppose that as the concentration of nitrate increases, the concentration
of phosphate decreases (Equation (2)). This assumption facilitates defining the concepts that are more
compatible with the terminology of the botany. Accordingly, as shown in Equation (3), the only nutrient
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that affects root life is nitrate, and the objective function (f(x)) value of each root is considered as the
Nitrate Concentration of that root.

Nitrate Concentration =
1

Phosphate Concentration
. (2)

f (x) = Nitrate Concentration (3)

Table 3. Nitrate and Phosphate effects on root behaviors.

Nutrients Concentration
Effects

Root Growth Speed Hair Roots Density Branching Density

High Nitrate
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2.2.5. Root Sorting and Ranking

The SRS sorts its current roots at the end of initialization step as well as all execution iterations.
It lets SRS identifying the best roots of every subspace, ranking each root in the root list, and locate the
global best root at the top of the list of roots.

2.2.6. Root Growth

The roots of plants expand at varying rates and in various directions in order to locate richer
areas of nutritional elements. In the same way, SRS roots grow (move) within the problem search
space to find superior locations. This growth occurs at a predesignated velocity in a given direction.
Therefore, the velocity and direction of every root must be determined beforehand. The root growth
mechanism leads to a controlled local convergence in every subspace. Further details of the root
growth are provided in Sections 2.2.6.2 and 2.2.6.3

From lifetime standpoint, SRS divides roots into two groups: permanent and temporary roots.
Permanent roots are immature and mature roots that are defined based on their age. These roots fall
into a temporary root category known as JRs. Figure 3 depicts the types of roots in a plant.
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Figure 3. Types of roots [57].

2.2.6.1. Types of Roots

I. Mature Roots

Mature roots can change their growth direction and velocity to improve exploration. Once a
mature root reaches a good location in the search space, it reduces its growth speed to explore the area
more efficiently in increments. Consistently, such roots attempt to escape poor locations by increasing
their growth speed. In addition, mature roots also make new roots (i.e., by branching) to facilitate
searching alternate locations and directions. Once a mature root creates a new branch, it becomes
the parent root of that new branch. As will be explained in Section 2.2.7, when growing in relatively
appropriate areas of the search space, a root will form additional new branches. Therefore, mature
roots are very flexible and exhibit different intelligent behavior during the search process.

II. Immature Roots

The second group of permanent roots consists of immature roots. These types of roots are not old
enough to create new branches or make changes in their velocity and direction. Instead, they retain
their original characteristics until transforming into mature ones. Therefore, every immature root can
just receive velocity from the parent root. Immature roots also continue growing into the location of
the parent based on random directions determined during germination. SRS utilizes immature roots to
explore more of the search space that has not yet been reached. Accordingly, they play an important
role in SRS by avoiding the trapping of local optima.

III. HR

Exploitation is a searching mechanism that can be utilized dependently or through
hybridization with exploration methods to efficiently search the neighborhoods of the best generated
solutions [23,58,59]. Many searching methods do not have an exploiting operation built-in and an
additional local search method is needed to construct a hybrid method [19]. In contrast, in its structure,
SRS employs hair roots to incorporate a fast but efficient exploiting mechanism.

HRs are short in size and age in the nature [35,46]. These roots support mature roots to gather
more water and nutrients while they are in a rich part of soil. The natural behavior is simulated by SRS
by an operator called HRG. HRs play their exploitation role without having to make new branches or
grow in the search space; thus, the HR velocity and direction are not well defined.
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2.2.6.2. Growth of Mature Roots

Definition 1. Best Root Set (BRS).

In every subspace, the first k best roots of the subspace create the BRS. For doing that, k will be
specified by utilizing “Roulette Wheel Selection via Stochastic Acceptance” [60]. Every root of the
subspace grows to the nearest root of the BRS. For finding the best nearest root to root i, density j,i is
defined for every root j in BRS. Equation (4) gives the density j,i, where the dominator is the Euclidean
distance between roots i and j, NC j is the nitrate concentration of root j, and xd

i and xd
j are the locations

of roots i and j in dimension d, respectively.

density j,i =
NC j√∑D

d=1

(
xd

j − xd
i

)2
(4)

Therefore, among the BRS roots, root j is the best nearest root to root i, and density j,i is maximized
(Equation (5)).

best_closesti =
{
j
∣∣∣ density j,iis MAX

}
(5)

I. Velocity of Mature Roots

A user-defined maximum velocity, vmax, is used to be a baseline of calculating the velocity of
mature roots. The velocity of roots cannot exceed vmax. Then, in accordance with the rank of every root
among all roots, the velocity of the root is determined as a fraction of vmax, such that the velocity is
lower with increasing rank. This policy helps roots located in promising areas to grow slower and
achieve more precise exploration while forcing the rest of the roots to move away from non-promising
areas. The velocity of root i can be obtained by Equation (6), where glb_ranki and NumCurrRoot are the
global rank of root i and the number of roots that currently exist, respectively.

vi(t) = vmax −

[
vmax

(
1−

glb_ranki

NumCurrRoot

)]
(6)

II. Direction of Mature Roots

For every dimension, a coefficient is required for the current velocity of the root to grow in the
direction of its best closest root by applying a proper dimensional velocity. In addition, the coefficients
should take values so that the growing root does not grow beyond the best closest one. To obtain these
important movement coefficients, geometric relationships are helpful. Let the growth angle of root i
toward its best, closest root best_closest, be θ. The growth angle cosine of root i in dimension d, cosθd

i ,
will be calculated simply by using Equation (7).

cosθd
i =

xd
best_closest − xd

i√∑D
d=1

(
xd

best_closest − xd
i

)2
(7)

Therefore, assuming the current location and growth velocity of root i in dimension d are xd
i (t)

and vd
i (t), respectively, the next location of the root will be determined by Equation (8), for which vd

i (t)
should be calculated by (9). To make root growth easier to realize and apply, a complete example of
how a mature root grows from its current location (xi(t)) to its next location (xi(t + 1)) is presented in
Appendix A.

xd
i (t + 1) = xd

i (t) + vd
i (t) (8)

vd
i (t) =

[
vi(t) × cosθd

i

]
(9)
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2.2.6.3. Root Growth of Immature Roots

As mentioned in Section 2.2.6.1, immature roots are newborn roots that are unable to change their
growth velocity and direction or to make new roots. Regarding their growth velocity, every immature
root gets its parent root velocity and will follow the growth behavior of the parent. Additionally, growth
occurs in a randomly selected direction. To this end, every immature root that is generated randomly
selects a point in its related subspace and considers that point its best, closest root. Then, Equation (7)
is utilized to set the coefficients and determine the growth direction. Similarly, Equations (8) and (9)
are applied to obtain the dimensional velocities and new locations.

2.2.6.4. Immature to Mature Transformation Mechanism

By providing a glimpse of the independent and complementary roles played by different types of
roots, the mechanisms of SRS reveal how important it is to define a mechanism that transforms an
immature root into a mature one. A simple maturation mechanism is proposed in SRS. As shown in
Figure 1, every root has an attribute called Age. Age is initialized as 0 once a new root is generated.
In each iteration of the algorithm, the root’s Age increases by one. If Age value of any of the immature
roots reaches a threshold, Mature_Age, status of the root changes to “mature”. Mature_Age should
be defined by the user based on the adopted exploration and exploitation policy such that higher
Mature_Age values correspond to more exploration and less exploitation.

2.2.7. Root Branching

Branching is a mechanism in root growth that produces new roots to increase the search rate in
those parts of the soil that have not yet been investigated. Similarly, SRS utilizes a Branching operation
that generates new immature roots in the search space. Every new generated root in its early stages is
adjacent to a mature root which is considered its parent.

In plant roots, two to five branches exist in each centimeter, depending on the phosphate
concentration [44]. For SRS, a mechanism was designed to allow better roots to generate more branches.
In this mechanism, branching is intended to encourage mature roots in every iteration by granting
two to five nitrate concentration-based scores. Therefore, each mature root will branch after several
iterations if the sum of collected scores (SCS) meets Minimum Required Ability (MRA) that is a predefined
threshold value. The MRA can be set dynamically throughout the execution of the algorithm or
determined by a user; higher MRA values correspond to fewer newly generated roots. Once a root
reaches MRA and generates a new root, the SCS resets to 0, and the scores are re-collected.

This mechanism divides all the available roots in every subspace into four groups, each of which
corresponds to one of the values of the range [2,5]. To avoid generating many ungainly new roots,
higher scores should be assigned to small portions of roots having higher nitrate concentrations.
Equation (10) is solved and the obtained value is used to dedicate the minimum possible percentage of
roots needed to achieve this aim. The percentages of roots that should be assigned to other groups will
be obtained using the next coefficients provided in the equation. Table 5 presents the root-dedication
percentages of groups and scores. Additionally, Figure 4 shows how two different roots behave when
collecting scores to reach MRA and generate new branches when located in two different parts of the
search space.

x + 2x + 4x + 8x = 100 ⇒ x � 6.66 (10)
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Table 5. Root group scoring for branching.

Coefficient Ratio of Group Roots to All Score

Group 1 1 1 × 6.66 = 6.66% 5
Group 2 2 2 × 6. 66 = 13.33% 4
Group 3 4 4 × 6. 66 = 26.66% 3
Group 4 8 8 × 6. 66 = 53.33% 2

Figure 4. An example of NC-based grouping affects parent root branching when locating in a
(a) promising part of search space, and (b) unpromising part of search space.

2.2.8. Root Drouth

In order to remove improper roots while the number of roots in the search space increases due to
the branching operator, another operator is required. This operator must be designed such that the
proportion of newly generated roots and removed roots gets controlled and global convergence of the
algorithm is guaranteed. As this operator simulates the root drouth mechanism of roots, the same
name is employed. To simplify describing the Root Drouth operator, a new term will be defined.

Definition 2. To implement the Root Drouth operator, every root gains a certain volume of moisture, Moisture
Percentage (MP), at initialization. As a moderate value, MP is initially 50. Whereas the MP changes as a mature
root grows, immature roots have constant MP values to help them sustain throughout pre-pubertal development.

As mentioned previously, botany research has demonstrated that plant roots absorb and store
water from the areas in soil that contain higher level of moisture and transfer this stored water for
use in drier areas [38–40]. Root drouth occurs provided that a root encounters dry soil that lacks a
water supply. In the growth process of a root in SRS, MP increases as much as the Encourage_Value or
decreases as much as the Penalty_Value if the root arrives at a location that is better than its current
location or does not, respectively. If MP decreases to a predetermined drouth threshold, the root dries
out. To clarify the drouth process, a comparative sample is presented in Figure 5. This figure shows
how two different roots are penalized or encouraged after maturing in iteration 40.
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Figure 5. Changes in moisture percentage (MP) value of roots over puberty.

Encourage_Value is a constant, however Penalty_Value varies in different subspaces depending on
the subspace rank. Thus, weak subspaces possess higher Penalty_Values, and accordingly, SRS dries the
roots of weak subspaces earlier. To this end, a maximum penalty rate is considered, called Max_Penalty.
thereupon, the Penalty_Value of subspace j, Penalty_Value j, will be calculated using Equation (12) where
j, is the index and also rank of the subspace among all available subspaces that are sorted according to
their best root. Penalty_change is calculated using Equation (11), where Ns is the number of available
subspaces, and the decimal parameter called Penalty_Rate has a value in the range [0, 1]. Penalty_Rate
strongly affects the convergence speed of the algorithm and should be defined by the user with respect
to the problem characteristics. Smaller values of the Penalty_Rate, smaller Penalty_values for strong
subspaces, and higher values of Penalty_Rate, smaller differences between the Penalty_values of weak
and strong subspaces. We note that the rank of the best root of a subspace in the list of all existing roots
determines the rank of that subspace.

Penalty _Change =
Max_Penalty (1− Penalty_Rate)

Ns
(11)

Penalty_Value j =

{
Max_Penalty ∗ Penalty_Rate, j = 1
Penalty_Value j−1 + Penalty _Change, otherwise

(12)

Although Root Branching and Drouth cooperate to control the number of available roots, the SRS
will likely encounter an overloaded root set, leading to a slow down. Thus, an auxiliary control
mechanism is needed to initiate branching. Here, NumMaxRoot is defined as a threshold for the
maximum number of roots currently active in the search space. If the number of active roots reaches
NumMaxRoot, which is defined by the user, none of the roots can generate a branch, even they are
otherwise eligible to do so, until vacancies are produced by the drying out of deficient roots drying.

2.2.9. HRG

HRG consists of the five following steps that begin with determining the number of roots can
generate HRs and end with growth of the parent toward the best neighbor location found by the HRs.

1. A set of the best mature roots (let us call them m) of every subspace will be picked by “Roulette
Wheel Selection via Stochastic Acceptance” (RWSSA) [60] for generating plenty of HRs in their
neighborhood regions.

2. A random number l in the range (1, a) will be generated, where a is the neighborhood radius
defined by the user based on the problem characteristics.
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3. For every selected mature root i in step 1, RWSSA will be used to generate a random number k in
the range (1, D).

a. k of D dimensions of root i will be selected randomly.

b. For every selected dimension d in 3.a, two new roots, HR1d
i =

(
x1

i , x2
i , . . . , xd

i + l, . . . , xD
i

)
and

HR2d
i =

(
x1

i , x2
i , . . . , xd

i − l, . . . , xD
i

)
, will be generated, and their nitrate concentration needs

will be calculated.

4. If HRjdi is one of the generated HRs with the greatest nitrate concentration value among the other
HRs and their parents, then the parent will grow to reach the location of HRjdi .

5. The generated HRs are no longer required and will dry immediately.

There are two HRG points that must be clarified. First, based on the 3rd step in the HRG, the 2k
HRs will be generated in the neighboring area of a selected mature root in a D-dimensional space.
Accordingly, in every iteration, a total of 2mk HRs will be generated. Second, the best rate of executing
the HRG (i.e., the so-called HRG Rate) can be predefined by the user or calculated dynamically. Finding
the best HRG Rate requires new dependent research, which we suggest as a possibility for the future.

2.2.10. Termination Criteria

Consistent with all other heuristic search algorithms, SRS execution will be stopped if at least
one of the following criteria is met: (1) reaching the expected solution or (2) exceeding the maximum
number of iterations. Once the algorithm stops, the best-found root will be shown as the final result of
the algorithm. The SRS pseudo code is represented in Figure 6.

Figure 6. Pseudo code for SRS algorithm.
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2.2.11. On the Convergence of the SRS

All elements of a search algorithm should cooperate to provide an average convergence rate that is
not too fast or slow to reach the global best solution [61,62]. The SRS mechanisms are designed so that
convergence is supported by two different but complementary approaches. First, each subspace has a
local convergence rate when roots converge toward a few of their best local solutions. Here, the aim is
finding the local optimal solution of every subspace. Second, global convergence occurs when, in the
execution process, the roots of worse existing subspaces dry out based on the dynamic punishment
process explained in Section 2.2.7 until there is only one subspace remaining at the last iterations of the
algorithm. Finally, the local convergence of the last subspace together with the root drouth process
will be leading to the identification of the global optimal solution of the problem. Figure 7 simply
illustrates how available roots in different subspaces converge to their corresponding local optima
and consequently facilitate reaching global optima in the best subspace by drying all the roots in the
other subspaces.

Figure 7. Converges of SRS toward global optima; (a) shows how search space gets divided into
four subspaces; (b) shows process of generating random solutions in subspaces and choosing optimal
solution of each of them; (c) demonstrates how number of solutions gets less in subspaces that could
not find proper solutions while it gets more in promising subspaces; (d,e) represent the worst subspaces
having no solution contrasted with the best subspace determined gradually; (f) SRS found the global
optima in the best subspace.

3. Experimental Test, Results and Discussion

3.1. Experimental Tests: SRS vs. GA, PSO, Independent Component Analysis (ICA) and Differential
Evolution (DE)

This section presents the results obtained by the SRS while searching for the optimal solution of
the test functions described in Section 3.1.2. Here, performance of SRS is analyzed and compared with
that of the employed comparative algorithms. A standard SRS is presented, and standard versions of
GA, PSO, ICA and DE are employed as comparative algorithms. The best solution reached by each
algorithm, the standard deviations of different solutions achieved in different runs by every algorithm,
and the rank of each among all comparative algorithms are presented in the tables prepared for every
test function.

This section consists of three subsections that explain the experimental methodology and settings,
test functions and their specifications, and obtained results.
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3.1.1. Settings

All algorithms were implemented in Microsoft Visual C# .NET 2015. To provide fair conditions
for all comparative algorithms, common parameters, such as population size and the total number
of evaluations of the objective function, were chosen to be the same for each algorithm. Referring
to [63], the population size was selected to be 125. The maximum number of evaluations of the
objective function was 1,000,000 to allow all algorithms to achieve the best possible solution. The other
parameters are given below:

For GA, second point crossover operation, which influences the variation in generations, with a rate
of 0.85 was employed as recommended by [64]. Mutation operation, which controls genetic diversity,
was also set to 0.01 based on [64].

In PSO, C1 and C2 are constant coefficients that change the weighting of personal and global
experiences, respectively, and both were set to 2 in our experiments. The inertia weight that
demonstrates how particles’ previous velocity influences the subsequent velocity, was chosen to be 0.9,
as recommended by [65].

In ICA, the imperialist rate states how many countries will be selected as imperialists. In addition,
the competition rate is the second parameter of ICA, and it determines number of times that imperialists
participate in a competition to take the weakest colony of the weakest emperor. To follow the research
methodology described by [22], the mentioned parameters were set to 10 and 15, respectively.

F is a constant that can be used to manipulate the differential variation between two solutions in
DE. It was selected to be 0.5 in our setting. The crossover rate value, which controls the changes in the
diversity of the population, was set to 0.9, as recommended by [66].

SRS has effective parameters in its different parts. Assigning proper values for or defining
equations to calculate these parameters is outside of the scope of this paper and requires independent
studies. Hence, in this study, constant values are given to these parameters, as shown in Table 6,
where the MDV is the Max Domain Value of the problem. This table shows that the assigned values of
the Mature Age and Penalty Rate parameters are different for unimodal and multimodal functions.
Given that the risk of falling into the trap of local optima increases for multimodal functions as the
number of dimensions increases, assigning higher and lower values to the Mature Age and Penalty
Rate parameters relative to those used for unimodal functions helps the SRS to explore areas that
are slightly more distant from the current regions of active roots more thoroughly. Reversing these
assignments for unimodal functions improves the ability of SRS to perform more exploitation around
current roots and thus find better solutions.

Table 6. SRS parameters setting.

N
s

N
um

M
in

R
oo

t
(P

op
ul

at
io

n
Si

ze
)

N
um

M
ax

R
oo

t

V
m

ax

M
R

A

M
ax

_P
en

al
ty

En
co

ur
ag

e_
V

al
ue

Pe
na

lt
y_

R
at

e

M
at

ur
e_

A
ge

Unimodal
Functions 8 125 2000 0.33 * MDV 20 10 2 0.75 4

Multimodal
Functions 8 125 2000 0.33 * MDV 20 10 2 0.15,

0.25 15



Symmetry 2020, 12, 2025 17 of 29

3.1.2. Benchmark Functions

Many benchmark test functions are presented in the literature that are designed to provide
identical comparison environments to evaluate the performance of optimization algorithms [67–71].
As a common methodology, these test functions are being used to test and validate the performance
and efficiency of new optimization algorithms. Most known test functions can be categorized into
unimodal and multimodal groups. Compared to unimodal functions, which have one and only one
optimal solution, multimodal test functions have a number of optimal solutions, including global and
local ones, making them suitable to evaluate the ability of an algorithm to avoid becoming trapped in
local optima. For multimodal test functions, if an algorithm has a poor exploration process that cannot
search the whole search space efficiently, it will inevitably fall into the trap of local optima.

Among the many different test functions available, a set of 24 most common ones were chosen
in this research for comparing the performance of the GA, PSO, ICA, DE and SRS. This set includes
12 unimodal ( f1– f12) and 11 multimodal ( f13– f23) functions, which are listed in Tables 7 and 8,
respectively. The dimensions (D), domain ranges (Range), minimum value ( fmin) and formulations of
the employed test functions are listed in the mentioned tables.

Table 7. Unimodal Test Functions.

No. Function D Range fmin Formulation

f1 Cigar 30 [−100, 100] 0 x2
1 + 106

D∑
i=2

x2
i

f2 Dixon-Price 30 [−10, 10] 0 (x1 − 1)2 +
D∑

i=2
i
(
2x2

i − xi−1
)2

f3 Quartic 30 [−1.28, 1.28] 0 D∑
i=1

ix4
i + random[0, 1)

f4 Rosenbrock 30 [−5, 5] 0 D−1∑
i=1

100
(
xi+1 − x2

i

)2
+ (xi − 1)2

f5 Schwefel 1.2 30 [−100, 100] 0 D∑
i=1

 i∑
j=1

x j

2

f6 Schwefel 2.22 30 [−100, 100] 0 D∑
i=1
|xi|+

D∏
i=1
|xi|

f7 Schwefel 2.23 30 [−10, 10] 0 D∑
i=1

x10
i

f8 Sphere 30 [−100, 100] 0 D∑
i=1

x2
i

f9 Step 30 [−100, 100] 0 D∑
i=1

(bxi + 0.5c)2

f10 SumSquares 30 [−10, 10] 0 D∑
i=1

ix2
i

f11 Trid 10 10
[
−D2, D2

]
0 210 +

D∑
i=1

(xi − 1)2
−

D∑
i=2

xixi−1

f12 Zakharov 10 [−5, 10] 0 D∑
i=1

x2
i +

(
0.5

D∑
i=1

ixi

)2

+

(
0.5

D∑
i=1

ixi

)4

Column D represents the number of dimensions of the problem search space.
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Table 8. Multimodal Test Functions.

No. Function D Range fmin Formulation

f13 Ackley 30 [−32, 32] 0 20 + e− 20e(
−0.2

√
1
D

∑D
i=1 x2

i ) − e
1
D

∑D
i=1 cos (2πxi)

f14 CosineMixture 30 [−500, 500] 0 D× 1.643788341− 0.1
D∑

i=1
cos(5πxi) −

D∑
i=1

x2
i

f15 Griewank 30 [−600, 600] 0 1
4000

(
D∑

i=1
x2

i

)
−

(
D∏

i=1
cos

(
xi√

i

))
+ 1

f16 Perm 4 [−D, D] 0 D∑
i=1

 D∑
j=1

(
ji + β

)(( x j

j

)i
− 1

)2

, (β > 0)

f17 Qing 30 [−10, 10] 0 D∑
i=1

(
x2

i − i
)2

f18 Quintic 30 [−1, 1] 0 D∑
i=1

∣∣∣x5
i − 3x4

i + 4x3
i + 2x2

i − 10xi − 4
∣∣∣

f19 Rastrigin 30 [−5.12, 5.12] 0 D∑
i=1

(
x2

i − 10 cos(2πxi) + 10D
)

f20 Schwefel 30 [−500, 500] 0 D× 418.9829 +
D∑

i=1
−xi sin

(√
|xi|

)
f21 Schwefel 2.25 30 [0, 10] 0 D∑

i=2

[
(xi − 1)2 +

(
x1 − x2

i

)2
]

f22 Styblinski_Tang 30 [−5, 5] 0 D× 39.16599 + 1
2

D∑
i=1

(
x4

i − 16x2
i + 5xi

)
f23 Xin-She Yang 02 30 [−2π, 2π] 0

∑D
i=1 |xi |

exp(
∑D

i=1 sin(x2
i ))

Column D represents the number of dimensions of the problem search space.

3.2. Obtained Results and Discussion

The SRS and all comparative algorithms were repeated 40 times to solve every test function
by employing different seed values. As all investigated test functions are minimization problems,
the minimum objective function values obtained at the end of every execution were used to calculate the
average value of obtained results (mean) and standard deviation (Std) of the results of the algorithms.
The obtained mean values were also used to determine the ranks of the algorithms for different test
functions. The mean and standard deviation of unimodal and multimodal function values obtained by
GA, PSO, ICA, DE and SRS are shown in Tables 9 and 10, respectively, together with the achieved ranks.

Table 9 shows that SRS outperforms all the comparative algorithms and reaches rank 1 in 11 of 12
test functions for unimodal functions. The DE algorithm reaches rank 1 in solving the Quartic function,
while SRS reaches rank 4. Thus, SRS successfully achieved rank 1 in 91.67% of the times it attempted
to solve unimodal test functions and reached rank 1.25 on average (Table 11). Hence, for unimodal
test functions, the overall search performance is SRS > DE > PSO > ICA > GA. The comparison is
illustrated in Figure 8 too. To compare consistency of the algorithms in solving a problem in different
executions, standard deviation values are also provided in Table 9. The table indicates that the SRS has
obtained the lowest standard deviation value in solving all the problems but the one it could not gain
rank 1.

Definition 3. Distance Score (DS) shows how many times of the best solution of a base algorithm the best
obtained solution of an algorithm is far from the global optimal solution of the problem. For instance, if the base
algorithm is SRS, and the global optimal solution, the best solution of the SRS and the best solution of DE are 0,
1 and 10, respectively, then DS of DE is 10

1 = 10 . To avoid possible very large numbers, we can use the Log10 of

Distance Score (LDS). Accordingly, LDS of DE in the given example is Log
( 10

1 )

10 = 1.
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Table 9. Comparison of SRS with GA, PSO, ICA and DE on Unimodal test functions. All results have
been averaged over 40 runs.

No. Function GA PSO ICA DE SRS

f1 Cigar
Mean 6.62 × 108 1.12 × 109 8.44 × 108 9.33 × 108 1.11 × 107

Std 2.51 × 108 1.5 × 108 4.93 × 108 1.37 × 109 2.62 × 106

Rank 2 5 3 4 1

f2 Dixon-Price
Mean 677.43 276.84 2330.86 900.74 1.73

Std 420.64 86.26 2929.02 1330.92 0.63
Rank 3 2 5 4 1

f3 Quartic
Mean 18.88 11.94 11.03 9.53 14.003

Std 2.91 0.78 0.64 0.29 1.4
Rank 5 3 2 1 4

f4 Rosenbrock
Mean 528.93 437.82 545.02 258.45 25.55

Std 315.32 106.66 418.31 139.21 2.85
Rank 4 3 5 2 1

f5 Schwefel 1.2
Mean 37,415.48 7301.03 1652.85 1109.23 883.58

Std 9582.99 1350.01 520.67 730.18 204.17
Rank 5 4 3 2 1

f6 Schwefel 2.22
Mean 94.55 236.15 60.625 85 21

Std 14.01 15.89 22.01 56.19 3.96
Rank 4 5 2 3 1

f7 Schwefel 2.23
Mean 25.05 7.48 5127.09 104,269.3 0

Std 46.41 4.46 11,643.33 542,120.6 0
Rank 3 2 4 5 1

f8 Sphere
Mean 885.05 3195.13 800.43 727.2 11.75

Std 287.48 525.35 395.63 1287.79 2.8
Rank 4 5 3 2 1

f9 Step
Mean 811.78 3227.32 921.43 760.93 11.78

Std 315.9 399.79 569.69 1298.97 2.96
Rank 3 5 4 2 1

f10 SumSquares
Mean 104.36 74.59 125.65 107.42 0.52

Std 40.67 16.14 43.7 136 0.31
Rank 3 2 5 4 1

f11 Trid 10
Mean 454.98 22.78 133.88 95.05 2.88

Std 444.18 13.52 68.36 215.89 8.8
Rank 5 2 4 3 1

f12 Zakharov
Mean 58.9 0.032 2.31 1.28 0.003

Std 27.98 0.01 2.04 3.31 0.002
Rank 5 2 4 3 1

Figure 8. How SRS outperforms the other algorithms in benchmarking unimodal test function.
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Table 10. Comparison of SRS with GA, PSO, ICA and DE on Multimodal test functions. All results
have been averaged over 40 runs.

No. Function GA PSO ICA DE SRS

f13 Ackley
Mean 7.88 5.64 8.67 10.43 0.64

Std 0.79 0.36 1.21 1.47 0.16
Rank 3 2 4 5 1

f14 CosineMixture
Mean 2.993 2.999 3.296 2.978 2.975

Std 0.019 0.016 0.063 0.015 0
Rank 3 4 5 2 1

f15 Griewank
Mean 6.43 10.61 13.38 6.7 0.99

Std 1.65 1.83 6.27 4.16 0.05
Rank 2 4 5 3 1

f16 Perm
Mean 4.941 0.057 0.286 0.292 0.012

Std 10.35 0.075 0.19 1.16 0.017
Rank 5 2 3 4 1

f17 Qing
Mean 3.29 × 107 8.71 × 107 3.02 × 108 2.38 × 108 2.67 × 103

Std 2.91 × 107 3.50 × 107 2.83 × 108 4.47 × 108 4.90 × 102

Rank 2 3 5 4 1

f18 Quintic
Mean 50.4 86.05 149.16 63.38 15.91

Std 9.33 8.69 84.74 63.89 5.02
Rank 2 4 5 3 1

f19 Rastrigin
Mean 46.04 132.34 56.02 60.66 39.92

Std 9.03 9.21 13.7 16.68 6.69
Rank 2 5 3 4 1

f20 Schwefel
Mean 1499.5 4553.8 7530.7 5204.3 4314.7

Std 336.51 339.53 595.61 587.37 848.04
Rank 1 3 5 4 2

f21 Schwefel 2.25
Mean 1745.65 98,272.93 25,246.87 7037.74 754.08

Std 637.03 17,093.3 7069.6 3546.7 523.5
Rank 2 5 4 3 1

f22 Styblinski-Tang
Mean 24.49 63.27 408.48 220.37 137.1

Std 5.437 14.68 37.13 38.46 26.71
Rank 1 2 5 4 3

f23 Xin-She Yang 02
Mean 9.15 × 10−12 8.88 × 10−10 7.41 × 10−10 2.67 × 10−11 4.33 × 10−12

Std 1.64 × 10−12 5.91 × 10−10 9.15 × 10−10 2.60 × 10−11 5.72 × 10−13

Rank 2 5 4 3 1

Table 11. The average of achieved rank, and percentage of reaching rank 1 by the comparative algorithms.

GA PSO ICA DE SRS

Average Rank for Unimodal test functions 3.83 3.33 3.66 2.91 1.25
Average Rank for Multimodal test functions 2.27 3.54 4.36 3.54 1.27
Average Rank for all test functions 3.09 3.43 4 3.22 1.26
Percentage of reaching rank 1 for Unimodal test functions 0 0 0 8.33% 91.67%
Percentage of reaching rank 1 for Multimodal test functions 18.18% 0 0 0 81.81%
Percentage of reaching rank 1 for all test functions 8.7% 0 0 4.35% 86.96%

To further investigate the obtained results, LDS of all comparative algorithms are calculated by
taking SRS as the base algorithm and visualized in Figure 9. As the graph indicates GA possesses the
highest LDS at 2.08 on average for all unimodal functions followed by ICA and DE with 2.03 and
2.02, respectively. The closest result to SRS belongs to PSO at 1.68 on average. To make sure that the
results of Schwefel 2.23 does not impact the analysis, we have included the median of the results as
well. The median of LDS of all algorithms shows that GA and ICA have the highest values at 1.86 on
average followed by DE while PSO shows relatively lower number at 1.62. Thus, we can conclude
that the SRS has reached to the closest solutions to the global optimal solution in benchmarking the
unimodal functions.
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Figure 9. LDS of the comparative algorithms for unimodal functions based on SRS.

On the other hand, Table 10 demonstrates that SRS performs better than all the comparative
algorithms and reaches rank 1 in 9 of the 11 multimodal test functions. As Figure 10 also represents,
GA and PSO reached rank 1 in solving the Styblinski-Tang and Levy 8 functions, respectively.
Hence, as shown in Table 11, 81.81% of the time, SRS achieves rank 1 in solving multimodal test
functions and rank 1.27 on average. Accordingly, the overall search performance can be concluded as
SRS > GA > PSO > DE > ICA. Furthermore, consistency of the algorithms’ behavior in different runs
can be assessed by comparing achieved standard deviation values. Table 10 shows that the consistency
of the SRS was premier whenever it has reached rank 1.

Figure 10. How SRS outperforms the other algorithms in benchmarking multimodal test function.

Furthermore, LDS of the all comparative algorithms are also computed by taking SRS as the base
algorithm and illustrated in Figure 11. As the visual shows ICA has the highest LDS at 1.3 on average
for all multimodal functions followed by PSO and DE with 1.14 and 1.1, respectively. The closest
result to SRS belongs to GA at 0.78 on average. We can use median of results rather than average
to remove impacts of Qing solutions. The median of LDS of all algorithms shows that ICA and DE
have the highest values at 1.13 and 0.79 on average, respectively, followed by PSO while GA reaches
significantly lower number at 0.36. Accordingly, it can be concluded that the SRS has reached to the
closest solutions to the global optimal solution in benchmarking the multimodal functions, however it
requires better parameter tuning for these functions.
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Figure 11. LDS of the comparative algorithms for unimodal functions based on SRS.

The aforementioned results indicate that the SRS can be considered a strong search algorithm for
solving both unimodal and multimodal test functions. The exploration ability of SRS is stronger than
those of the comparative algorithms for solving multimodal functions, while its effective exploitation
features make it the best algorithm for finding the optimal values of unimodal functions. Tables 9 and 10
indicate that the SRS obtained the nearest to optimal solutions for most of the test functions, and the
differences between the solutions achieved by the SRS and those of the comparative algorithms were
significant for some test functions, such as Dixon-Price, Rosenbrock, Schwefel 2.23, Sphere, Step,
SumSquares, Trid 10, Ackley and Qing.

Eventually, to compare the performance of SRS with the comparative algorithms for unimodal and
multimodal functions altogether, we used all obtained mean values of all algorithms, what are shown
in Tables 9 and 10, for clustering the algorithms to show whether the SRS results fall in separate cluster
from other algorithms or not. To this aim, Agglomerative Hierarchical clustering algorithm [72,73]
was used in Python programming language to conduct clustering and resulting clusters plotted as
a Dendrogram diagram [74] and shown in Figure 12. According to the graph, the four comparative
algorithms have fallen in one cluster together, cluster A whish is colored by orange, while SRS is lonely
in the cluster B, in blue. Furthermore, the distance of cluster B from cluster A is as much as we can
conclude that these two clusters are significantly far from each other. Accordingly, SRS performance
is dramatically different form the other algorithms used in this experiment and as SRS solutions are
closer to the global optimal solution of the test functions, we can conclude that SRS performance is
significantly better than the others.

In addition to the experimental tests, statistical tests can also be useful to show significant
differences between the results obtained using SRS and the comparative algorithms. To this end,
Friedman [75] and one-way analysis of variance (ANOVA) [76] tests were conducted. One-way
ANOVA is also used to determine whether the means of two or more independent sets of data are
statistically significantly different. The p-value computed by the Friedman test for the algorithm was
39.269. This p-value is greater than the critical value of 9.4877, which represents α = 0.05 and 4 degrees
of freedom (DFs) in the Chi-Square distribution table [77]. Therefore, significant differences existed
among the results obtained by the algorithms. The results of the one-way ANOVA are presented in
Tables 12 and 13. These results also revealed that there was a statistically significant difference in the
mean value of the SRS relative to the five investigated algorithms for every utilized test function.
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Figure 12. Dendrogram diagram plotted using Agglomerative hierarchical clustering results of
comparative algorithms.

Table 12. The one-way ANOVA test results for Unimodal test functions.

No. Function Source of
Variation

Sum of Squares
(SS) df Mean Square

(MS) F p-Value F
Criteria

f1 Cigar Between Groups 3.29 × 1023 4 8.23 × 1022 1661.663 0.0000 2.372262
Within Groups 1.33 × 1024 26,940 4.95 × 1019

f2 Dixon-Price
Between Groups 8.68 × 1013 4 2.17 × 1013 1123.734 0.0000 2.372262
Within Groups 5.21 × 1014 26,973 1.93 × 1010

f3 Quartic Between Groups 1,686,230 4 421,557.5 5294.365 0.0000 2.372261
Within Groups 2,148,251 26,980 79.62382

f4 Rosenbrock
Between Groups 1.63 × 1012 4 4.07 × 1011 1196.571 0.0000 2.372261
Within Groups 9.17 × 1012 26,981 3.4 × 108

f5 Schwefel 1.2
Between Groups 1.18 × 1013 4 2.95 × 1012 72,289.63 0.0000 2.372262
Within Groups 1.1 × 1012 26,953 40,871,333

f6
Schwefel

2.22
Between Groups 2.45 × 108 4 61,363,422 2792.806 0.0000 2.372263
Within Groups 5.9 × 108 26,859 21,971.96

f7
Schwefel

2.23
Between Groups 4.55082 × 1020 4 1.14 × 1020 652.9695 0.0000 2.372262
Within Groups 4.69513 × 1021 26,947 1.74 × 1017

f8 Sphere Between Groups 4.45 × 1011 4 1.11 × 1011 1787.44 0.0000 2.372262
Within Groups 1.68 × 1012 26,938 62,294,092

f9 Step Between Groups 4.03 × 1011 4 1.01 × 1011 1738.198 0.0000 2.372261
Within Groups 1.57 × 1012 26,987 58,023,788

f10 SumSquares Between Groups 8.83 × 109 4 2.21 × 109 2154.738 0.0000 2.372262
Within Groups 2.76 × 1010 26,945 1,024,844

f11 Trid 10
Between Groups 8.92 × 109 4 2.23 × 109 3561.234 0.0000 2.372262
Within Groups 1.69 × 1010 26,954 626,415.4

f12 Zakharov
Between Groups 48487053 4 12,121,763 330.2292 0.0000 2.372253
Within Groups 1.02 × 109 27,699 36,707.12
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Table 13. The one-way ANOVA test results for Multimodal test functions.

No. Function Source of
Variation

Sum of Squares
(SS) df Mean Square

(MS) F p-Value F
Criteria

f13 Ackley Between Groups 207,007 4 51,751.75 8462.465 0.0000 2.372261
Within Groups 165,251.6 27,022 6.115446

f14 CosineMixture
Between Groups 181.8325 4 45.45813 12,153.57 0.0000 2.372261
Within Groups 100.9847 26,999 0.00374

f15 Griewank
Between Groups 30,220,789 4 7,555,197 1710.236 0.0000 2.372262
Within Groups 1.19 × 108 26,970 4417.633

f16 Perm
Between Groups 285,060.8 4 71,265.21 11,057.39 0.0000 2.372257
Within Groups 176,497.1 27,385 6.445029

f17 Qing Between Groups 9.84 × 1023 4 2.46 × 1023 868.8985 0.0000 2.372261
Within Groups 7.65 × 1024 27,008 2.83 × 1020

f18 Quintic Between Groups 1.3 × 1012 4 3.26 × 1011 797.0792 0.0000 2.372261
Within Groups 1.1 × 1013 26,984 4.08 × 108

f19 Rastrigin Between Groups 34,201,633 4 8,550,408 2962.64 0.0000 2.372261
Within Groups 77,851,945 26,975 2886.078

f20 Schwefel
Between Groups 2.68 × 1010 4 6.71 × 109 4296.281 0.0000 2.372261
Within Groups 4.21 × 1010 26,991 1,561,568

f21
Schwefel

2.25
Between Groups 2.1 × 1014 4 5.26 × 1013 2194.452 0.0000 2.372261
Within Groups 6.46 × 1014 26,978 2.4 × 1010

f22 Styblinski-Tang Between Groups 1.86 × 108 4 46,522,011 5330.031 0.0000 2.372261
Within Groups 2.36 × 108 27,001 8728.281

f23
Xin-She
Yang 02

Between Groups 1.99 × 10−7 4 4.97 × 10−8 77.35719 0.0000 2.372261
Within Groups 1.73 × 10−5 26,996 6.42 × 10−10

4. Conclusions and Future Work

In this paper, a high-performance combinatorial search algorithm called SRS is introduced.
SRS was inspired by the plant root growth in soil that occurs to find higher densities of nutrition
and water. By mapping solutions to the root and then utilizing three different types of roots with
different search characteristics, the algorithm shows high efficiency in both exploration and exploitation
activities. Mature roots are responsible for exploration, while immature roots help the SRS escape
from local optima traps and non-promising points. Meanwhile, hair roots as very short life searching
elements try to search around the best-found solutions for finding higher satisfying points. To evaluate
the performance of the SRS and compare its efficiency with those of other algorithms, a complete
experimental test was conducted. Twenty-four unimodal and multimodal test functions were employed,
and GA, PSO, ICA and DE were applied as comparative algorithms for SRS to find the optimal values
of the test functions. To ensure that the collected results were reliable and accurate, every algorithm
was executed 40 times per test function, and the average of the results was used in the comparisons.

In investigating unimodal test functions, the collected results demonstrated that the SRS performed
significantly better than the comparative algorithms, except for the quartic function. Therefore, the SRS
won the competition for 91.67% of the functions. For the multimodal test functions, the achieved
results indicated that the SRS prevailed 81.81% of the time. Overall, the aggregated results for the
unimodal and multimodal test functions indicated that SRS is superior to the comparative algorithms
for 86.96% of the test functions used. The higher efficiency in addressing unimodal and multimodal
functions demonstrates that the SRS has strong ability to coordinate exploitation and exploration in a
way that local optima points are not able to catch it into the traps. Briefly, based on the experimental
results and discussion provided here, it can be concluded that the SRS is a formidable competitor for
currently well-known combinatorial search algorithms in solving different types of optimization search
problems. Well-defined structures and carefully tuned operators are the strengths of the SRS to solving
np-hard optimization problems.

Despite the discussed capabilities of the SRS, there are some aspects of the algorithm that can
still be upgraded. In terms of functional settings, the SRS enjoys many parameters to customize the
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functionality of the algorithm. Different values for these parameters may cause different effects in
solving various types of optimization problems. Therefore, in the future, efforts should be focused on
finding effective values for these parameters. Furthermore, these parameters exert mutual effects on
the performance and final achieved solutions. Additional research is needed to regulate the relations
among these parameters to be able to run the algorithm effectively by setting a smaller number of
parameters. In addition, SRS must be applied in solving several benchmarks as well as real-world
optimization problems to determine its strengths and weaknesses as a further matter, the HRG operation
was not utilized in the conducted experimental test to provide a more suitable test environment for
examining the core exploration and exploitation behaviors of the mature and immature roots. In the
future, the performance of the SRS will be achieved by applying a well-organized HRG when solving
np-hard problems.
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Appendix A. An Example of Root Growth

A complete example on how a mature root grows from its current location (xi(t)) to next location
(xi(t + 1)) is presented in this section. The example shows how SRS calculates velocity and dimensional
velocities of a particular root, determines direction of growth for different dimensions and eventually
identifies next location of the root. The example starts by presenting current parameters of the SRS
as well as current properties of the investigated root in Table A1. Then, in Figure A1, it shows the
calculations step by step until next location of the root is identified in the last row of the table.

Figure A1. Step by step calculations of the example.
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Table A1. SRS Parameters and current properties of the investigated root in the root growth example.

SRS Parameters The Investigated Root Current Properties

Max velocity NumCurrRoot Dimension glb_ranki
Current location

xi(t)
Best closest

xbest_closest i(t)

10 50 6 36 (83, 15, 7, 43, 79, 15) (35, 93, 66, 17, 21, 4)

Appendix B. On the Time Complexity of the SRS

In computer science, time complexity is used to show the amount of time an algorithm requires to
run. Time complexity is calculated by counting the basic operations of the algorithm and usually is
a function of the input size of the algorithm. For sufficiently large values if input size, let us say n,
time complexity can be expressed by O(f (n)) notation in which f (n) is a function of n represents the
total number of basic operations of the algorithm having n input values [53]. In this section, we provide
the calculated time complexity of the SRS to ease the time estimation of solving different problems.

In one hand, there are three main factors impacting the runtime of the SRS. Number of roots being
used to solve the problem, Number of Dimensions of the problem and the number of times we want
the algorithm iterates to get to the expected results. On the other hand, the algorithm consists of two
main parts including Initialization that initialize the subspaces roots, and the Body that performs the
optimization process of the algorithm.

Knowing that, assume that n is the number of roots, m is the number of dimensions and k is the
total number of iterations of the algorithm. According to the conducted analysis and calculations,
the Initialization is of order O(m× n) + O(n log n) and the Body is of order O(m× n× k) + O(k ×
n log n).
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