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Abstract: The signal reconstruction quality has become a critical factor in compressed sensing at
present. This paper proposes a matching pursuit algorithm for backtracking regularization based on
energy sorting. This algorithm uses energy sorting for secondary atom screening to delete individual
wrong atoms through the regularized orthogonal matching pursuit (ROMP) algorithm backtracking.
The support set is continuously updated and expanded during each iteration. While the signal
energy distribution is not uniform, or the energy distribution is in an extreme state, the reconstructive
performance of the ROMP algorithm becomes unstable if the maximum energy is still taken as the
selection criterion. The proposed method for the regularized orthogonal matching pursuit algorithm
can be adopted to improve those drawbacks in signal reconstruction due to its high reconstruction
efficiency. The experimental results show that the algorithm has a proper reconstruction.

Keywords: backtracking; energy sorting; atom screening

1. Introduction

Magnetic resonance (MR) image reconstruction technology has been long-established in clinical
medical detection with the rapid development of medical image processing technology. It has become
an essential means of medical diagnosis [1–3]. In practical medical applications, the traditional
approach is to sample data according to the Shannon–Nyquist sampling technique. The data collected
in this way can adequately represent the original signal, but they have massive amounts of redundancy.
Therefore, these methods often lead to the overflow of acquisition data and the waste of sensors. It is
of considerable significance to reduce the amount of data. The method of extracting a sinusoidal signal
from the noise has attracted many scientists and using the compressibility of the signal to sample data
is a new subject. It originates from the study of the acquisition of a finite-rate-of-innovation signal.
Fixed deterministic sampling kernels are used to double the innovation rate instead of acquiring
continuous signals at twice the Nyquist sampling frequency.

The compressed sensing (CS) [4–7] based on sparse representation has attracted significant
attention as a new sampling theory in recent years. It breaks the limitation of Nyquist’s sampling
theorem, compresses signal sampling simultaneously, saves a lot of time and storage space, and
has become a new research direction in the field of signal processing [8–10]. CS theory has been
widely used in many biomedical imaging systems and physical imaging systems, such as computed
tomography, ultrasound medical imaging, and single-pixel camera imaging. Compressed sensing
magnetic resonance imaging (CS-MRI) based on CS can reconstruct high-quality MR images through a
small amount of sample data, which significantly shortens the scanning time, speeds up the processing
of MR images, and improves work efficiency. The compressed sensing mainly includes two aspects: the
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first is the sampling and compression of the signal, and the second is the reconstruction of the original
signal. The former is for sparse or compressible high-dimensional signals to acquire low dimensional
measurement values through a measurement matrix. At the same time, the latter uses these low
dimensional measurement data to restore the original signal as much as possible. However, how to
design a recovery algorithm with fewer observation times, excellent reconstruction performance, and
low complexity are essential challenges in the study of CS.

The basic pursuit manner [11–14] has been put forward by some scholars for this problem.
The convex optimization process has a good reconstruction effect, but it is often disadvantageous to
practical applications because it takes an excessively long time to run. For this reason, the greedy
iterative algorithm [15–18] has been favored by the vast majority of researchers because of its low
complexity and simple geometric principle. Among all the kinds of reconstruction algorithms studied
at present, the greedy algorithm is the most widely used. However, in greedy algorithms, more
attention is paid to a sparse unknown reconstruction algorithm, which does not need the precondition
of known signal sparseness. The representative algorithms are the sparsity adaptive matching pursuit
and the regularized adaptive matching pursuit algorithms. They approximate sparsity by setting an
initial step and expanding the support set step by step, while the backtracking adaptive orthogonal
matching pursuit uses backtracking detection to reconstruct the unknown sparseness signal. In recent
years, a forward–backward pursuit (forward–backward pursuit) algorithm was proposed to estimate
sparsity by iteratively accumulating the difference between the front and back steps.

An energy-based adaptive matching pursuit algorithm increases the sparsity level gradually
according to the increase of the iteration residual energy. Furthermore, the adaptive matching-pursuit-
based difference reconstruction algorithm uses the rate of change between the measurement matrix
and the residual inner product elements to approximate the sparsity adaptively. The proposed BRAMP
algorithm is also an adaptive algorithm for compressed sensing reconstruction.

The orthogonal matching pursuit algorithm (OMP) [19–21], the regularized orthogonal matching
pursuit algorithm (ROMP) [22,23], uses each atom and the residual value of the measurement matrix
for the inner product. Then, the atom that is most matched with the residual is placed in the support
set using some principles. Once the atom is selected, it will not be deleted until the end of the iteration.
The other is a class of compressive sampling matching pursuit algorithm (CoSaMP) [24,25], the subspace
tracking algorithm (SP) [26,27]. After selecting the matched atoms, they added a backtracking function
to delete unstable atoms to better guarantee the quality of the reconstructed signal. The OMP algorithm
continues the principle of atom selection in a matching pursuit algorithm. Although the signal can
be accurately reconstructed with only one atom being selected in each iteration, the efficiency of
the algorithm is low. The ROMP algorithm, stagewise orthogonal matching pursuit algorithm, and
generalized orthogonal matching pursuit algorithm can select more than one atom in each iteration,
which speeds up the convergence of the algorithm. However, they cannot guarantee that the selected
atoms in each iteration are correct. If the wrong atoms are selected in the previous iteration, the choice
of atoms in the next iteration will be affected. The CoSaMP algorithm and the SP algorithm can select
more than one atom at each iteration.

Meanwhile, the backtracking procedure is introduced to improve the reconstruction accuracy.
The above algorithms increase the number of atoms to candidate sets to improve the performance of
the algorithm. Due to the influence of noise observation, the performance of reconstructing signals
by the above algorithms is not ideal. A regularized orthogonal matching pursuit algorithm uses
regularization criteria as atomic screening rules. It can ensure that the energy of selected atoms is
much larger than that of non-selected atoms, and its reconstruction performance is better than other
greedy algorithms.

In this research, the regularization method was adopted to select the atomic advantage effectively,
and the ROMP and SP algorithms were used to screen the atomic backtracking strategy. Further,
a matching pursuit algorithm for regular backtracking based on the energy ranking (ESBRMP) was
proposed. The experimental results show that this algorithm had a better reconstruction effect.
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2. Compressed Sensing Theory

Let x be the N length of the original signal, y is the M length of the observed signal, ΦM×N(M < N)

is the measurement matrix, and they meet with y = Φx. If x includes K sparse signals and M ≥ K× lg(N)

between K, M, and N, x could achieve the accurate reconstruction. The problem to be solved in this
paper is how to reconstruct the signal x from the observed signal y, which is usually solved using the
following optimization problem:

min‖x‖0, s.t. y = Φx. (1)

In practice, a certain degree of error is allowed. Therefore, the original optimization problem can
be transformed into a simpler approximate solution. δ is a minimal constant:

min‖x‖0, s.t. ‖y−Φx‖22 ≤ δ. (2)

The minimum norm problem is an NP difficult problem, and it is challenging to solve the problem
directly. The matching pursuit algorithm provides a powerful tool for the approximate solution, and
Tropp and Gilbert [18] pointed out that the methods for sparse signal reconstruction have a specific
stability. Furthermore, the OMP algorithm continues the selection rule of atoms in the matching
pursuit algorithm and realizes the orthogonalization of the selected atom set recursively to ensure
the optimization of the iteration, thus reducing the number of iterations. Needell and Vershynin [22],
based on the OMP algorithm, proposed the ROMP algorithm, where the regularization process is used
in the OMP algorithm for a known sparsity. The difference between the ROMP algorithm and the OMP
algorithm is that, first, the algorithm selects multiple atoms as a candidate set based on the relevant
principles, and second, some atoms are selected by the regularization principle from the candidate set,
and then incorporated into the final support set to realize the rapid and effective selection of the atom.
The SP and CoSaMP algorithms use the idea of back-stepping filtering. The reconstruction quality and
the reconstruction complexity of these algorithms are similar to that of linear programming (LP).

3. Reconstruction Processes

The ROMP algorithm can accurately reconstruct all the matrices and all sparse signals that satisfy
the restricted isometry property (RIP) [28], and the reconstruction speed is fast. The ROMP algorithm
first selects the atoms according to the correlation principle and calculates the correlation coefficient
by calculating the absolute value of the inner product between the residual and each atom in the
measurement matrix Φ:

u =
{
u j

∣∣∣u j =
∣∣∣< r,ϕ j >

∣∣∣, j = 1, 2, 3 · · · , N
}
. (3)

The ROMP algorithm uses the regularization process to carry out the two filters of the atom.
Through Equation (4), the correlation coefficients of the atoms corresponding to the index value set
are divided into several groups. That is, the correlation coefficient of the atom corresponding to the
medium index is divided into several groups according to Equation (4):∣∣∣u(i)∣∣∣ ≤ 2

∣∣∣u( j)
∣∣∣, i, j ∈ J0; J0 ∈ J (4)

The key to the regularization process is to select a set of atomic index values corresponding to the
most significant energy correlation coefficients from the perception matrix, store them in the updated
support set, and complete the secondary selection. Then, the atomic index value corresponding to a
group of correlation coefficients with the maximum energy is deposited into J0. The regularization
process allows the ROMP algorithm to obtain the support set |Λ| with a lower atomic number than ΦΛ

to reconstruct the signal accurately for most iterations. For the atoms that have not been selected into
the support set, the regularization process can ensure that their energy is much smaller than the energy
of the selected atoms, which is a simple and effective way of undertaking atomic screening. It could
improve the stability of the signal reconstruction. After a particular iteration to get the support set for
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the reconstruction of the signal, the least squares method is used for the signal approximation and the
remainder update. The flow chart of the ROMP algorithm is shown in Figure 1. It can be expressed as:

x̂ = arg min‖y−ΦΛx‖2, (5)

rnew = y−ΦΛx̂. (6)Symmetry 2020, 12, x FOR PEER REVIEW 5 of 14 
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Figure 1. The flow chart of the regularized orthogonal matching pursuit (ROMP) algorithm. 

The ROMP algorithm selects the atom through a regularization criterion in a reasonable 
condition. When the signal energy distribution is uniform or showing the distribution of an extreme 
energy state, i.e., the maximum total energy as the selection criteria, the algorithm may not accurately 
choose the required columns, and therefore the ROMP algorithm performance becomes unstable. The 
ROMP algorithm for energy sorting is proposed to solve the unstable problem, which is combined 
with the advantages of the ROMP algorithm and the SP algorithm. For the selection principle, first, a 
screening is carried out using the correlation criterion to select the column vector with the maximum 
inner product of the column and the iterative error vector. Then, the set of column vectors with the 
energy ratio less than two is selected in the selected column vector based on the regularization 
criterion. Lastly, the algorithm selects the set of columns that meet the requirements in all the column 
sets through the energy screening criteria. 

The steps of the energy sorting are as follows: 
(1) The correlation criterion and regularization standard selects a set of all columns: iΣ ，

1,2,3,i L=  . 

(2) For the iΣ  set of all columns, the energy iE , the number of column vectors iNum , and 

the energy average iEve  are counted, where 1,2,3,i L=  . 

(3) Select the maximum n  energy set jE  by setting the energy threshold, 1,2,j n=  . 

(4) Select a column lE  from jE  that is lower than the threshold. 

Figure 1. The flow chart of the regularized orthogonal matching pursuit (ROMP) algorithm.

The ROMP algorithm is represented as follows:
(1) Initialization: r0 = y, Λ = φ, iterating t = 1, repeating the following steps K times or until

|Λ| ≥ 2K.
(2) Calculation: u =< rt−1, Φ j >.
(3) The set of the largest non-zero coordinates of K or all its non-zero coordinates, and the small

one is set to J.
(4) Regularization: In all subsets with comparable coordinates J0 ∈ J, where

∣∣∣u(i)∣∣∣ ≤ 2
∣∣∣u( j)

∣∣∣, i, j ∈
J0 J0 ∈ J, select the maximum energy for reconstructing the original signal.

(5) Update: Add J0 to the index set Λ = Λ ∪ J0, x = argmin‖y = ΦΛx‖2, r = y−Φx.
The ROMP algorithm selects the atom through a regularization criterion in a reasonable condition.

When the signal energy distribution is uniform or showing the distribution of an extreme energy state,
i.e., the maximum total energy as the selection criteria, the algorithm may not accurately choose the
required columns, and therefore the ROMP algorithm performance becomes unstable. The ROMP
algorithm for energy sorting is proposed to solve the unstable problem, which is combined with the
advantages of the ROMP algorithm and the SP algorithm. For the selection principle, first, a screening
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is carried out using the correlation criterion to select the column vector with the maximum inner
product of the column and the iterative error vector. Then, the set of column vectors with the energy
ratio less than two is selected in the selected column vector based on the regularization criterion. Lastly,
the algorithm selects the set of columns that meet the requirements in all the column sets through the
energy screening criteria.

The steps of the energy sorting are as follows:
(1) The correlation criterion and regularization standard selects a set of all columns:

Σi, i = 1, 2, 3, · · · L.
(2) For the Σi set of all columns, the energy Ei, the number of column vectors Numi, and the energy

average Evei are counted, where i = 1, 2, 3, · · · L.
(3) Select the maximum n energy set E j by setting the energy threshold, j = 1, 2, · · · n.
(4) Select a column El from E j that is lower than the threshold.
(5) Find the descending order of El through energy values, and select the set of energy averages

not less than k (0 < k < 1) times of later from the maximum energy value. This is the set of columns
that are screened.

In the above steps, the purpose of step 3 is to ensure that the selected set energy is more significant
than most of the sets. The purpose of steps 4 and 5 is to ensure that the selected set energy distribution
is more reasonable than others. The set of columns that are filtered can contain more useful signal
information. The flow chart of the ESBRMP algorithm is shown in Figure 2.
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energy ranking (ESBRMP).

The steps of the ESBRMP algorithm are as follows:

(1) Initialization: Set the residual r0 = y, Λ = φ.
(2) Calculate the inner product between the residuals ri−1 and the atoms of the observation matrix.
(3) Set the threshold value, select the value larger than the threshold value Th from u, and make up

the set J of the sequence number j corresponding to these values.
(4) Energy sorting and finding subsets J0 ∈ J.
(5) Update the index set Λi = Λi−1 ∪ J0 and update the support set Γi = Γi−1 ∪ J0.
(6) Solve the least squares problem θ̂ = argmin‖y−Atθt‖.
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(7) Backtracking update support set: Based on the backtracking idea, a new support set is made up
of the larger aL elements (0 < a < 1, A is the number of B)

(8) Update the residual r̂t = y−Atθ̂.
(9) Judge whether ‖r̂t‖2 ≤ ‖r̂t−1‖2 is established. If it is established, stop iterating; if it is not established,

determine whether the number of initial stages s can be reached. If it is reached, the iteration is
stopped; if it is not reached, return to the second step and continue to iterate.

4. Experimental Results and Discussion

The one-dimensional Gaussian random signal with an original signal length was reconstructed
under different numbers of sparsity and measurement. The measurement matrix was a Gaussian
random matrix. The length, sparsity, compression ratio, and the reconstruction performance of the
observed signal are shown in Figures 3 and 4. Figure 3 shows the ESBRMP algorithm’s reconstruction
signal and residual. Figure 4 is the traditional OMP algorithm’s reconstruction signal and residual.
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From the above experiments, it can be seen that the ESBRMP algorithm had a better effect on the
reconstruction of the one-dimensional signal, and the residual of reconstruction was small. The related
experiments were carried out on the reconfiguration rate, sparsity, and measurement of the signal,
as shown in Figures 5 and 6. Under different sparsities, the relationship between the measurement
and the signal reconstruction rate is shown in Figure 5. When the sparsity was low, the original signal
could be restored with a lower number of measurements, and the lower number of measurements
produced a lower signal reconstruction rate when the sparsity was high.
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Under different numbers of measurements, the relation between the sparsity and the signal
reconstruction rate is shown in Figure 6. When the number of measurements was low, the original
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signal could be restored with a lower sparsity, and the lower sparsity produced a lower signal
reconstruction rate when the number of measurements was higher. Overall, regarding the signal
reconstruction rate, the size of the sparsity was directly proportional to the number of measurements.
The sparsity was more significant than usual, and the more measurements we needed to ensure that
the signal had a high reconstruction rate.

The performance of the ESBRMP algorithm was compared to other typical greedy pursuit
algorithms, such as the OMP, ROMP, SP, and CoSaMP algorithms. Moreover, the comparison between
the exact reconstruction probability and reconstruction accuracy was verified.

The accurate reconstruction probability of the signal was compared with other algorithms.
The accurate reconstruction of the signal was defined as the actual signal, which gives the same position
of the non-zero elements in the recovery signal in the ideal condition without noise. The accurate
reconstruction rate of the signal for different measurements M is given in Figures 7 and 8. From Figure 7,
for all reconstruction algorithms, the exact reconstruction probability of the first signal increased with
the increase of the number of measurements M. For this algorithm, when the number of measurements
was more significant than 35, the reconstruction probability of the ESBRMP algorithm was close to 1.
When the number of measurements was greater than 25, the reconstruction probability of the ESBRMP
algorithm was more than the OMP, ROMP, and SP algorithms. Overall, for the same signal, the number
of measurements required to stabilize the reconstructed signal using the ESBRMP algorithm was less
than the OMP, ROMP, and SP algorithms.
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When the sparsity is greater than 60 in Figure 8, the reconstruction probability was close to 0.
When the number of measurements was between 25 and 60, the reconstruction probability of the
ESBRMP algorithm was higher than the other algorithms. Overall, for the same signal, the sparsity
required to stabilize the reconstructed signal using the ESBRMP algorithm was higher than the other
algorithms. The accurate reconstruction rate of all kinds of algorithms decreased gradually with the
increase of sparsity, which was because the amount of information contained in the signal was related
to the sparsity K of the signal. The sparsity K was more extensive than others, which meant there was
more meaningful information. In the signal reconstruction, the atoms contained in the observation
matrix were determined. More atoms were needed for the reconstruction of the signal with a larger
sparsity K, while the number of atoms needed to satisfy the dictionary, the possibility of representing
the signal, and the precision reconstruction rate was lower than others. On the contrary, for signals with
a smaller sparsity K, the number of atoms used to represent the reconstruction was smaller. Moreover,
there were many kinds of atom combinations satisfied in the dictionary, which made it possible to
represent the signal and it had a higher precision reconstruction rate.

In order to further illustrate the performance of the ESBRMP algorithm, Lena images with the size
of 256 × 256 were selected to compare the peak signal to noise ratio (PSNR) and the reconstruction time
of the reconstructed images. First, an orthogonal wavelet transform (coif3) was used for the transform,
then each column of the transformed matrix was reconstructed, and finally, the reconstructed image
was obtained using the inverse wavelet transform. The measurement matrix was an orthogonal
observation matrix. Table 1 compares the average PSNR and reconstruction time of the reconstructed
images with different compression ratios. Under the same conditions, the larger the PSNR, the higher
the quality of the reconstructed images.
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Table 1. Qualities of images reconstructed and running time by different algorithms. PSNR: Peak signal
to noise ratio.

Algorithms
M/N = 0.3 M/N = 0.4 M/N = 0.5

PSNR (dB) T (s) PSNR (dB) T (s) PSNR (dB) T (s)

OMP 23.7848 16.3249 26.3581 35.4372 29.6349 62.9146
ROMP 19.3325 2.8873 22.6383 3.0273 26.8823 3.5338

CoSaMP 22.1336 4.1558 24.0518 6.3511 25.8473 9.2915
ESBRMP 26.2538 3.2903 28.6912 5.1083 31.2703 8.9474

From Table 1, it can be seen that the PSNR value of the reconstructed image of the ESBRMP
algorithm was higher than that of other algorithms, and even in the case of a low sampling rate, it still
had a better reconstruction effect. The reconstruction time of the ESBRMP algorithm was higher than
the ROMP algorithm and less than the other algorithms.

Table 2 shows the reconstruction effects of different images at the same sampling rate. It can still be
seen that the ESBRMP algorithm also had a strong reconstruction ability and reasonable reconstruction
time for other images, which shows that the ESBRMP algorithm had better applicability than others.

Table 2. PSNR of the different images using different algorithms.

Algorithms Lena Fruits Cameraman Pepers

OMP 29.6349 30.9803 28.0214 29.1471
ROMP 26.8921 28.8023 24.0257 25.7125

CoSaMP 25.8473 27.2755 24.1903 25.0361
ESBRMP 31.2703 33.4108 29.1827 30.5297

The reconstruction time was related to the number of atoms needed for the signal reconstruction;
the more atoms used for reconstruction, the longer the reconstruction time. Through the analysis of
the accurate reconstruction rate of signal reconstruction, the results show that the larger the signal
sparsity, the more atoms that were needed, and the longer the reconstruction time. On the contrary, the
smaller the signal sparsity, the fewer atoms that were needed, and the shorter the reconstruction time.
The reconstruction probability of the ESBRMP algorithm in the environment without noise was more
than for the OMP, ROMP, and SP algorithms, and had a high probability of signal reconstruction.

5. Conclusions

In this paper, a matching pursuit algorithm for backtracking regularization based on energy sorting
(ESBRMP) was proposed. The algorithm uses energy sorting to carry out two atomic screening and
uses backtracking to delete individual unreliable atoms. Experimental results showed that the ESBRMP
algorithm could reconstruct sparse signals with a high probability and had a high reconstruction
accuracy without a noisy environment.
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Abbreviations

ESBRMP backtracking regularization matching pursuit algorithm based on energy sorting
MR magnetic resonance
CS compressed sensing
CS-MRI compressed sensing magnetic resonance imaging
OMP orthogonal matching pursuit algorithm
ROMP regularized orthogonal matching pursuit algorithm
CoSaMP compressive sampling matching pursuit algorithm
SP subspace tracking
LP linear programming
RIP restricted isometry property
BRAMP Backtracking Regularized Adaptive Matching Pursuit
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