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Abstract: Focusing on ill-structured multiple attribute decision-making (MADM) problems, including
decision hesitancy and attribute prioritization relationships, this paper investigates appropriate
approaches for decision making. Firstly, we introduce the probabilistic hybrid linguistic term set
(P-HLTS) for capturing probabilistic preferences about possible linguistic labels belonging to a
wide range of hesitant linguistic term sets. Entropy and distance measurements for P-HLTS are
developed without arbitrary complementing operations. To facilitate decision making with attribute
prioritization relationships, we present a probabilistic uncertain balanced linguistic-prioritized
weighted average (PUBL-PWA) operator and the probabilistic uncertain balanced linguistic-induced
prioritized ordered weighted average (PUBL-IPOWA) operator. In terms of the strength of the above
tools, we further construct two multiple attribute group decision-making (MAGDM) approaches
under P-HLTS environments, namely, an approach for decision-making situations where attribute
prioritization relationships are known in advance and the relative importance of decision makers
(DMs) or decision-making units (DMUs) is not required for consideration, and second approach for
decision-making situations where both attribute prioritization relationships and the weighted vectors
of DMs or DMUs are explicitly unknown. In general, our proposed approaches are more flexible and
practical when considering heterogeneous opinions, avoiding information distortion brought about
by complementing operation-based distance measures. Furthermore, illustrative application studies
are conducted to verify our developed approaches.

Keywords: multiple attribute decision making; group decision making; probabilistic linguistic term
set; prioritized average operator; linguistic decision making

1. Introduction

Multiple attribute decision-making (MADM) theory is an indispensable part of decision
analysis theory, [1] and has been successfully applied to practical problems in many fields [2–8].
The main purpose of MADM is to find desirable solutions from finite alternatives according to
assessments under a set of attributes. Due to increasing complexity and uncertainty in socioeconomic
decision-making environments, single decision makers usually become less competent in evaluating
all aspects of complicated decision-making problems [9,10]. Multiple attribute group decision-making
(MAGDM) approaches thus have been developed by extending MADM to group settings, where
a number of decision makers (DMs) or decision-making units (DMUs) are invited to present their
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assessments [5,11,12]. To deal with the uncertainty in decision maker preferences [13–17], fuzzy set
theory [18] and its extensions have been introduced to enhance conventional MAGDM models, such
as intuitionistic fuzzy sets [19,20], hesitant fuzzy sets [21], dual hesitant fuzzy sets [22], interval-valued
dual hesitant fuzzy sets [23], and probabilistic dual hesitant fuzzy sets [24], among others.

However, when it comes to more complicated MAGDM problems, where problem structures
are ill-defined for fuzzy quantification, Zadeh [25] has advocated the usage of linguistic variables
for decision makers to qualitatively express their uncertain preferences. To this end, because of
the merit in eliciting decision maker assessments more directly and precisely, linguistic variables
have been continuously extended to accommodate various scenarios, such as unbalanced linguistic
variables [26–29], uncertain linguistic variables [30–33], intuitionistic uncertain variables [34,35],
hesitant fuzzy uncertain linguistic variables [15], and hesitant fuzzy unbalanced linguistic variables [36],
among others. Although the above extensions of linguistic variables are very effective in situations
where decision makers can approximate the most precise linguistic label in accordance with their
assessment, Rodríguez et al. [37] revealed that decision makers are often cognitively irresolute among
several possible linguistic labels. Taking this a step further, Pang et al. [11] and Liao et al. [38] point
out the phenomena that DMs or DMUs usually will have different importance degrees in terms of
those possible linguistic labels. Pang et al. [11] thus introduced the probabilistic linguistic term set
(PLTS), which is capable of dealing with situations where probabilistic distributions cannot be acquired
completely in reality, and is capable of carrying out probability information aggregation without a
loss of information [24]. Since its introduction, PLTS has been successfully applied to solve practical
MADM problems in various settings [38–46]. As can be seen, these studies all only allow decision
makers to depict their cognitive models through balanced linguistic terms sets (BLTS) [25] which are
uniformly and symmetrically distributed. However, field investigations [26,28] have revealed that
decision makers usually tend to utilize nonuniform or asymmetrical linguistic term sets, referred to
as unbalanced linguistic term sets (UBLTSs) [27], for expressing their assessments appropriately and
flexibly. Additionally, when trying to obtain linguistic expressions that closely follow decision maker
cognitive models, Rodríguez et al. [47] and Wang [48] have advocated for the adoption of consecutive
and nonconsecutive comparative linguistic expressions. Therefore, in order to address different
cognitive models where DMs or DMUs hold real problems, in this paper, we propose an effective
expression tool for probabilistic hybrid linguistic term sets (P-HLTSs). P-HLTSs manage to enhance
classical PLTS by accommodating a wide range of linguistic expression forms when considering
diverse cognitive models, including balanced linguistic sets, unbalanced linguistic term sets, uncertain
unbalanced linguistic term sets, comparative balanced linguistic term sets, and comparative unbalanced
linguistic term sets. Comparatively, P-HLTS thus behaves in a more flexible and practical manner.

With respect to complicated decision-making situations which require decision information in
the form of PLTS, pioneering efforts have been accumulatively paid to various effective MADM
methodologies, such as that of Pang et al. [11], who introduced an extended TOPSIS-based MAGDM
approach by use of proposed fundamental probabilistic linguistic averaging operators. Liu and Fei [49]
developed two multiple attribute decision-making methods based on their probabilistic linguistic
Archimedean Muirhead mean aggregation operators [49]. Liu and Li [50] designed an effective MAGDM
approach to consider interrelationships among input arguments by use of generalized Maclaurin
symmetric mean operators. Lin et al. [51] extended PLTS to define the probabilistic uncertain linguistic
term set (PULTS) and devised a TOPSIS-based MAGDM method with the support of aggregation
operators for PULTS. Liu et al. [40] developed an approach where attributes’ weights were derived by
their defined entropy measures for PLTS. Wu and Liao [41] studied a novel group decision-making
approach based on ORESTE methods and PLTS under a QRD framework for design selection problems.
Xiang et al. [42] studied an interactive venture capital group decision-making approach under the
PLTS scenario, in which interactions among venture capitalists and entrepreneurs were considered to
dynamically deduce weight information. To deal with emergency decision-making problems, Gao
et al. [43] developed an approach using probabilistic linguistic preference relations (PLPRs), where
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they equally synthesized subjective possibilities given by decision makers and objective possibilities
which were obtained by case-based reasoning. Liao et al. [38] proposed an LINMAP-based group
decision-making method where the developed linear programming models were used to calculate
the weights of evaluative attributes. Some other classical decision-making methodologies have also
been extended to PLTS environments, such as the probabilistic linguistic TODIM method [45] and the
probabilistic linguistic VIKOR method [46]. However, to the best of our knowledge, the approaches in
the literature are incapable of addressing the special type of decision-making problems which exist
where decision information about attributes’ prioritization relationships is unavailable. In fact, the
phenomena of prioritization relationships is quite common when making decisions, due to limited
knowledge or problematic complexity, presenting difficulties or unwillingness to provide complicated
preference relationships, as required in AHP-like analytical models, while they are quite sure about
the existence of prioritization relationships among evaluative attributes [52–58]. Therefore, to tackle
ill-structured, complicated decision-making problems where attribute prioritization relationships
exists, it is indispensable to study effective approaches that are simultaneously capable of taking the
strength of PLTS and exploiting decision information denoted by attributes’ prioritization relationships.

To do so, we firstly employ the newly defined probabilistic hybrid linguistic term set (P-HLTS)
to empower DMs or DMUs in choosing the most appropriate linguistic term set for depicting
their preferences. Secondly, in the light of Yager’s [52,53] prioritized average (PA) operator theory,
which manages to concurrently consider assessments under evaluative attributes and considering
prioritization relationships among the attributes, we develop two prioritized average operators for
MADM under P-HLTS environments, namely, the probabilistic uncertain balanced linguistic-prioritized
weighted average (PUBL-PWA) operator and the probabilistic uncertain balanced linguistic-induced
prioritized ordered weighted average (PUBL-IPOWA) operator. Further, based on the defined
operational rules and the entropy measure of P-HLTS and the PUBL-PWA operator, we construct a
MAGDM approach to solve decision-making problems where attributes’ prioritization relationships
have been determined in advance, and the relative importance of DMs or DMUs does not require
consideration. Furthermore, to tackle more complicated decision-making problems, where attributes’
prioritization relationships and weighting vectors for DMs or DMUs are both explicitly unknown, we
utilize the PUBL-IPOWA operator to construct another MAGDM approach, in which we introduce
a distance measure for P-HLTS to develop a divergence measure-based method for obtaining the
unknown attributes’ prioritization relationships and a similarity degree-based method for deriving
weighting vectors for DMs or DMUs.

The content of this paper is organized as follows: In Section 2, we briefly introduce some
preliminary information about probabilistic linguistic term sets (PLTSs) [11]. In Section 3, we firstly
propose the concept of probabilistic hybrid linguistic term sets (P-HLTSs) and define some fundamental
operational rules for P-HLTSs, then, a distance measure and entropy measure are both developed
for P-HLTSs. In Section 4, we define the PUBL-PWA and PUBL-IPOWA operators. Their desirable
properties are also studied. Subsequently, in Section 5, the details of the first and second approaches
are presented. Next, we conduct a case study in order to verify the two approaches, considering
an evaluation of the usability of a governmental website in Section 6. Finally, our conclusions are
presented in Section 7.

2. Preliminaries

2.1. Probabilistic Hesitant Fuzzy Set (P-HFS)

Definition 1. [59] If we let X be a finite set, then a probabilistic hesitant fuzzy set (P-HFS) on X is defined
as follows:

H =
{
h(p)

}
=

{
γl(pl)

∣∣∣∣∣γl ∈ [0, 1], pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
, (1)
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where γl(pl) represents the membership degree γl associated with the probability pl, h(p) is the probabilistic
hesitant fuzzy element (P-HFE), and L is the number of all different membership degrees in h(p).

2.2. Probabilistic Linguistic Term Set (PLTS)

In practice, decision makers may always have hesitancy among several possible linguistic terms
when expressing their preferences, and the complete probabilistic distribution of these linguistic terms
is usually not easily obtained accurately [24]. Pang et al. [11] thus have proposed the concept of a
probabilistic linguistic term set (PLTS), which extends the hesitant fuzzy linguistic term set (HFLTS) [37]
by adding probability information, without loss of any original compound decision information.

Definition 2. [11] If we let S = {st|t = −τ, . . . ,−1, 0, 1, . . . , τ } be a definite linguistic term set (LTS), a PLTS
is defined as follows:

L(p) =
{
hs(p)

}
=

{〈
sl(pl)

〉∣∣∣∣∣sl ∈ S, pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
(2)

where sl(pl) is the linguistic term sl associated with the probability pl and L is the number of all different
linguistic terms in L(p).

In the equation above, if
∑L

k=1 p(k) = 1, then we have the complete information of the probabilistic
distribution of all terms, whereas if

∑L
k=1 p(k) < 1, partial ignorance exists, because current knowledge

is not enough to provide complete assessment information, where the normalized PLTS
..
L(p) is then

transformed by L(p), which is defined as follows:

..
L(p) =

{
hs(

..
p)

}
=

{〈
sl(

..
pl)

〉∣∣∣∣∣sl ∈ S,
..
pl ≥ 0, l = 1, . . . , L,

∑L

l=1

..
pl = 1

}
. (3)

where
..
pl =

pl∑L
l=1 pl

. (4)

3. Probabilistic Hybrid Linguistic Term Set

3.1. The Concept of Probabilistic Hybrid Linguistic Term Set (P-HLTS)

Recently, in their pioneering study, Lin et al. [51] introduced the concept of probabilistic uncertain
linguistic sets (PULTSs), which allow decision makers to only express their preferences using balanced
linguistic variables. Obviously, when adapting to various scenarios, decision makers are intrinsically
inclined to use various linguistic variables when depicting their preferences, representatively including
uncertain balanced linguistic term sets (UBLTSs) [51], uncertain unbalanced linguistic term set
(UUBLTSs) [60,61], consecutive and nonconsecutive comparative balanced linguistic term sets (CBLTSs),
or comparative unbalanced linguistic term sets (CUBLTSs) [48]. Therefore, in this section, we extend
the definition of probabilistic hybrid linguistic term sets (P-HLTSs) in order to empower decision
makers. For the purpose of acknowledging and differentiating our findings from the work of Lin
et al. [51], in terms of differentiating PULTS from P-HLTS more clearly, we here denote PULTS as a
probabilistic uncertain balanced linguistic term set (P-UBLTS), as shown in Definition 3.

Definition 3. [51] If we let S = {st|t = −τ, . . . ,−1, 0, 1, . . . , τ } be a definite balanced linguistic term set (BLTS),
a probabilistic uncertain balanced linguistic term set (P-UBLTS) is defined as follows:

L̃(p) =
{̃
hs(p)

}
=

{〈̃
sl(pl)

〉∣∣∣∣∣̃sl ∈ S, pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
. (5)
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where s̃l(pl) is the uncertain linguistic term s̃l = [sα, sβ] associated with the probability pl, h̃s(p) is the
probabilistic uncertain balanced linguistic element (P-UBLE), and L is the number of all uncertain linguistic
terms in h̃s(p).

In Definition 3 above, when s̃l accommodates various forms of linguistic elements that are the
closest to decision makers’ cognitive models, we define the following probabilistic hybrid linguistic
term set (P-HLTS).

Definition 4. If we let S be a definite traditional balanced linguistic term set (BLTS) [25] or unbalanced
linguistic term set (UBLTS), then a probabilistic hybrid linguistic term set (P-HLTS) can be defined as follows:

_
L(p) =

{_
h s(p)

}
=

{〈_
s l(pl)

〉∣∣∣∣∣_s l ∈ S, pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
. (6)

where
_
s l is constructed by forms of uncertain balanced linguistic term sets (UBLTSs), uncertain unbalanced

linguistic term sets (UUBLTSs), comparative balanced linguistic term sets (CBLTSs), or comparative unbalanced
linguistic term sets (CUBLTSs). Here,

_
s l(pl) is the compound notion for the linguistic evaluation

_
s l associated

with the probability pl. Here,
_
h s(p) is the probabilistic hybrid linguistic element (P-HLE), and L denotes the

number of linguistic evaluations in
_
h s(p).

For practical usage, we can convert the various linguistic information forms shown above into
uncertain balanced linguistic term sets (UBLTSs) by using corresponding transformation rules, shown
as follows:

Situation 1.
_
s l is selected from predefined unbalanced linguistic label sets (UUBLTSs).

In this situation, P-HLTS actually changes into the new probabilistic uncertain unbalanced

linguistic term set (P-UUBLTS) form, referred to as ˜̂L(p):
˜̂L(p) = {̃

ĥs(p)
}
=

{〈̃
ŝl(pl)

〉∣∣∣∣∣̃ŝl ∈ S, pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
. (7)

By the transformation function ψ, whose procedures [27] have been detailed in Appendix A for
further reference, the unbalanced linguistic term set can be transformed to a balanced linguistic term
set. Thus, P-UUBLTS changes into P-UBLTS:

L̃(p) = ψ
(̃
L̂(p)

)
=

{〈
ψ
(̃
ŝl
)
(pl)

〉∣∣∣∣∣̃ŝl ∈ S, pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
. (8)

Situation 2.
_
s l is provided in the form of CBLTSs.

In this situation, P-HLTS changes into the new probabilistic comparative balanced linguistic term
set (P-CBLTS) form, referred to as L(p):

L(p) =
{
hs(p)

}
=

{〈
sl(pl)

〉∣∣∣∣∣sl ∈ S, pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
. (9)

Here, P-CBLTS is characterized by a set of generalized (either consecutive or non-consecutive)
linguistic terms, therefore, we adopt Wang’s [48] transformation function EGH to convert P-CBLTS
into P-UBLTS according to certain context-free grammar GH. The production rules of GH are listed
as follows:

EGH (si) = {si|si ∈ S } = [si, si];
EGH (at most si) =

{
s j
∣∣∣s j ∈ S and s j ≤ si

}
= [s−τ, si];
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EGH (lower than si) =
{
s j
∣∣∣s j ∈ S and s j < si

}
= [s−τ, si−1];

EGH (at least si) =
{
s j
∣∣∣s j ∈ S and s j ≥ si

}
= [si, sτ];

EGH (great than si) =
{
s j
∣∣∣s j ∈ S and s j > si

}
= [si+1, sτ];

EGH (between s j and si) =
{
sk
∣∣∣sk ∈ S and s j ≤ sk ≤ si

}
= [s j, si].

By these rules above, we get the following:

L̃(p) = EGH

(
L(p)

)
=

{〈
EGH (sl)(pl)

〉∣∣∣∣∣sl ∈ S, pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
. (10)

Situation 3.
_
s l is provided in the form of CUBLTSs.

In this situation, P-HLTS changes into the new probabilistic comparative unbalanced linguistic

term set (P-CUBLTS) form, referred to as L̂(p):

L̂(p) =
{
ĥs(p)

}
=

{〈
ŝl(pl)

〉∣∣∣∣∣ŝl ∈ S, pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
. (11)

Then, by transformation function ψ and the production rules out of context-free grammar GH,
P-CUBLTS can be converted into P-UBLTS:

L̃(p) = EGH

(
ψ
(
L̂(p)

))
=

{〈
EGH

(
ψ
(
ŝl
))
(pl)

〉∣∣∣∣∣ŝl ∈ S, pl ≥ 0, l = 1, . . . , L,
∑L

l=1
pl ≤ 1

}
. (12)

According to transformation functions between the comparative linguistic term set, unbalanced
linguistic term set, and uncertain linguistic term set, various relationships between different probabilistic
linguistic forms are shown in Figure 1.Symmetry 2020, 12, 235 7 of 33 
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Figure 1. Transformation relationships between various probabilistic linguistic term sets.

In summary, our newly-defined probabilistic hybrid linguistic term set (P-HLTS) basically contains
three new forms of probabilistic linguistic term sets, i.e., P-UUBLTS, P-CBLTS, and P-CUBLTS, which
can be transformed into the same form of P-UBLTS [51]. Furthermore, we define the normalized
version of P-HLTS in Definition 4.

Definition 5. Given a P-HLTS
_
L(p) with

∑L
l=1 pl < 1 or

∑L
l=1 pl > 1, then the associated normalized

..
_
L(p) is

defined as follows:

..
_
L(p) =

{_
h s(

..
p)

}
=

{〈_
s l(

..
pl)

〉∣∣∣∣∣_s l ∈ S,
..
pl ≥ 0, l = 1, . . . , L,

∑L

l=1

..
pl = 1

}
. (13)

where
..
pl = pl/

∑L
l=1 pl for all l = 1, . . . , L.
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Since our newly defined P-HLTS can be transformed and unified into P-UBLTS [51], in the
following section, we firstly detail the operational and comparison rules for P-UBLTS, then we propose
novel distance and entropy measures for P-UBLTS in Section 3.3.

3.2. Basic Operational Rules and Comparison Rules for P-UBLTS

Definition 6. [51] Let S, S1, and S2 be three definite balanced linguistic term sets (BLTSs), and L̃(p), L̃1(p),
and L̃2(p) be three P-HLTS numbers:

L̃(p) =
{̃
hs(p)

}
=

{〈̃
s(l)(p(l))

〉∣∣∣∣̃s(l) = [s(l)α , s(l)β ] ∈ S, p(l) ≥ 0, l = 1, . . . , L,
∑L

l=1 p(l) ≤ 1
}
,

L̃1(p) =
{̃
hs1(p1)

}
=

{〈̃
s(i)1 (p(i)1 )

〉∣∣∣∣̃s(i)1 = [s(i)α1
, s(i)β1

] ∈ S1, p(i)1 ≥ 0, i = 1, . . . , L1,
∑L1

i=1 p(i)1 ≤ 1
}
,

L̃2(p) =
{̃
hs2(p2)

}
=

{〈̃
s( j)

2 (p( j)
2 )

〉∣∣∣∣̃s( j)
2 = [s( j)

α2
, s( j)
β2
] ∈ S2, p( j)

2 ≥ 0, j = 1, . . . , L2,
∑L2

j=1 p( j)
2 ≤ 1

}
,

Then, by use of equivalent transformation functions [44,62]:
g : [−τ, τ]→ [0, 1], g(̃L(p)) =

{[
α
2τ +

1
2 , β

2τ +
1
2

]
(p)

}
= L̃γ(p),γ ∈ [0, 1] and

g−1 : [0, 1]→ [−τ, τ], g−1 (̃Lγ(p)) =
{[

s(2γL−1)τ, s(2γU−1)τ

]
(p)

}
= L̃(p) , we have

(1) L̃1(p) ⊕ L̃2(p) =

∪

[γ
L(i)
1 ,γU(i)

1 ]∈g(̃hS1 ),[γ
L( j)
2 ,γU( j)

2 ]∈g(̃hS2 )

{
g−1

([
γ

L(i)
1 + γ

L( j)
2 − γ

L(i)
1 γ

L( j)
2 ,γU(i)

1 + γ
U( j)
2 − γ

U(i)
1 γ

U( j)
2

])(
p(i)1 p( j)

2

)}
;

(2) L̃1(p) ⊗ L̃2(p) = ∪

[γ
L(i)
1 ,γU(i)

1 ]∈g(̃hS1 ),[γ
L( j)
2 ,γU( j)

2 ]∈g(̃hS2 )

{
g−1

([
γ

L(i)
1 γ

L( j)
2 ,γU(i)

1 γ
U( j)
2

])(
p(i)1 p( j)

2

)}
;

(3) λ̃L(p) = ∪

[γL(l),γU(l) ]∈g(̃hS)

{
g−1

([
1− (1− γL(l))

λ
, 1− (1− γU(l))

λ
])(

p(l)
)}

;

(4) L̃(p)λ = ∪

[γL(l),γU(l) ]∈g(̃hS)

{
g−1

([
(γL(l))

λ
, (γU(l))

λ
])(

p(l)
)}

.

Pang et al. [11] defined the score and deviation degree for probabilistic balanced linguistic term
sets (P-BLTSs). Lin et al. [51] extended these definitions and comparison rules into the environment of
P-UBLTS, as shown in Definitions 6 and 7.

Definition 7. [51] If we let L̃(p) =
{̃
hs(p)

}
=

{〈̃
s(l)(p(l))

〉∣∣∣̃s(l) ∈ S, p(l) ≥ 0, l= 1, . . . , L,
∑L

l=1 p(l) ≤ 1
}

be a

P-UBLTS number and γ(k) be the subscript of P-UBLTS L(k), then the score of L̃(p) is given as follows:

E
(̃
L(p)

)
= sα. (14)

α =

L∑
l=1

(
1
2

(
γL(l) + γU(l)

))
p(l)

L∑
k=1

p(k)
. (15)

γ̃(l) = g
(̃
s(l)

)
=

[
γ̃L(l), γ̃U(l)

]
. (16)

The deviation degree of L(p) is given as follows:

σ(̃L(p)) =

 L∑
l=1

((1
2

(
γL(l) + γU(l)

)
− α

)
p(l)

)2


1/2/ L∑
k=1

p(k) . (17)

Definition 8. [51] Considering two P-UBLTS numbers of L̃1(p) and L̃2(p), then:

(1) If E
(̃
L1(p)

)
> E

(̃
L2(p)

)
, then L̃1(p) � L̃2(p).
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(2) If E
(̃
L1(p)

)
< E

(̃
L2(p)

)
, then L̃1(p) ≺ L̃2(p).

(3) If E
(̃
L1(p)

)
= E

(̃
L2(p)

)
, then

1) If σ
(̃
L1(p)

)
> σ

(̃
L2(p)

)
, then L̃1(p) ≺ L̃2(p).

2) If σ
(̃
L1(p)

)
< σ

(̃
L2(p)

)
, then L̃1(p) � L̃2(p).

3) If σ
(̃
L1(p)

)
= σ

(̃
L2(p)

)
, then L̃1(p) ∼ L̃2(p).

3.3. Proposed Distance Measure and Entropy Measure for P-UBLTS

When calculating the distance between any two P-UBLTS numbers, traditional distance
measures [63] need to artificially complement, pessimistically or optimistically, certain numbers
of elements to the unmatched P-UBLTS number. Either pessimistic complementing or optimistic
complementing inevitably brings about information distortion to some extent. Therefore, in
the following, we define another distance measure for P-UBLTS numbers without requiring any
complementing operation.

Definition 9. Let L̃1(p) =
{̃
hs1(p1)

}
=

{〈̃
s(i)1 (p(i)1 )

〉∣∣∣∣̃s(i)1 ∈ S1, p(i)1 ≥ 0, i= 1, . . . , L1,
∑L1

i=1 p(i)1 ≤ 1
}

and

L̃2(p) =
{̃
hs2(p2)

}
=

{〈̃
s( j)

2 (p( j)
2 )

〉∣∣∣∣̃s( j)
2 ∈ S2, p( j)

2 ≥ 0, l = 1, . . . , L2,
∑L2

j=1 p( j)
2 ≤ 1

}
be two P-UBLTS numbers,

s̃(i)1 and s̃( j)
2 be the subscripts of P-UBLTSs L̃1(p) and L̃2(p) , respectively, and γ̃(i)1 and γ̃( j)

2 be the corresponding

subscripts of transformed probabilistic uncertain balanced linguistic elements s̃(i)1 and s̃( j)
2 , respectively. Here,

γ̃
(i)
1 = g

(̃
s(i)1

)
=

[
γ

L(i)
1 ,γU(i)

1

]
, γ̃( j)

2 = g
(̃
s( j)

2

)
=

[
γ

L( j)
2 ,γU( j)

2

]
. Then, based on the normalized Hamming

distance, we define a distance measure as follows:

Situation 1. When L1 = L2 = L, then:

d(̃L1(p), L̃2(p)) =
1

2L

∑L

k=1

∣∣∣∣γL(k)
1 p(k)1 − γ

L(k)
2 p(k)2

∣∣∣∣+ ∣∣∣∣γU(k)
1 p(k)1 − γ

U(k)
2 p(k)2

∣∣∣∣. (18)

Situation 2. When L1 , L2, then:

d(̃L1(p), L̃2(p)) =
1

2L1L2

∑L2

j=1

∑L1

i=1

∣∣∣∣γL(i)
1 p(i)1 − γ

L( j)
2 p( j)

2

∣∣∣∣+ ∣∣∣∣γU(i)
1 p(i)1 − γ

U( j)
2 p( j)

2

∣∣∣∣. (19)

Theorem 1. The distance measure d(̃L1(p), L̃2(p)) for P-UBLTSs satisfies the following properties:

(1) 0 ≤ d(̃L1(p), L̃2(p)) ≤ 1;

(2) d(̃L1(p), L̃2(p)) = 0 if L̃1(p) ∼ L̃2(p);

(3) d(̃L1(p), L̃2(p)) = d(̃L2(p), L̃1(p)).

The entropy of fuzzy sets, first mentioned by Zadeh [64] and later widely employed in aggregation
operator theories [40,52], is a useful tool to measure the fuzziness of information. Inspired by the
entropy measures developed by Liu et al. [40] for probabilistic linguistic term sets (PLTS), we introduce
a novel entropy measure for P-UBLTS here.

Definition 10. Let L̃(p) =
{̃
hs(p)

}
=

{〈̃
s(l)(p(l))

〉∣∣∣̃s(l) ∈ S, p(l) ≥ 0, l = 1, . . . , L,
∑L

l=1 p(l) ≤ 1
}

be any

P-UBLTS element, and γ̃(l)1 = g
(̃
s(l)1

)
=

[
γ

L(l)
1 ,γU(l)

1

]
, where we then define an entropy measure e(̃L(p))

for L̃(p):

e(̃L(p)) = 1−
1
L

∑L

l=1

(∣∣∣γL(l)
− 0.5

∣∣∣+ ∣∣∣γU(l)
− 0.5

∣∣∣)p(l). (20)
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Theorem 2. The entropy defined in the Definition 10 satisfies the following requirements:

(1) 0 ≤ e(̃L(p)) ≤ 1;

(2) e(̃L(p)) = 0, if and only if L̃(p) =
{
[sτ, sτ](1)

}
or L̃2(p) =

{
[s−τ, s−τ](1)

}
;

(3) e(̃L(p)) = 1, if L̃(p) =
{
[s0, s0](1)

}
;

(4) e(̃L(p)) = e(̃Lc(p)), where L̃c(p) =
{
[sτ−β, sτ−α](p(l))

}
;

(5) e(̃L1(p)) = e(̃L2(p)), if L̃1(p) is less fuzzy than L̃2(p).

4. Prioritized Aggregation Operators for P-UBLTS

Considering that elementary WA and OWA operators cannot accommodate MADM problems
with prioritized relationships among evaluative attributes, Yager [52,53] developed another two
operators, namely, the fundamental prioritized average (PA) operator [52] and the prioritized ordered
weighted aggregation (POWA) operator. Conventional PA and POWA operators generally assume
that prioritization relationships among attributes can be determined by DMs or DMUs. When
confronting ill-structured, complicated decision situations, the required attributes’ prioritization
relationships usually are explicitly unknown and can be objectively derived as order-inducing variables
based on acquired decision information [65–69]. Therefore, to facilitate MADM under P-HLTS
environments, where decision hesitancy and prioritization relationships between attributes exist, we
present the probabilistic uncertain balanced linguistic prioritized weighted average (PUBL-PWA)
operator. Furthermore, based on the conventional prioritized aggregation operator [52,53] and induced
aggregation operator [65,66], we also develop a probabilistic uncertain balanced linguistic induced
prioritized ordered weighted average (PUBL-IPOWA). Desirable properties of the PUBL-PWA and
PUBL-IPOWA are also investigated here.

4.1. PUBL-PWA Operator

Definition 11. Given a collection of P-UBLTS numbers L̃ j(p) =
{̃
hs j(p j)

}
=

{〈̃
s
(k j)

j (p
(k j)

j )
〉 ∣∣∣∣∣̃s(k j)

j ∈ S j,

p(i)1 ≥ 0, k j = 1, . . . , L j,
∑L1

i=1 p(i)1 ≤ 1
}

which are prioritized such that L̃ j(p) ≺ L̃ j−1(p) and s̃
(k j)

j , p
(k j)

j denotes

the k jth uncertain balanced linguistic term and its probability respectively. The PUBL-PWA operator can be
defined as follows:

PUBL− PWA
(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
= T1∑n

j=1 T j
L̃1(p) ⊕

T2∑n
j=1 T j

L̃2(p) ⊕ . . .⊕
Tn∑n

j=1 T j
L̃n(p)

=
n
⊕

j=1

 T j̃L j(p)∑n
j=1 T j

. (21)

where T1 = 1, T j =
∏ j−1

k=1 1− e
(̃
Lk(p)

)
=

(
1− e

(̃
L j−1(p)

))
T j−1, and e

(̃
L j(p)

)
is the entropy of L̃ j(p) as

calculated according to Definition 11.

Based on the operations of P-UBLTSs, the PUBL-PWA operator can be rewritten as in Theorem 3.

Theorem 3. If we let L̃ j(p) =
{̃
hs j(p j)

}
=

{〈̃
s
(k j)

j (p
(k j)

j )
〉}

be a collection of P-UBLTEs, we have

PUBL− PWA
(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
= ∪

[γ
L(kj)

j ,γ
U(kj)

j ]∈g(̃hSj )

{

g−1


1−∏n

j=1

(
1− γ

L(k j)

j

) (1+Tj)∑n
i=1 (1+Ti) , 1−

∏n

j=1

(
1− γ

U(k j)

j

) (1+Tj)∑n
i=1 (1+Ti)


(∏n

j=1
p
(k j)

j

). (22)
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Proof.
(1) When n = 1, obviously, it is right.
PUBL− PWA

(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
= ∪

[γL(k),γU(k) ]∈g(̃hS)

{
g−1

([
γL(k),γU(k)

])(
p(k)

)}
.

(2) When n = 2,

T1∑2
j=1 T j

L̃1(p) = ∪

[γ
L(k1)
1 ,γ

U(k1)
1 ]∈g(̃hS1 )

g−1


1− (

1− γL(k1)
1

) (1+T1)∑2
i=1 (1+Ti) , 1−

(
1− γU(k1)

1

) (1+T1)∑2
i=1 (1+Ti)


(p(k1)

1

),

T2∑2
j=1 T j

L̃2(p) = ∪

[γ
L(k2)
2 ,γ

U(k2)
2 ]∈g(̃hS2 )

g−1


1− (

1− γL(k2)
2

) (1+T2)∑2
i=1 (1+Ti) , 1−

(
1− γU(k2)

2

) (1+T2)∑2
i=1 (1+Ti)


(p(k2)

2

),

T1∑2
j=1 T j

L̃1(p) +
T2∑2

j=1 T j
L̃2(p) =

∪

[γ
L(kj)

j ,γ
U(kj)

j ]∈g(̃hSj )

g−1


1−∏2

j=1

(
1− γ

L(k j)

j

) (1+Tj)∑2
i=1 (1+Ti) , 1−

∏2
j=1

(
1− γ

U(k j)

j

) (1+Tj)∑2
i=1 (1+Ti)


(∏2

j=1 p
(k j)

j

),

Thus, Theorem 3 also is right when n = 2.
(3) Suppose n = t, then Theorem 3 is right, and we have the following:

PUBL− PWA
(̃
L1(p), L̃2(p), . . . , L̃t(p)

)
=

∪

[γ
L(kj)

j ,γ
U(kj)

j ]∈g(̃hSj )

g−1


1−∏t

j=1

(
1− γ

L(k j)

j

) (1+Tj)∑t
i=1 (1+Ti) , 1−

∏t
j=1

(
1− γ

U(k j)

j

) (1+Tj)∑t
i=1 (1+Ti)


(∏t

j=1 p
(k j)

j

).

Then, when n = t + 1,
PUBL− PWA

(̃
L1(p), L̃2(p), . . . , L̃t(p), L̃t+1(p)

)
=

∪

[γ
L(kj)

j ,γ
U(kj)

j ]∈g(̃hSj )

g−1


1−∏t+1

j=1

(
1− γ

L(k j)

j

) (1+Tj)∑t+1
i=1 (1+Ti) , 1−

∏t+1
j=1

(
1− γ

U(k j)

j

) (1+Tj)∑t+1
i=1 (1+Ti)


(∏t+1

j=1 p
(k j)

j

).

So, when n = k + 1, Theorem 3 is also correct.
According to steps (1), (2) and (3), we conclude that Theorem 3 is right for all values of n. �

Theorem 4. The PUBL-PWA operator holds the following properties:
(1) Commutativity: If

(̃
L∗1(p), L̃∗2(p), . . . , L̃∗n(p)

)
is any permutation of

(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
, then:

PUBL− PWA
(̃
L∗1(p), L̃∗2(p), . . . , L̃∗n(p)

)
= PUBL− PWA

(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
.

(2) Boundedness: The PUBL-PWA operator lies between the max and min operators:

L̃−(p) ≤ PUBL− PWA
(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
≤ L̃+(p).

Proof.

(1) Assume that
(̃
L∗1(p), L̃∗2(p), . . . , L̃∗n(p)

)
is any permutation of

(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
, then for each

L̃ j(p), there exists one and only one L̃∗t(p) = L̃ j(p) and vice versa. Additionally, T∗t = T j. Thus,
based on Theorem 3, we have the following:

PUBL− PWA
(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
=

n
⊕

j=1

(
T j̃L j(p)∑n

i=1 Ti

)
=

n
⊕

j=1

(
T∗t L̃∗t (p)∑n

i=1 Ti

)
= PUBL− PWA

(̃
L∗1(p), L̃∗2(p), . . . , L̃∗n(p)

)
.
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(2) Suppose L̃+(p) =
{〈
[sτ, sτ](1)

〉}
, L̃−(p) =

{〈
[s−τ, s−τ](0)

〉}
, then we have the following:

L̃−(p) ≤ PUBL− PWA
(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
≤ L̃+(p).

The proof is obvious, thus, details are omitted here. �

Theorem 5. If any prioritization relationship does not exist, then the PUBL-PWA operator reduces to the
PUBL-WA [51] operator:

PUBL−WA
(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
= ω1̃L1(p) ⊕ω2̃L2(p) ⊕ · · · ⊕ωñLn(p). (23)

where ω = (ω1,ω2, . . . ,ωn) is associated with L̃(p) = (̃L1(p), L̃2(p), . . . , L̃n(p)).

4.2. PUBL-IPOWA Operator

Definition 12. Given a collection of P-UBLTS numbers L̃ j(p) =
{̃
hs j(p j)

}
=

{〈̃
s
(k j)

j (p
(k j)

j )
〉 ∣∣∣∣∣̃s(k j)

j ∈ S j,

p(i)1 ≥ 0, k j = 1, . . . , L j,
∑L1

i=1 p(i)1 ≤ 1
}

which are prioritized such that L̃ j(p) ≺ L̃ j−1(p) and s̃
(k j)

j , p
(k j)

j denotes

the k jth uncertain balanced linguistic term and its probability, respectively, then the PUBL-IPOWA operator is
defined as follows:

PUBL− IPOWA
(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
=

n
⊕

j=1

(
w j̃Lσ( j)(p)

)
=

n
⊕

j=1

(
f
(∑ j

t=1 Tσ(t)∑n
j=1 T j

)
− f

(∑ j−1
t=1 Tσ(t)∑n

j=1 T j

))̃
Lσ( j)(p).

(24)

where σ(.) is a permutation function to generate σ( j− 1) ≥ σ( j). Here, σ( j− 1) ≥ σ( j) is conducted according
to an order-inducing vector, ε, that indicates ε j−1 ≥ ε j. T j =

∏ j−1
k=1 1− e

(̃
Lk(p)

)
, where e

(̃
L j(p)

)
is the entropy

of L̃ j(p). Here, Tσ(1) = 1, Tσ(0) = 0. f : [0, 1]→ [0, 1] is a basic unit interval monotonic (BUM) function
which satisfies f (0) = 0, f (1) = 1 and f (x) ≥ f (y) if x > y.

Based on the operations of P-UBLTSs, the PUBL-IPOWA operator can be rewritten as in Theorem 6.

Theorem 6. If we let L̃ j(p) =
{̃
hs j(p j)

}
=

{〈̃
s
(k j)

j (p
(k j)

j )
〉}

be a collection of P-UBLTS numbers, and

L̃σ( j)(p) =
{̃
hsσ( j)

(pσ( j))
}
=

{〈̃
s
(kσ( j))

σ( j)
(p

(kσ( j))

σ( j)
)
〉}

is the reordered collection of L̃ j(p)( j = 1, 2, . . . , n), then we

have the following:
PUBL− IPOWA

(̃
L1(p), L̃2(p), . . . , L̃n(p)

)
= ∪

[γ
L(kσ( j))

σ( j)
,γ

U(kσ( j))

σ( j)
]∈g(̃hSσ( j)

)

{
g−1

([
1−

∏n

j=1

(
1− γ

L(kσ( j))

σ( j)

)w j
, 1−

∏n

j=1

(
1− γ

U(kσ( j))

σ( j)

)w j])(∏n

j=1
p
(kσ( j))

σ( j)

)}
. (25)

where

w j = f


∑ j

i=1 Tσ(i)∑n
j=1 T j

− f


∑ j−1

i=1 Tσ(i)∑n
j=1 T j

. (26)

Proof. Similar to the proof of Theorem 4, Theorem 6 also can be proved by the mathematical induction
method, thus, detailed proof steps are omitted here. �
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Theorem 7. Given a collection of P-UBLTS numbers L̃ j(p) and the reordered collection of L̃σ( j)(p) by a certain

order-inducing vector, ε, if L̃σ( j)(p) = L̃ j(p) for all j = 1, 2, . . . , n, then the PUBL-IPOWA operator reduces to
the PUBL-PWA operator.

Additionally, in resemblance to the proof of Theorem 5, the PUBL-IPOWA operator also holds the
properties of commutativity and boundedness.

5. Approaches for MAGDM under Probabilistic Hybrid Linguistic Environments with Decision
Hesitancy and Attribute Prioritization Relationships

Aiming to address practical, complicated multiple attribute decision-making problems where
decision hesitancy and prioritization relationships exist among the evaluated attributes, in this section,
we employ the aforementioned expression tool of P-HLTS and its prioritized aggregation operators to
develop two effective MAGDM approaches.

Here, we let A =
{
A1, A2, . . . , A j, . . . , Am

}
be a set of alternatives, C = {C1, C2, . . . , Ci, . . . , Cn} be a

set of evaluative attributes. Here, D =
{
d1, d2, . . . , dq, . . . , dt

}
represents a set of decision makers (DMs)

or decision-making units (DMUs), η =
{
η1, η2, . . . , ηq, . . . , ηt

}
is the weighting vector for DMs or DMUs,

if necessary, ηq ≥ 0, and
∑t

q=1 ηq = 1. Suppose that Rq = (rq
i j)n×m

is the individual decision matrix
that contains the preferences given by the qth DM or DMU in the form of the probabilistic hybrid
linguistic term set (P-HLTS) (i.e., P-UUBLTS, P-CBLTS, or P-CUBLTS) regarding alternative A j, under

the attribute Ci, where rq
i j =

{
hq

si j
(pq

i j)
}
=

{〈
s

q(ki j)

i j (p
q(ki j)

i j )
〉}

and s̃
q(ki j)

i j ∈ Sq.

Focusing on a specific scenario in which attribute prioritization relationships can be determined
in advance and the relative importance of DMs or DMUs are not considered, we firstly construct the
following approach.

Approach I. MAGDM under P-HLTS environments with given prioritization relationships among
the evaluated attributes

Suppose that DMs or DMUs have already reached a prioritization relationships among attributes,
where C1 � C2 � . . .Ci � . . . � Cn indicates that attribute C j has a higher priority level than C j+1.

Step I-1. Transform each individual probabilistic hybrid linguistic decision matrix Rq = (rq
i j)n×m

(q = 1, 2, . . . , t) to R̃q = (̃rq
i j)n×m

in the form of probabilistic uncertain balanced linguistic term sets,

then, reorganize R̃q = (̃rq
i j)n×m

according to the prioritization relation C1 � C2 � . . .Ci � . . . � Cn.

Step I-2. Construct a synthesized group decision matrix R̃ = (̃ri j)n×m based on individual decision

matrices R̃q = (̃rq
i j)n×m

(q = 1, 2, . . . , t), where r̃i j =
{̃
hsi j(pi j)

}
=

{̃
s

ki j

i j (p
ki j

i j )
}
. All uncertain balanced

linguistic terms h̃q
si j
(q = 1, 2, . . . , t) are integrated into the uncertain balanced linguistic term set h̃si j .

Step I-3. Calculate the prioritized weights ωi j(i = 1, 2, . . . , n; j = 1, 2, . . . , m) associated with the
PUBL-PWA operator according to the following:

ωi j =

∑i
k=1 Tkj∑n
i=1 Ti j

−

∑i−1
k=1 Tkj∑n
i=1 Ti j

. (27)

Step I-4. Obtain the aggregate results r j( j = 1, 2, . . . , m) of each alternative by applying the
PUBL-PWA operator:

r̃ j = PUBL− PWA
(̃
r1 j, r̃2 j, . . . , r̃nj

)
= ∪

[γL
ij,γ

U
ij ]∈g(̃ri j)

{
g−1

([
1−

∏n

i=1

(
1− γL

ij

)ωi j , 1−
∏n

i=1

(
1− γU

ij

)ωi j
])(∏n

i=1
pi j

)}
. (28)

Step I -5. Calculate E
(̃
r j
)

and σ(̃r j) according to Equations (14) and (17).
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Step I-6. Based on the rules described in Definition 8, rank all the alternatives A j( j = 1, 2, . . . , m)

and select the most desirable one(s).
Next, regarding decision situations where the relative importance of DMs or DMUs is required

but cannot be obtained according to the extant knowledge, or a prioritization relationship does exist
among attributes yet cannot be determined based on the extant knowledge of DMs or DMUs, we
constructed another approach. During processing in in the second approach, by use of the proposed
distance measure for P-HLTS in Definition 9 we develop a method, as shown in Equation (30), that is
based on similarity degrees [9] between decision matrices to derive the unknown weight vectors for
DMs or DMUs. In essence, the similarity degree-based method allocates higher relative importance to
the decision maker or decision-making unit whose decision matrix holds a shorter overall distance
from others. To objectively determine the unknown group opinion on prioritization relationships
among evaluative attributes, we introduce a divergence measure-based method, as shown in Equations
(31) and (32) The divergence measure-based method is grounded in the fact that an attribute under
which alternative assessments hold higher divergence is more effective in distinguishing alternatives
than certain attributes that provide similar assessments for all alternatives. Therefore, in accordance
with the descending order of all divergence measures, we can derive the prioritization relationships
among the attributes. The proposed approach is detailed as follows:

Approach II. MAGDM under P-HLTS environments with unknown attribute prioritization
relationships and unknown weights for DMs or DMUs

Step II-1. Transform each individual probabilistic hybrid linguistic decision matrix Rq = (rq
i j)n×m

(q = 1, 2, . . . , t) to R̃q = (̃rq
i j)n×m

in the form of probabilistic uncertain balanced linguistic term sets.

Step II-2. Aggregate all individual decision matrix R̃q = (̃rq
i j)n×m

(q = 1, 2, . . . , t) into the

group decision matrix R̃ = (̃ri j)n×m
by use of the PUBL-WA operator according to r̃i j = PUBL −

WA
(̃
r1

i j, r̃2
i j, . . . , r̃t

i j

)
:

= ∪

[γ
L(q)
i j ,γU(q)

i j ]∈g(̃rq
i j)

{
g−1

([
1−

∏t

q=1

(
1− γL(q)

i j

)ηq

, 1−
∏t

q=1

(
1− γU(q)

i j

)ηq])(∏t

q=1
pq

i j

)}
. (29)

where η =
{
η1, η2, . . . , ηq, . . . , ηt

}
denotes the unknown weights for DMs or DMUs. From the viewpoint

of similarity degrees (SDs) between individual decision matrices [9], η can be objectively derived
according to the following:

ηq =
SDq∑t

q=1 SDq =

∑t
o=1,o,q

(
1−d(R̃

o
,R̃

q
)
)

∑t
q=1

∑t
o=1,o,q

(
1−d(R̃

o
,R̃

q
)
)

=

∑t
o=1,o,q

∑n
i=1

∑m
j=1

(
1− d(̃ro

i j, r̃q
i j)

)
∑t

q=1
∑t

o=1,o,q
∑n

i=1
∑m

j=1

(
1− d(̃ro

i j, r̃q
i j)

) . (30)

where d is the distance measure that we defined in Definition 9.
Step II-3. Derive the order inducing vector εi according to descending order of divergence

measures of the assessments under each attribute, where we denote the divergence measure by di:

di =
∑m

j=1

∑m

k=1,k, j
d(̃ri j, r̃ik). (31)

di =
di∑n

i=1 di
. (32)
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Then, according to the order inducing vector εi, we transform the group decision matrix R̃ =

(̃ri j)n×m
to the reordered group decision matrix R̃ = (̃rσ(i) j)n×m

.

Step II-4. Calculate prioritized levels T
σ(i) j(i = 1, 2, . . . , n; j = 1, 2, . . . , m) in the group decision

matrix R̃ = (̃rσ(i) j)n×m
, such that the following is true:

T
σ(i) j =

∏ j−1

k=1
1− e

(̃
rσ(i)k

)
=

(
1− e

(̃
rσ(i)( j−1)

))
T
σ(i)( j−1). (33)

T1 j = 1. (34)

Step II-5. Calculate the prioritized weights wi j(i = 1, 2, . . . , n; j = 1, 2, . . . , m) associated with the
PUBL-IPOWA operator, where the following is true:

wi j = f


∑ j

k=1 T
σ(i)k∑m

j=1 Ti j

− f


∑ j−1

k=1 T
σ(i)k∑m

j=1 Ti j

. (35)

Step II-6. Obtain the overall group aggregation results r̃i(i = 1, 2, . . . , n) of each alternative in the
group matrix by applying the PUBL-IPOWA operator, where the following is true:

r̃ j = PUBL− IPOWA
(̃
rσ(1) j, r̃σ(2) j, . . . , r̃σ(n) j

)
= ∪

[γL
σ(i) j

,γU
σ(i) j

]∈g(̃rσ(i) j)

{
g−1

([
1−

∏n

i=1

(
1− γL

σ(i) j

)wi j
, 1−

∏n

i=1

(
1− γU

σ(i) j

)wi j
])(∏n

i=1
p
σ(i) j

)}
. (36)

Step II-7. See Step I-5.
Step II-8. See Step I-6.
For more clarity, Figure 2 shows flowcharts of the proposed approaches.Symmetry 2020, 12, 235 17 of 33 
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e-government websites are not optimally designed to have good usability. Therefore, governments 
at different levels, such as the aforementioned Chinese provincial authorities, should adopt 
appropriate decision-making approaches to provide benchmark websites and share excellent 
experiences among their supervised institutions, so as to continuously improve overall excellence 
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6. Illustrative Application Study

6.1. Case Study on Governmental Website Usability Evaluation

Along with increasing complexity in their socioeconomic environments, the functionalities of
modern governments have diversified to a great extent, especially in developing countries, which
are full of socioeconomic dynamics. In order to deliver quality services to stakeholders and increase
organizational effectiveness and efficiency, governments at all levels in different areas are trying to
establish e-government strategies with the power of information and communication technologies [70].
For example, to guide urbanization rationally and effectively, the Chinese government has put forward
national strategies to advocate characteristic towns that combine the functionalities of characteristic
industry clusters, cities, communities, and culture and tourism. According to the strategic urbanization
system, authorities at the provincial level have been organized and assigned with responsibilities to
monitor and guide the development of local characteristic towns. Naturally, fostering and advancing the
development of e-governments becomes an imperative part of management tasks for these provincial
authorities. According to Baker [71], Clemmensen, and Katre [72], the existing literature has widely
argued that e-government efforts will be stifled if e-government websites are not optimally designed to
have good usability. Therefore, governments at different levels, such as the aforementioned Chinese
provincial authorities, should adopt appropriate decision-making approaches to provide benchmark
websites and share excellent experiences among their supervised institutions, so as to continuously
improve overall excellence levels in building e-governments. Basically, six attributes of accessibility,
information architecture, legitimacy, navigation, online services, and user-help and feedback are
commonly utilized to comprehensively evaluate the usability of websites [71]. Essentially, a group of
stakeholders should be involved during the process of evaluation, because a single decision maker
generally cannot comprehensively consider these six attributes. As seen, MAGDM approaches exhibit
intrinsic suitability in solving the complicated problems of comprehensive website usability evaluation.

Suppose that the administrative department in one of Chinese provincial authorities is rallying
three decision-making units, namely, users, website developers, and academia experts, in order to
determine the benchmarking alternative(s) from four websites Ai(i = 1, 2, 3, 4). The widely-used
six attributes, C j( j = 1, 2, 3, 4, 5, 6), for evaluating website usability are adopted here, including
accessibility (C1), information architecture (C2), legitimacy (C3), navigation (C4), online services (C5),
and user-help and feedback (C6). Here, we let D = {d1, d2, d3} represent the three decision-making
units and η =

{
η1, η2, η3

}
denote the weighting vectors for the three units if required, and ηq ≥ 0 and∑3

q=1 ηq = 1.
Due to the complexity in comprehensive evaluation and heterogeneity in cognitive models, we

use the decision-making units, D = {d1, d2, d3}, to decide whether or not to use P-CUBLTS, P-CBLTS
and P-UUBLTS, respectively, for expressing their assessments on the four websites Ai(i = 1, 2, 3, 4).
Here, we use Rq = (rq

i j)6×4
(q = 1, 2, 3) to denote three individual decision matrices. The linguistic

variables of R2 in the form of P-CBLTSs have been chosen from the balanced linguistic term set
S =

{
sα|α ∈ [−8, 8]

}
with 16 granularities, and the linguistic variables of R3 in the form of P-UUBLTSs

are from the unbalanced linguistic term set, S1 = {N, L, AL, M, AH, H, QH, VH, AT, T}, and the linguistic
variables of R1 in the form of P-CUBLTS have been selected from the unbalanced linguistic term
set S2 = {N, AN, VL, QL, L, AL, M, QM, H, VH, T}. For more clarity, we demonstrate the relationship
between the unbalanced linguistic term sets S1 and S2 in Figure 3. Assessments of the three decision
units have been collected in Tables 1–3.
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Table 1. Decision matrix R1 in the form of the probabilistic comparative unbalanced linguistic term set
(P-CUBLTS).

A1 A2 A3 A4

C1
{<between QL and M, 0.2>,

<at least VH, 0.7>}
{<between AL and

QM, 0.6>} {<between L and QM, 0.9>} {<between QL and QM, 1>}

C2
{<between AN and QL, 0.4>,
<between M and H, 0.6>}

{<between VL and L,
0.7>, < between AL

and H, 0.2>}
{<between M and H, 0.8>} {<between M and QM, 0.3>, <

between H and VH, 0.5>}

C3
{<between AL and M, 0.2>,

<at least VH, 0.8>}
{<between QM and

VH, 0.7>}
{<between L and AL, 0.1>, <at

least VH, 0.9>} {<between M and QM, 0.6>}

C4 {< at least QM, 0.9>}
{<between QM and H,

0.3>,
< at least VH, 0.3>}

{< at least H, 0.7>} {<between VL and L, 0.7>,
<between M and QM, 0.3>}

C5 {<between QL and M, 0.6>} {< at least H, 0.8>} {<between AL and VH, 0.9>} {<between VL and QL, 0.4>, <
between AL and M, 0.5>}

C6
{<between VL and QL, 0.6>,

< at least H, 0.2>}
{<between H and VH,

1>}
{<between AN and VL, 0.5>, <

between QM and H, 0.5>} {< at least VH, 0.8>}

Table 2. Decision matrix R2 in the form of a probabilistic comparative balanced linguistic term set
(P-CBLTS).

A1 A2 A3 A4

C1 {greater than s5, 0.8}
{<between s−2 and s1,
0.1>, <greater than s4,

0.8>}

{<between s−4 and s1, 0.7>,
<between s3 and s5, 0.2>} {<greater than s3, 0.8>}

C2 {between s2 and s5, 0.8} {at least s3, 0.5} {greater than s3, 0.7} {<between s1 and s2, 0.2>,
<greater than s3, 0.7>}

C3 {between s−4 and s−1, 0.9} {between s−2 and s0,
0.9} {at least s6, 0.6} {<between s0 and s3, 0.5>,

<between s4 and s5, 0.4>}

C4
{<between s−1 and s1, 0.6>,
<between s2 and s3, 0.4>}

{between s−3 and s2,
0.9}

{<between s−6 and s−4, 0.5>,
<between s1 and s5, 0.5>} {at least s5, 0.9}

C5 {between s4 and s5, 0.4} {between s−3 and s−1,
0.6} {at least s2, 0.9} {between s0 and s4, 0.8}

C6
{<between s0 and s2, 0.8>,

<great than s3, 0.1>}

{<between s−4 and s−2,
0.4>, <great than s4,

0.5>}
{between s4 and s7, 0.6} {between s−7 and s−3, 0.9}
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Table 3. Decision matrix R3 in the form of probabilistic uncertain unbalanced linguistic term set
(P-UUBLTS).

A1 A2 A3 A4

C1 {<[H, AT], 0.9>} {<[AL, H], 0.8>} {<[AH, QH], 0.7>} {<[AL, AH], 0.5>,
<[H, QH], 0.5>}

C2
{<[M, H], 0.9>,
<[VH, T], 0.1>} {<[AL, H], 0.9>} {<[L, M], 0.6>,

<[H, QH], 0.3>} {<[QH, AT], 0.6>}

C3 {<[M, QH], 0.9>} {<[L, M], 0.5>,
<[AT, T], 0.4>} {<[VH, AT], 0.7>} {<[H, QH], 0.2>,

<[VH, T], 0.8>}

C4 {<[L, AH], 0.7>} {<[L, M], 0.6>,
<[VH, T], 0.3>}

{<[M, AH], 0.3>,
<[AT, T], 0.6>} {<[M, AT], 0.9>}

C5 {<[L, AH], 0.8>} {<[AH, H], 0.3>,
<[QH, VH], 0.5>} {<[QH, AT], 0.6>} {<[M, H], 0.7>,

<[AT, T], 0.2>}

C6
{<[AL, M], 0.7>,
<[VH, AT], 0.2>} {<[QH, T], 0.9>} {<[H, VH], 0.5>} {<[AL, VH], 0.9>}

Case I: Suppose that all three decision-making units have reached a consensus on the prioritization
relationships among the evaluative attributes, that is C3 � C2 � C5 � C6 � C4 � C1, we here firstly
apply the first proposed approach to determine the most desirable alternative website(s). The steps for
this are organized as follows:

Step I-1. Transform individual decision matrix R1 in the form of P-CUBLTS, R2 in the form of
P-CBLTS, and R3 in the form of P-UUBLTS into three decision matrices of R̃1, R̃2 and R̃3 in the form of
probabilistic uncertain balanced linguistic term sets, as shown in Tables 4–6.

Table 4. Transformed decision matrix R̃1.

A1 A2 A3 A4

C3
{<[s−2,s0], 0.2>,
<[s6,s8], 0.8>} {<[s1,s6], 0.7>} {<[s−4,s−2], 0.1>,

<[s6,s8], 0.9>}
{<[s0,s1], 0.6>}

C2
{<[s−7,s−5], 0.4>,
<[s0,s4], 0.6>}

{<[s−6,s−4], 0.7>,
<[s−2,s4], 0.2>} {<[s0,s4], 0.8>} {<[s0,s1], 0.3>,

<[s4,s6], 0.5>}

C5 {<[s−5,s0], 0.6>} {<[s4,s8], 0.8>} {<[s−2,s6], 0.9>} {<[s−6,s−5], 0.4>, <[s−2,s0],
0.5>}

C6
{<[s−6,s−5], 0.6>, <[s4,s8],

0.2>} {<[s4,s6], 1>} {< [s−7,s−6], 0.5>, < [s1,s4],
0.5>} {<[s6,s8], 0.8>}

C4 {<[s1,s8], 0.9>} {<[s1,s4], 0.3>, <[s6,s8],
0.3>}

{<[s4,s8], 0.7>} {<[s−6,s−4], 0.7>, <[s0,s1], 0.3>}

C1
{<[s−5,s0], 0.2>, <[s6,s8],

0.7>} {<[s−2,s1], 0.6>} {<[s−4,s1], 0.9>} {<[s−5,s1], 1>}

Table 5. Transformed decision matrix R̃2.

A1 A2 A3 A4

C3 {[s−4,s−1], 0.9} {[s−4,s0], 0.9} {[s6,s8], 0.6} {<[s0,s3], 0.5>, <[s4,s5], 0.4>}

C2 {[s2,s5], 0.8} {[s3,s8], 0.5} {[s4,s8], 0.7} {<[s1,s2], 0.2>, <[s4,s6], 0.7>}

C5 {[s4,s5], 0.4} {[s−3,s−1], 0.6} {[s2,s8], 0.9} {[s0,s4], 0.8}

C6
{<[s0,s2], 0.8>,
<[s4,s8], 0.1>}

{<[s−4,s−2], 0.4>,
<[s5,s8], 0.5>} {[s4,s7], 0.6} {[s−7,s−3], 0.9}

C4
{<[s−1,s1], 0.6>,
<[s2,s3], 0.4>} {[s−3,s2], 0.9} {<[s−6,s−4], 0.5>,

<[s1,s5], 0.5>} {[s5,s8], 0.9}

C1 {[s6,s8], 0.8} {<[s−2,s1], 0.1>,
<[s5,s8], 0.8>}

{<[s−4,s1], 0.7>,
<[s3,s5], 0.2>} {<[s4,s8], 0.8>}
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Table 6. Transformed decision matrix R̃3.

A1 A2 A3 A4

C3 {<[s0,s5], 0.9>} {<[s−4,s0], 0.5>,
<[s7,s8], 0.4>} {<[s6,s7], 0.7>} {<[s4,s5], 0.2>,

<[s6,s8], 0.8>}

C2
{<[s0,s4], 0.9>,
<[s6,s8], 0.1>} {<[s−2,s4], 0.9>} {<[s−4,s0], 0.6>,

<[s4,s5], 0.3>} {<[s5,s7], 0.6>}

C5 {<[s−4,s2], 0.8>} {<[s2,s4], 0.3>,
<[s5,s6], 0.5>} {<[s5,s7], 0.6>} {<[s0,s4], 0.7>,

<[s7,s8], 0.2>}

C6 {<[s−2,s0], 0.7>, <[s6,s7], 0.2>} {<[s5,s8], 0.9>} {<[s4,s6], 0.5>} {<[s−2,s6], 0.9>}

C4 {<[s−4,s2], 0.7>} {<[s−4,s0], 0.6>,
<[s6,s8], 0.3>}

{<[s0,s2], 0.3>,
<[s7,s8], 0.6>} {<[s0,s7], 0.9>}

C1 {<[s4,s7], 0.9>} {<[s−2,s4], 0.8>} {<[s2,s5], 0.7>} {<[s−2,s2], 0.5>,
<[s4,s5], 0.5>}

Step I-2. Based on the three individual decision matrices of R̃1, R̃2 and R̃3, we then construct a
synthesized group decision matrix R̃ = (̃ri j)6×4, as shown in Table 7.

Table 7. Group synthesized decision matrix R̃.

A1 A2 A3 A4

C3

{<[s−2,s0], 0.0714>,
<[s6,s8], 0.2857>,

<[s−4,s−1], 0.3214>,
<[s0,s5], 0.3214>}

{< [s1,s6], 0.28>,
<[s−4,s0], 0.56>,
<[s7,s8], 0.16>}

{<[s−4,s−2], 0.0435>,
<[s6,s8], 0.6522>,
<[s6,s7], 0.3043>}

{<[s0,s1], 0.24>},
<[s0,s3], 0.2>,

<[s4,s5], 0.24>},
<[s6,s8], 0.32>}

C2

{<[s−7,s−5], 0.1429>,
<[s0,s4], 0.5357>,
<[s2,s5], 0.2857>,
<[s6,s8], 0.0357>}

{<[s−6,s−4], 0.3043>,
< [s−2,s4], 0.4783>,
<[s3,s8], 0.2174>}

{<[s0,s4], 0.3333>,
<[s4,s8], 0.2917}>,
<[s−4,s0], 0.25>,
<[s4,s5], 0.125>}

{<[s0,s1], 0.1304>,
<[s1,s2], 0.087>,
<[s4,s6], 0.5217>,
<[s5,s7], 0.2609>}

C5

{<[s−5,s0], 0.3333>,
<[s4,s5], 0.2222>,

<[s−4,s2], 0.4444>}

{<[s4,s8], 0.3636>,
<[s−3,s−1], 0.2727>
<[s2,s4], 0.1364>,
<[s5,s6], 0.2273>}

{<[s−2,s6], 0.375>,
<[s2,s8], 0.375>,
<[s5,s7], 0.25>}

{<[s−6,s−5], 0.1538>,
< [s−2,s0], 0.1923>,
<[s0,s4], 0.5769>,
<[s7,s8], 0.0769>}

C6

{<[s−6,s−5], 0.2308>,
<[s4,s8], 0.1154>,
<[s0,s2], 0.3077>,
<[s−2,s0], 0.2692>,
<[s6,s7], 0.0769>}

{<[s4,s6], 0.3571>,
<[s−4,s−2], 0.1429>,

<[s5,s8], 0.5>}

{<[s−7,s−6], 0.2381>,
<[s1,s4], 0.2381>,
<[s4,s7], 0.2857>,
<[s4,s6], 0.2381>}

{<[s6,s8], 0.3077>,
<[s−7,s−3], 0.3462>,
<[s−2,s6], 0.3462>}

C4

{<[s1,s8], 0.3462>,
<[s−1,s1], 0.2308>,
<[s2,s3], 0.1538>,

<[s−4,s2], 0.2692>}

{<[s1,s4], 0.125>,
<[s6,s8], 0.25>,

<[s−3,s2], 0.375>,
<[s−4,s0], 0.25>}

{<[s4,s8], 0.2692>,
<[s−6,s−4], 0.1923>,
<[s1,s5], 0.1923>,
<[s0,s2], 0.1154>,
<[s7,s8], 0.2308>}

{<[s−6,s−4], 0.25>,
<[s0,s1], 0.1071>,
<[s5,s8], 0.3214>,
<[s0,s7], 0.3214>}

C1

{<[s−5,s0], 0.0769>,
<[s6,s8], 0.5769>,
<[s4,s7], 0.3462>}

{<[s−2,s1], 0.3043>,
<[s5,s8], 0.3478>,

<[s−2,s4], 0.3478>}

{<[s−4,s1], 0.64>,
<[s3,s5], 0.08>,
<[s2,s5], 0.28>}

{<[s−5,s1], 0.3571>,
<[s4,s8], 0.2857>,
<[s−2,s2], 0.1786>,
<[s4,s5], 0.1786>}

Step I-3. Calculate the prioritized weights ωi j(i = 1, 2, . . . , 6; j = 1, 2, 3, 4) using Equation (27),
where we get the following:

w1 = (0.88653, 0.1019, 0.01012, 0.00134, 0.0001, 0.00001),
w2 = (0.8581, 0.118, 0.02041, 0.0028, 0.00064, 0.00007),
w3 = (0.76016, 0.21138, 0.02298, 0.00467, 0.000716, 0.00009),
w4 = (0.8814, 0.103013, 0.014066, 0.001217, 0.000267, 0.00004).
Step I-4. Obtain the overall group aggregation results of each alternative r̃ j( j = 1, 2, 3, 4) by

Equation (28). For brevity, the details of r̃ j( j = 1, 2, 3, 4) are omitted here.
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Step I-5. Calculate E(̃r j) according to Equations (14)–(16), where we have the following:
E(̃r1) = 0.7311, E(̃r2) = 0.7109, E(̃r3) = 0.9005, E(̃r4) = 0.8141.
Step I-6. Rank the alternatives according to descending order of E(̃r j), where we then have

the following:
A2 ≺ A1 ≺ A4 ≺ A3.

Therefore, the best alternative website should be A3.
Case II: Suppose that the decision-making units have reached a consensus that there is a

prioritization relationship among the evaluative attributes, but they cannot explicitly determine
the prioritization relationships. In this case, the administrative department advocates that the
relative importance of the decision-making units should be differentiated objectively according to
their given assessments. Then, we may apply the second approach to solve the above complicated
decision-making problem.

Step II-1. See Step I-1.
Step II-2. Determine the weighting vector for the three decision-making units according to

Equation (30): η = {0.3245, 0.3302, 0.3453}. Then, based on the PHUBL-WA operator and the individual
matrices R̃q = (̃rq

i j)6×4
(q = 1, 2, 3) in the form of probabilistic uncertain balanced linguistic term sets,

we obtain the group decision matrix R̃ = (̃ri j)6×4
, as shown in Table 8.

Table 8. Group decision matrix R̃

A1 A2 A3 A4

C1
{<[s3.336,s8], 0.144>,
<[s5.459,s8], 0.504>}

{<[s−2,s2.23], 0.048>,
<[s1.28,s8], 0.384>}

{<[s−1.446,s2.776], 0.441>,
<[s0.926,s4.05], 0.126>}

{<[s−0.046,s8], 0.4>,
<[s2.136,s8], 0.4>}

C2

{<[s−0.921,s2.668], 0.288>,
<[s2.472,s8], 0.032>,

<[s0.725,s4.362], 0.432>,
<[s3.492,s8], 0.048>}

{<[s−0.872,s8], 0.315>,
< [s0.046,s8], 0.09>}

{<[s0.68,s8], 0.336>,
<[s2.99,s8], 0.168}>}

{<[s2.544,s4.6], 0.036>,
<[s3.465,s5.636], 0.126>,
<[s3.643,s5.737], 0.06>,
<[s4.378,s6.426], 0.21>}

C3
{<[s−1.833,s2.072], 0.162>,

<[s2.167,s8], 0.648>}

{< [s−2.074,s2.898],
0.315>,

<[s3.729,s8], 0.252>}

{<[s4.423,s8], 0.042>,
<[s6,s8], 0.378>}

{<[s1.703,..], 0.06>},
<[s3.043,s8], 0.24>,

<[s2.991,s4.05], 0.048>},
<[s4.057,s8], 0.192>}

C4
{<[s−1.161,s8], 0.378>,
<[s−0.013,s8], 0.252>}

{<[s−1.789,s2.19], 0.162>,
<[s2.727,s8], 0.081>,
<[s1.48,s8], 0.162>,

<[s4.488,s8], 0.081>}

{<[s0.315,s8], 0.105>,
<[s4.252,s8], 0.21>,
<[s1.887,s8], 0.105>,
<[s5.019,s8], 0.21>}

{<[s1.061,s8], 0.567>,
<[s2.213,s8], 0.243>}.

C5 {<[s−0.5687,s2.76], 0.192>} {<[s1.574,s8], 0.144>,
<[s2.942,s8], 0.24>} {<[s2.426,s8], 0.486>}

{<[s−1.593,s2.136],
0.224>,

< [s3.321,s8], 0.064>,
<[s−0.6,s2.991], 0.28>,

<[s3.8,s8], 0.08>}

C6

{<[s−2.361,s−0.516], 0.336>,
<[s2.056,s3.846], 0.096>,
<[s−0.242,s8], 0.042>,
<[s3.272,s8], 0.012>,
<[s1.1,s8], 0.112>,

<[s4.042,s8], 0.032>,
<[s2.511,s8], 0.014>,
<[s4.851,s8], 0.004>}

{<[s2.794,s8], 0.36>,
<[s4.706,s8], 0.45>}

{<[s1.857,s5.009], 0.15>,
<[s3.203,s6.008], 0.15>} {<[s1.218,s8], 0.648>}

Step II-3. By calculating the divergence measure di according to Equations (31) and (32), we
derive an order-inducing vector ε in accordance with the descending order of di, as listed in Table 9.

Then, we can transform R̃ = (̃ri j)6×4
to the reordered group decision matrix R̃ = (̃rσ(i) j)6×4

, according
to the order-inducing vector ε.
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Table 9. Distance values and the corresponding order-inducing vector.

Attributes di ε

C1 1.028 3

C2 0.64478 6

C3 1.115 2

C4 0.8592 5

C5 0.9954 4

C6 1.6372 1

Step II-4. Calculate prioritized levels by Equations (33) and (34), where:
T11 = 1, T21 = 0.028266, T31 = 0.007106, T41 = 0.001869, T51 = 0.000075, T61 = 0.000008;
T12=1, T22 = 0.30012, T32 = 0.04241, T42 = 0.00499, T52 = 0.00062, T62 = 0.00004;
T13 = 1, T23 = 0.07536, T33 = 0.01369, T43 = 0.00106, T53 = 0.00034, T63 = 0.00004;
T14 = 1, T24 = 0.37335, T34 = 0.032697, T44 = 0.00743, T54 = 0.00041, T64 = 0.000097;
Step II-5. Suppose f (x) = x, then, according to Equation (35), we obtain the attributes’ weighting

vectors as follows:
w1 = (0.96402, 0.02725, 0.00685, 0.0018, 0.000072, 0.000008),
w2 = (0.74174, 0.22261, 0.03146, 0.0037, 0.00046, 0.00003),
w3 = (0.91701, 0.06911, 0.01256, 0.00098, 0.00031, 0.00003),
w4 = (0.70722, 0.26404, 0.02312, 0.00526, 0.00029, 0.00007).
Step II-6. Obtain overall group aggregation results r̃ j( j = 1, 2, 3, 4) by Equation (36). Please note

that details about r̃ j( j = 1, 2, 3, 4) are omitted here for brevity.
Step II-7. Calculate E(̃r j) according to Equations (14)–(16), and we have:
E(̃r1) = 0.7415, E(̃r2) = 0.8525, E(̃r3) = 0.839, E(̃r4) = 0.8073.
Step II-8. Rank the alternatives according to descending order of E(̃r j):

A1 ≺ A4 ≺ A3 ≺ A2.

Therefore, the best alternative is A2.

6.2. Comparative Studies

6.2.1. Comparative Experiments with Various Configurations of η and ε

To further verify our approaches, in this section, we conduct more experiments on the two
approaches with different configurations of the weighting vector, η, for the DMUs and the attributes’
prioritization relationships, ε. The experimental data and the obtained ranking results are presented in
Table 10.

Table 10. Comparative experiments on the proposed approaches with various configurations of η and
ε.

Approach Experiment η ε Ranking Results

Approach I
I-1 Not considered w = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6} A1 ≺ A4 ≺ A2 ≺ A3

I-2 Not considered ε = (3, 2, 5, 6, 4, 1) given directly A2 ≺ A1 ≺ A4 ≺ A3

I-3 Not considered ε = (3, 1, 6, 2, 5, 4) derived objectively A2 ≺ A1 ≺ A4 ≺ A3

Approach II
II-1 {1/3, 1/3, 1/3} w = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6} A1 ≺ A2 ≺ A4 ≺ A3

II-2 {1/3, 1/3, 1/3} ε = (3, 6, 2, 5, 4, 1) derived objectively A1 ≺ A4 ≺ A3 ≺ A2

II-3 {0.3245, 0.3302, 0.3453} ε = (3, 6, 2, 5, 4, 1) derived objectively A1 ≺ A4 ≺ A3 ≺ A2
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According to experiments I-1 and II-1, where both approaches I and II did not emphasize the
relative importance of DMUs and the relative importance of the evaluative attributes, approaches I
and II both identified A3 as the best website and A1 as the worst website. The ranking results show
that both approaches are effective for tackling complicated problems that require assessments in the
form of P-HLTS and hold no specific information on η and ε.

In experiments I-2 and I-3, approach I used with two configurations of ε: (i) ε = (3, 2, 5, 6, 4, 1),
given directly by DMUs based on their consensus opinion, and (ii) ε = (3, 1, 6, 2, 5, 4), derived by the
divergence measure-based method in Equations (31) and (32). Ranking results in Table 10 showed the
same permutation A2 ≺ A1 ≺ A4 ≺ A3 of the four alternative websites. In comparison with the result
from experiment I-1 with approach I, the alternative A2 value became the worst alternative in response
to the attributes’ prioritization relationships. Regarding the experiments for approach II in which the
weight vectors of DMUs were explicitly incorporated, different from II-1, experiments II-2 and II-3
both proceeded with the attributes’ prioritization relationships, i.e., ε = (3, 6, 2, 5, 4, 1), which was
derived by the divergence measure-based method. Under the influence of the attributes’ prioritization
relations ε, the alternative A2 was recognized as the best website. As shown in Table 10, because
η = {0.3245, 0.3302, 0.3453}, derived in experiment II-3, has tiny differences from η = {1/3, 1/3, 1/3},
adopted in experiment II-2, experiment II-3 outputs the same ranking order A1 ≺ A4 ≺ A3 ≺ A2

as in experiment II-2. As can be seen from the above observation and analysis, decision makers’
opinions on attributes’ prioritization relationships substantially influences the decision results. Both
approaches manage to accommodate the important opinions in their decision-making processes and
reflect influences in ranking results accordingly. Generally, our proposed approaches present effective
methodologies for MAGDM problems in P-HLTS environments where weighting vectors for DMs or
DMUs and attribute prioritization relationships are known or explicitly unknown.

6.2.2. Comparative Experiments with Different Approaches

Consequently, because the various expression forms included in our proposed probabilistic hybrid
linguistic term set (P-HLTS) can be transformed into the form of a probabilistic uncertain linguistic
set [51] and both references [51], and since our research has been conducted to study MADM in
group decision-making settings, we used the original synthesized group decision-making matrix
in [51] for comparative experiments. The weight η for decision makers is thus not considered. Then,
we configured our first proposed approach as shown in the experiment I-3 in Table 10, that is, we
objectively calculate the order-inducing vector ε based on the synthesized group decision matrix
adopted in [51], then compare the corresponding ranking results as collected in Table 11.

Table 11. Comparative experiments with different approaches.

Approaches η ε Ranking Results

Extended TOPSIS [51] Not considered Not considered A3 ≺ A1 ≺ A4 ≺ A2

Adapted Approach I
(This paper) Not considered ε = (1, 2, 4, 5, 3) derived objectively A1 ≺ A2 ≺ A3 ≺ A4

Prioritized TOPSIS
(Constructed for comparison) Not considered ε = (1, 2, 4, 5, 3) derived objectively A1 ≺ A3 ≺ A2 ≺ A4

In light of the comparative method in [51], which was constructed based on classic TOPSIS
method, we here denote their method as extended TOPSIS in Table 11. Please note that our adapted
first approach takes the synthesized group decision matrix, thereby using objectively derived ε to
guide the decision-making process, thus, the adapted first approach can be seen as a special case of our
second proposed approach. Furthermore, to further verify the ranking results of our approach, we also
constructed another approach to solve the same problem, named prioritized TOPSIS in Table 11, by
integrating the TOPSIS framework and the ε-guided attribute weights.
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As seen from Table 11, after introducing the ε-guided priority relationships among the evaluative
attributes, both the adapted approach I and prioritized TOPSIS approach output different ranking
results from the results generated by the extended TOPSIS [51]. Both the extended TOPSIS and
the prioritized TOPSIS approaches inherit the robust decision-making process of the classic TOPSIS
method, but the difference lies in that the prioritized TOPSIS approach integrates ε-guided priority
relationships among attributes and generates the ranking result of A1 ≺ A3 ≺ A2 ≺ A4. Additionally, as
can be seen via comparison of the result obtained by our proposed approach, both adapted approach I
and prioritized TOPSIS indicate the best alternative as A4 and the worst alternative as A1. Therefore,
generally speaking, for situations where attributes’ prioritization relationships are explicitly unknown,
our proposed approaches provide a way of objectively determining ε-guided priority relationships
and effectively integrate priority relationships in MAGDM under P-HLTS environments in order to
derive rational decision results.

6.3. Sensitivity Analysis

When tackling complicated multiple attribute decision-making problems where prioritization
relationships exist among evaluative attributes, Yager [52] and Yager [53] have presented effective ways
of deriving decision-making results by utilizing prioritized aggregation operators. During information
aggregation, priority relationships among attributes and scope relationships among attributes generally
should be taken into consideration [52,53]. Normalized priority importance weights for attributes
can be calculated according to specified priority relationships. For decision-making scenarios of high
complexity, where no concrete vectors exist for describing the scope of relationships among attributes,
Yager [52,53,73] suggested employing f (x) = xn as basic, unit interval, and monotonic (BUM) functions
to express the implicit scope relationships among the attributes. To the best of our knowledge, in
the literature, f (x) = x [52,53,58,73,74] and f (x) = x2 [52,53,73,74] have been usually suggested for
multiple attribute decision-making. Therefore, in this subsection, to examine the effects of various
BUM functions on the decision results of our proposed approaches, we have carried out sensitivity
analysis through the use of the functions f (x) = xn, n = (1/3, 1/2, 1, 2, 3) and the results are presented
in Table 12.

Table 12. Ranking results by approaches I and II with various basic, unit interval, and monotonic
(BUM) functions.

Approaches Configurations BUM Functions Ranking Results

Approach I η not considered
ε = (3, 1, 6, 2, 5, 4) derived objectively

f (x) = x1/3 A1 ≺ A2 ≺ A4 ≺ A3

f (x) = x1/2 A1 ≺ A2 ≺ A4 ≺ A3

f (x) = x1 A2 ≺ A1 ≺ A4 ≺ A3

f (x) = x2 A2 ≺ A1 ≺ A4 ≺ A3

f (x) = x3 A2 ≺ A1 ≺ A4 ≺ A3

Approach II η = {0.3245, 0.3302, 0.3453}
ε = (3, 6, 2, 5, 4, 1) derived objectively

f (x) = x1/3 A1 ≺ A4 ≺ A3 ≺ A2

f (x) = x1/2 A1 ≺ A4 ≺ A3 ≺ A2

f (x) = x1 A1 ≺ A4 ≺ A3 ≺ A2

f (x) = x2 A1 ≺ A4 ≺ A3 ≺ A2

f (x) = x3 A1 ≺ A4 ≺ A2 ≺ A3

As shown in Table 12, we have carried out experiments on approach I (on the group synthesized
decision matrix in Table 7) and approach II (on the aggregated group decision matrix in Table 8) to
examine effects of five BUM functions on ranking results, respectively. Regarding the experiments
on approach I, ranking results by all five functions indicate that the alternative A3 is the best one.
Here, f (x) = x1, f (x) = x2 and f (x) = x3 all obtain exactly the same ranking result, while the other
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two functions yield different permutations of A1 and A2. In regard to experiments on approach
II, f (x) = x1/3, f (x) = x1/2, f (x) = x1, and f (x) = x2 all obtain exactly the same ranking result,
while f (x) = x3 yields different permutations of A2 and A3. As can be observed, f (x) = x1 and
f (x) = x2 exhibit consistent ranking results in the above experiments, which is in accordance with
the suggestions in the literature. Therefore, when applying our proposed approaches to complicated
decision-making scenarios where prioritization relationships exist among evaluative attributes but no
concrete descriptions of scope relationships among attributes exist, f (x) = x1 or f (x) = x2 is suggested.
In addition, it is worth mentioning that more precise BUM functions should be constructed if specific
vectors exist for describing scope relationships among attributes, such as the piecewise linear functions
suggested by Torra [75] and Torra and Narukawa [76].

6.4. Further Discussion: Vector Optimization Based Approach to Solving Website Usability Evaluation with
Priority Attributes

During the preceding parts, we have developed and verified two MAGDM approaches based on
DM assessments of comprehensively evaluated website usability in accordance with governmental
design requirements, which is usually arranged as a typical task of government departments in China.

However, from the systemic view [77] of the operational management of websites, technical
observations and empirical studies generally can identify a set of technical parameters, X =

{X1, X2, . . . , Xn}, that are closely associated with the system characteristics regarding website usability
(denoted as the aforementioned six attributes C = {C1, C2, C3, C4, C5, C6}). Due to complexity and
uncertainty in practical scenarios, the values of some parts of parameters X and attributes C usually have
to be expressed in uncertain forms, including linguistic variables and probabilistic hybrid linguistic
term sets, etc. Especially, similar to the description in the preceding case study, priority relationships
also will exist among the attributes as guided by specific operational management arrangements.
Additionally, the task of this type of website usability evaluation presents problems regarding the
priority attributes which are used to make the best decision (optimal X) with the collected data and
given guiding priority relationships among attributes.

More specifically, a technical system’s (e-governmental website) usability function is defined by
the vector of parameters X = {X1, X2, . . . , Xn}. Operation of the technical system is determined by six
characteristics (six attributes C = {C1, C2, C3, C4, C5, C6} in the above case), the values of which are
recognized as being associated with the vector of parameters X: C(X) =

{
C j(X), j = 1, 2, 3, 4, 5, 6

}
.

The values of the parameters and characteristics of the technical system are shown in Table 13.

Table 13. Collected values of the parameters and characteristics of the technical system.

Parameters Characteristics

X1 X2 · · · Xn
C1(X)
→ max

C2(X)
→ max

C3(X)
→ max

C4(X)
→ max

C5(X)
→ max

C6(X)
→ max

x11 x12 · · · x1n c11 c12 c13 c14 c15 c16

x21 x22 · · · x2n c21 c22 c23 c24 c25 c26

...
... · · ·

...
...

... ...
... ...

...

xm1 xm2 · · · xmn cm1 cm2 cm3 cm4 cm5 cm6

In the light of Mashunin and Mashunin [78], the above website usability evaluation problem can
be constructed and successfully solved as a type of vector problem of mathematical programming, and
its solution steps can be explained in a general form as in the following approach.

Approach III. Vector optimization-based [78] decision-making steps in a general form for website
usability evaluation
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Step III-1. Collect initial data of parameters X = {X1, X2, . . . , Xn} and six characteristics C =

{C1, C2, C3, C4, C5, C6}. If these were originally obtained in various forms of uncertain expressions,
utilize appropriate transformative methods (such as the mapping function [30] for linguistic scales or
the score function [51] for P-HLTS) to get the numerical values of these parameters and characteristics,
as organized in Table 13. Determine constraints for both parameters and possible functional attributes.
In the decision taken, it is desirable to obtain the values of all characteristics such that they are as high
as possible (i.e., at a maximum).

Step III-2. Utilize regression analysis methods, such that the discrete data sets of C1(X), C2(X),
C3(X), C4(X), C5(X), and C6(X) are respectively converted into six functions of f1(X), f2(X), f3(X),
f4(X), f5(X), and f6(X). These six functions are then used as attributes in the vector problem
of mathematical programming [78]: f1(X)→ max, f2(X)→ max, f3(X)→ max, f4(X)→ max,
f5(X)→ max, and f6(X)→ max.

Step III-3. Solve the above vector problem of mathematical programming with equivalent
attributes [79].

Step III-4. According to specific operational management arrangements, decision makers decide
to choose priority attributes and determine the numerical value of the corresponding priority attributes.

Step III-5. With the given attribute priority, Mashunin and Mashunin’s [78] methods are used to
obtain the optimal parameter vector Xoo within the assigned error range.

As pointed by Mashunin and Mashunin [78], the above approach of optimal decision-making with
an assigned attribute priority is based on the axioms with the use of the normalization of attributes
and the max-min principle, and the accuracy of choosing such an optimal parameter vector depends
on a predetermined error range. Regarding the specific implementation of the vector optimization
methods, of which the third approach presented here depends on, one can refer to references [78,79]
for great insight in this regard. After the acceptable optimal vector Xoo is obtained and the optimal
parameters are further analyzed according to concrete scenarios, managerial suggestions for operational
improvements thus can be deduced more reasonably.

7. Conclusions

Aiming to deal with ill-structured, complicated problems under linguistic MADM scenarios,
we have introduced a more comprehensive expression tool for P-HLTSs to depict decision hesitancy
concerning possible linguistic labels and the probabilistic preferences on those linguistic labels.
P-HLTSs enhance classical probabilistic linguistic term sets through encompassing a wide range of
linguistic expression forms when answering diverse cognitive models, including balanced linguistic
sets, unbalanced linguistic term sets, uncertain unbalanced linguistic term sets, comparative balanced
linguistic term sets, and comparative unbalanced linguistic term set. For MADM under complicated
situations, where decision makers cannot determine concrete weighting vectors for attributes but have
opinions on attributes’ prioritization relationships, we have developed two important information
aggregation operators (PUBL-PWA and PUBL-IPOWA), used to accommodate the specific decision
opinions. Then, based on the above tools, with respect to practical MADM problems where weighting
vector for DMs or DMUs and attributes’ prioritization relationships are known or explicitly unknown,
we have constructed two effective MAGDM approaches, respectively. Additionally, through application
study and comparative experiments we have validated the two approaches.

Since the newly-introduced expression tool of P-HLTS behaves more flexibly and comprehensively
when eliciting probabilistic linguistic decision information, future research efforts should be directed to
studying effective aggregation operators for various practical contexts, thereby developing appropriate
MADM methodologies for real applications. Another promising research direction should be
well-explored and exploited by integrating MADM methodologies and vector optimization theories.
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Appendix A

Definition A1. [27] Given a certain linguistic hierarchy LH = ∪tl(t, n(t)) , in which all included linguistic

term sets are denoted as Sn(t) =
{
sn(t)

0 , . . . , sn(t)
n(t)−1

}
, for the purpose of transforming from a linguistic label in

level t to a label in consecutive level t′, a transformation function is defined as TFt
t′ : l(t, n(t))→ l(t′, n(t′))

such that the following is true:

TFt
t′

(
sn(t)

i ,αn(t)
)
= ∆t′


∆−1

t

(
sn(t)

i ,αn(t)
)
(n(t′) − 1)

n(t) − 1

. (A1)

Utilizing the function TFt
t′ , any 2-tuple linguistic expression can be transformed into a term in LH.

More specifically, transformation procedures by use of TFt
t′ are detailed as follows:

(1) Mapping process: To map an unbalanced term set S to its corresponding terms in LH, a
transformation function ψ is determined to relate to every unbalanced linguistic 2-tuple (si,α) to its
linguistic 2-tuple in LH(S), i.e.:

ψ : S→ LH(S), (A2)

where we then we have ψ(si,α) =
(
sG(i)

I(i)
,λ

)
for ∀(si,α) ∈ S.

(2) Computing process: Here, we transform
(
sG(i)

I(i)
,λ

)
into linguistic 2-tuples which are denoted as(

sn(t′)
I′(i)

,λ′
)
: (

sn(t′)
I′(i)

,λ′
)
= TF

(
sG(i)

I(i)
,λ

)
= ∆


∆−1(sG(i)

I(i)
,λ) · (n(t′) − 1)

G(i) − 1

. (A3)

We then apply the computational model to S
n(t′)

and the corresponding result is denoted as(
sn(t′)

r ,λr

)
∈ S

n(t′)
.

(3) Retranslating process: Next,
(
sn(t′)

r ,λr

)
∈ S

n(t′)
is transformed into an unbalanced term in S

through the transformation function ψ−1, i.e.:

ψ−1 : LH(S)→ S. (A4)

where we then we get ψ−1
(
sn(t′)

r ,λr

)
= (sresult,λresult) ∈ S.

References

1. Zimmerman, H.J. Fuzzy Set Theory and Its Applications; Springer: Dordrecht, The Netherlands, 2001.
2. Liu, P.D.; Wu, X.Y. A competency evaluation method of human resources managers based on multi-granularity

linguistic variables and vikor method. Technol. Econ. Dev. Econ. 2012, 18, 696–710. [CrossRef]
3. Liu, P. Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power

heronian aggregation operators. Comput. Ind. Eng. 2017, 108, 199–212. [CrossRef]
4. Liu, P. A weighted aggregation operators multi-attribute group decision-making method based on

interval-valued trapezoidal fuzzy numbers. Appl. Math. Model. 2011, 38, 1053–1060. [CrossRef]

http://dx.doi.org/10.3846/20294913.2012.753169
http://dx.doi.org/10.1016/j.cie.2017.04.033
http://dx.doi.org/10.1016/j.eswa.2010.07.144


Symmetry 2020, 12, 235 26 of 28

5. Ju, Y.; Yang, S. Approaches for multi-attribute group decision making based on intuitionistic trapezoid fuzzy
linguistic power aggregation operators. J. Intell. Fuzzy Syst. 2014, 27, 987–1000. [CrossRef]

6. Ju, Y.; Yang, S. A new method for multiple attribute group decision-making with intuitionistic trapezoid
fuzzy linguistic information. Soft Comput. 2015, 19, 2211–2224. [CrossRef]

7. Ju, Y.; Yang, S.; Liu, X. A novel method for multiattribute decision making with dual hesitant fuzzy triangular
linguistic information. J. Appl. Math. 2014, 2014, 12. [CrossRef]

8. Wu, J.; Chang, J.; Cao, Q.; Liang, C. A trust propagation and collaborative filtering based method for
incomplete information in social network group decision making with type-2 linguistic trust. Comput. Ind.
Eng. 2019, 127, 853–864. [CrossRef]

9. Qi, X.; Liang, C.; Zhang, J. Generalized cross-entropy based group decision making with unknown expert
and attribute weights under interval-valued intuitionistic fuzzy environment. Comput. Ind. Eng. 2015, 79,
52–64. [CrossRef]

10. Qi, X.; Liang, C.; Zhang, J. Multiple attribute group decision making based on generalized power aggregation
operators under interval-valued dual hesitant fuzzy linguistic environment. Int. J. Mach. Learn. Cybern.
2016, 7, 1147–1193. [CrossRef]

11. Pang, Q.; Wang, H.; Xu, Z. Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci.
2016, 369, 128–143. [CrossRef]

12. Zhao, S.; Wang, D.; Liang, C.; Leng, Y.; Xu, J. Some single-valued neutrosophic power heronian aggregation
operators and their application to multiple-attribute group decision-making. Symmetry 2019, 11, 653.
[CrossRef]

13. Zhang, J.; Qi, X.; Liang, C. Tackling complexity in green contractor selection for mega infrastructure projects:
A hesitant fuzzy linguistic madm approach with considering group attitudinal character and attributes’
interdependency. Complexity 2018, 2018, 31. [CrossRef]

14. Wei, G.; Zhao, X. Some induced correlated aggregating operators with intuitionistic fuzzy information
and their application to multiple attribute group decision making. Expert Syst. Appl. 2012, 39, 2026–2034.
[CrossRef]

15. Wei, G. Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute
decision making. Int. J. Mach. Learn. Cybern. 2016, 7, 1093–1114. [CrossRef]

16. Ju, Y.B. A new method for multiple criteria group decision making with incomplete weight information
under linguistic environment. Appl. Math. Model. 2014, 38, 5256–5268. [CrossRef]

17. Ju, Y.B.; Wang, A.H.; You, T.H. Emergency alternative evaluation and selection based on anp, dematel, and
tl-topsis. Nat. Hazards 2015, 75, S347–S379. [CrossRef]

18. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
19. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
20. Atanassov, K.T.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349.

[CrossRef]
21. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [CrossRef]
22. Zhu, B.; Xu, Z.S.; Xia, M.M. Dual hesitant fuzzy sets. J. Appl. Math. 2012, 2012, 13. [CrossRef]
23. Ju, Y.B.; Liu, X.Y.; Yang, S.H. Interval-Valued dual hesitant fuzzy aggregation operators and their applications

to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 1203–1218. [CrossRef]
24. Hao, Z.; Xu, Z.; Zhao, H.; Su, Z. Probabilistic dual hesitant fuzzy set and its application in risk evaluation.

Knowl. Based Syst. 2017, 127, 16–28. [CrossRef]
25. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-i. Inf. Sci. 1975,

8, 199–249. [CrossRef]
26. Herrera-Viedma, E.; López-Herrera, A.G. A model of an information retrieval system with unbalanced fuzzy

linguistic information. Int. J. Intell. Syst. 2007, 22, 1197–1214. [CrossRef]
27. Herrera, F.; Herrera-Viedma, E.; Martinez, L. A fuzzy linguistic methodology to deal with unbalanced

linguistic term sets. IEEE Trans. Fuzzy Syst. 2008, 16, 354–370. [CrossRef]
28. Martínez, L.; Espinilla, M.; Liu, J.; Pérez, L.G.; Sánchez, P.J. An evaluation model with unbalanced linguistic

information applied to olive oil sensory evaluation. J. Mult. Valued Log. Soft Comput. 2009, 15, 229–251.
29. Cai, M.; Gong, Z.; Yu, X. A method for unbalanced linguistic term sets and its application in group decision

making. Int. J. Fuzzy Syst. 2016, 19, 1–12. [CrossRef]

http://dx.doi.org/10.3233/IFS-131060
http://dx.doi.org/10.1007/s00500-014-1403-9
http://dx.doi.org/10.1155/2014/909823
http://dx.doi.org/10.1016/j.cie.2018.11.020
http://dx.doi.org/10.1016/j.cie.2014.10.017
http://dx.doi.org/10.1007/s13042-015-0445-3
http://dx.doi.org/10.1016/j.ins.2016.06.021
http://dx.doi.org/10.3390/sym11050653
http://dx.doi.org/10.1155/2018/4903572
http://dx.doi.org/10.1016/j.eswa.2011.08.031
http://dx.doi.org/10.1007/s13042-015-0433-7
http://dx.doi.org/10.1016/j.apm.2014.04.022
http://dx.doi.org/10.1007/s11069-014-1077-8
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/0165-0114(89)90205-4
http://dx.doi.org/10.1002/int.20418
http://dx.doi.org/10.1155/2012/879629
http://dx.doi.org/10.3233/IFS-131085
http://dx.doi.org/10.1016/j.knosys.2017.02.033
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1002/int.20244
http://dx.doi.org/10.1109/TFUZZ.2007.896353
http://dx.doi.org/10.1007/s40815-016-0209-6


Symmetry 2020, 12, 235 27 of 28

30. Xu, Z.S. Uncertain linguistic aggregation operators based approach to multiple attribute group decision
making under uncertain linguistic environment. Inf. Sci. 2004, 168, 171–184. [CrossRef]

31. Wei, G.; Zhao, X.; Lin, R.; Wang, H. Uncertain linguistic bonferroni mean operators and their application to
multiple attribute decision making. Appl. Math. Model. 2013, 37, 5277–5285. [CrossRef]

32. Liu, P.; Yu, X. 2-Dimension uncertain linguistic power generalized weighted aggregation operator and its
application in multiple attribute group decision making. Knowl. Based Syst. 2014, 57, 69–80. [CrossRef]

33. Liu, P.; He, L.; Yu, X. Generalized hybrid aggregation operators based on the 2-dimension uncertain linguistic
information for multiple attribute group decision making. Group Decis. Negot. 2016, 25, 103–126. [CrossRef]

34. Liu, P. Some geometric aggregation operators based on interval intuitionistic uncertain linguistic variables
and their application to group decision making. Appl. Math. Model. 2013, 37, 2430–2444. [CrossRef]

35. Meng, F.; Chen, X.; Zhang, Q. Some interval-valued intuitionistic uncertain linguistic choquet operators
and their application to multi-attribute group decision making. Appl. Math. Model. 2014, 38, 2543–2557.
[CrossRef]

36. Qi, X.-W.; Zhang, J.-L.; Liang, C.-Y. Multiple attributes group decision-making under interval-valued dual
hesitant fuzzy unbalanced linguistic environment with prioritized attributes and unknown decision-makers’
weights. Information 2018, 9, 145. [CrossRef]

37. Rodríguez, R.M.; Martínez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans.
Fuzzy Syst. 2012, 20, 109–119. [CrossRef]

38. Liao, H.; Jiang, L.; Xu, Z.; Xu, J.; Herrera, F. A linear programming method for multiple criteria decision
making with probabilistic linguistic information. Inf. Sci. 2017, 415, 341–355. [CrossRef]

39. Xie, W.; Ren, Z.; Xu, Z.; Wang, H. The consensus of probabilistic uncertain linguistic preference relations and
the application on the virtual reality industry. Knowl. Based Syst. 2018, 162, 14–28. [CrossRef]

40. Liu, H.; Le, J.; Xu, Z. Entropy measures of probabilistic linguistic term sets. Int. J. Comput. Intell. Syst. 2018,
11, 45–87. [CrossRef]

41. Wu, X.; Liao, H. An approach to quality function deployment based on probabilistic linguistic term sets and
oreste method for multi-expert multi-criteria decision making. Inf. Fusion 2018, 43, 13–26. [CrossRef]

42. Xiang, C.; Jing, G.; Xu, Z. Venture capital group decision-making with interaction under probabilistic
linguistic environment. Knowl. Based Syst. 2018, 140, 82–91.

43. Gao, J.; Xu, Z.; Ren, P.; Liao, H. An emergency decision making method based on the multiplicative
consistency of probabilistic linguistic preference relations. Int. J. Mach. Learn. Cybern. 2019, 10, 1613–1629.
[CrossRef]

44. Bai, C.Z.; Zhang, R.; Qian, L.X.; Wu, Y.N. Comparisons of probabilistic linguistic term sets for multi-criteria
decision making. Knowl. Based Syst. 2017, 119, 284–291. [CrossRef]

45. Liu, P.; You, X. Probabilistic linguistic todim approach for multiple attribute decision-making. Granul.
Comput. 2017, 2, 333–342. [CrossRef]

46. Zhang, X.; Xing, X. Probabilistic linguistic vikor method to evaluate green supply chain initiatives.
Sustainability 2017, 9, 1231. [CrossRef]

47. Rodríguez, R.M.; Martínez, L.; Herrera, F. A group decision making model dealing with comparative
linguistic expressions based on hesitant fuzzy linguistic term sets. Inf. Sci. 2013, 241, 28–42. [CrossRef]

48. Wang, H. Extended hesitant fuzzy linguistic term sets and their aggregation in group decision making. Int. J.
Comput. Intell. Syst. 2015, 8, 14–33. [CrossRef]

49. Liu, P.; Fei, T. Some muirhead mean operators for probabilistic linguistic term sets and their applications to
multiple attribute decision-making. Appl. Soft Comput. 2018, 68. [CrossRef]

50. Liu, P.; Li, Y. Multi-Attribute decision making method based on generalized maclaurin symmetric mean
aggregation operators for probabilistic linguistic information. Comput. Ind. Eng. 2019, 131, 282–294.
[CrossRef]

51. Lin, M.W.; Xu, Z.S.; Zhai, Y.L.; Yao, Z.Q. Multi-Attribute group decision-making under probabilistic uncertain
linguistic environment. J. Oper. Res. Soc. 2018, 69, 157–170. [CrossRef]

52. Yager, R.R. Prioritized aggregation operators. Int. J. Approx. Reason. 2008, 48, 263–274. [CrossRef]
53. Yager, R.R. Prioritized owa aggregation. Fuzzy Optim. Decis. Mak. 2009, 8, 245–262. [CrossRef]
54. Yager, R.R. Prioritized aggregation operators and their applications. In Proceedings of the 6th IEEE

International Conference Intelligent Systems (IS), Sofia, Bulgaria, 6–8 September 2012; pp. 2–5.

http://dx.doi.org/10.1016/j.ins.2004.02.003
http://dx.doi.org/10.1016/j.apm.2012.10.048
http://dx.doi.org/10.1016/j.knosys.2013.12.009
http://dx.doi.org/10.1007/s10726-015-9434-x
http://dx.doi.org/10.1016/j.apm.2012.05.032
http://dx.doi.org/10.1016/j.apm.2013.11.003
http://dx.doi.org/10.3390/info9060145
http://dx.doi.org/10.1109/TFUZZ.2011.2170076
http://dx.doi.org/10.1016/j.ins.2017.06.035
http://dx.doi.org/10.1016/j.knosys.2018.07.016
http://dx.doi.org/10.2991/ijcis.11.1.4
http://dx.doi.org/10.1016/j.inffus.2017.11.008
http://dx.doi.org/10.1007/s13042-018-0839-0
http://dx.doi.org/10.1016/j.knosys.2016.12.020
http://dx.doi.org/10.1007/s41066-017-0047-4
http://dx.doi.org/10.3390/su9071231
http://dx.doi.org/10.1016/j.ins.2013.04.006
http://dx.doi.org/10.2991/ijcis.2015.8.1.2
http://dx.doi.org/10.1016/j.asoc.2018.03.027
http://dx.doi.org/10.1016/j.cie.2019.04.004
http://dx.doi.org/10.1057/s41274-017-0182-y
http://dx.doi.org/10.1016/j.ijar.2007.08.009
http://dx.doi.org/10.1007/s10700-009-9063-4


Symmetry 2020, 12, 235 28 of 28

55. Yu, X.H.; Xu, Z.S. Prioritized intuitionistic fuzzy aggregation operators. Inf. Fusion 2013, 14, 108–116.
[CrossRef]

56. Yu, D.; Wu, Y.; Lu, T. Interval-Valued intuitionistic fuzzy prioritized operators and their application in group
decision making. Knowl. Based Syst. 2012, 30, 57–66. [CrossRef]

57. Wei, G. Hesitant fuzzy prioritized operators and their application to multiple attribute decision making.
Knowl. Based Syst. 2012, 31, 176–182. [CrossRef]

58. Jin, F.; Ni, Z.; Chen, H. Interval-Valued hesitant fuzzy einstein prioritized aggregation operators and their
applications to multi-attribute group decision making. Soft Comput. 2016, 20, 1863–1878. [CrossRef]

59. Zhang, S.; Xu, Z.; He, Y. Operations and integrations of probabilistic hesitant fuzzy information in decision
making. Inf. Fusion 2017, 38, 1–11. [CrossRef]

60. Marin, L.; Merigó, J.M.; Valls, A.; Moreno, A.; Isern, D. Induced unbalanced linguistic ordered weighted
average. Sci. World J. 2011, 1, 1–8.

61. Marin, L.; Valls, A.; Isern, D.; Moreno, A.; Merigó, J.M. Induced unbalanced linguistic ordered weighted
average and its application in multiperson decision making. Sci. World J. 2014, 2014, 19. [CrossRef]

62. Gou, X.; Xu, Z.; Liao, H. Multiple criteria decision making based on bonferroni means with hesitant fuzzy
linguistic information. Soft Comput. 2016, 21, 1–15. [CrossRef]

63. Wei, G.; Lin, R.; Wang, H. Distance and similarity measures for hesitant interval-valued fuzzy sets. J. Intell.
Fuzzy Syst. 2014, 27, 19–36. [CrossRef]

64. Zadeh, L.A. Probability measures of fuzzy events. J. Math. Anal. Appli. 1968, 23, 421–427. [CrossRef]
65. Yager, R.R.; Filev, D.P. Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. Part B

Cybern. 1999, 29, 141–150. [CrossRef] [PubMed]
66. Yager, R.R. Induced aggregation operators. Fuzzy Sets Syst. 2003, 137, 59–69. [CrossRef]
67. Chen, H.; Zhou, L. An approach to group decision making with interval fuzzy preference relations based

on induced generalized continuous ordered weighted averaging operator. Expert Syst. Appl. 2011, 38,
13432–13440. [CrossRef]

68. Merigó, J.M.; Casanovas, M. Induced aggregation operators in the euclidean distance and its application in
financial decision making. Expert Syst. Appl. 2011, 38, 7603–7608. [CrossRef]

69. Zhou, L.G.; Chen, H.Y. The induced linguistic continuous ordered weighted geometric operator and its
application to group decision making. Comput. Ind. Eng. 2013, 66, 222–232. [CrossRef]

70. Verkijika, S.F.; de Wet, L. A usability assessment of e-government websites in Sub-Saharan Africa. Int. J. Inf.
Manag. 2018, 39, 20–29. [CrossRef]

71. Baker, D.L. Advancing e-government performance in the united states through enhanced usability
benchmarks. Gov. Inf. Q. 2009, 26, 82–88. [CrossRef]

72. Clemmensen, T.; Katre, D. Chapter 21—Adapting e-gov usability evaluation to cultural contexts. In Usability
in Government Systems; Buie, E., Murray, D., Eds.; Morgan Kaufmann: Boston, MA, USA, 2012; pp. 331–344.

73. Yager, R.R. On the inclusion of importances in owa aggregations. In The Ordered Weighted Averaging Operators;
Yager, R.R., Kacprzyk, J., Eds.; Springer: Boston, MA, USA, 1997.

74. Li, B.; Xu, Z. Prioritized aggregation operators based on the priority degrees in multicriteria decision-making.
Int. J. Intell. Syst. 2019, 34, 1985–2018. [CrossRef]

75. Torra, V. The weighted owa operator. Int. J. Intell. Syst. 1997, 12, 153–166. [CrossRef]
76. Torra, V.; Narukawa, Y. Modeling Decisions: Information Fusion and Aggregation Operators; Springer: Berlin,

Germany, 2007.
77. Mashunin, K.Y.; Mashunin, Y.K. Simulating engineering systems under uncertainty and optimal decision

making. J. Comput. Syst. Sci. Int. 2013, 52, 519–534. [CrossRef]
78. Mashunin, K.Y.; Mashunin, Y.K. Vector optimization with equivalent and priority criteria. J. Comput. Syst.

Sci. Int. 2017, 56, 975–996. [CrossRef]
79. Mashunin, Y.K. Methods and Models of Vector Optimization; Nauka: Moscow, Russia, 1986.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.inffus.2012.01.011
http://dx.doi.org/10.1016/j.knosys.2011.11.004
http://dx.doi.org/10.1016/j.knosys.2012.03.011
http://dx.doi.org/10.1007/s00500-015-1887-y
http://dx.doi.org/10.1016/j.inffus.2017.02.001
http://dx.doi.org/10.1155/2014/642165
http://dx.doi.org/10.1007/s00500-016-2211-1
http://dx.doi.org/10.3233/IFS-130975
http://dx.doi.org/10.1016/0022-247X(68)90078-4
http://dx.doi.org/10.1109/3477.752789
http://www.ncbi.nlm.nih.gov/pubmed/18252288
http://dx.doi.org/10.1016/S0165-0114(02)00432-3
http://dx.doi.org/10.1016/j.eswa.2011.04.175
http://dx.doi.org/10.1016/j.eswa.2010.12.103
http://dx.doi.org/10.1016/j.cie.2013.07.021
http://dx.doi.org/10.1016/j.ijinfomgt.2017.11.003
http://dx.doi.org/10.1016/j.giq.2008.01.004
http://dx.doi.org/10.1002/int.22123
http://dx.doi.org/10.1002/(SICI)1098-111X(199702)12:2&lt;153::AID-INT3&gt;3.0.CO;2-P
http://dx.doi.org/10.1134/S106423071303012X
http://dx.doi.org/10.1134/S1064230717060119
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	Probabilistic Hesitant Fuzzy Set (P-HFS) 
	Probabilistic Linguistic Term Set (PLTS) 

	Probabilistic Hybrid Linguistic Term Set 
	The Concept of Probabilistic Hybrid Linguistic Term Set (P-HLTS) 
	Basic Operational Rules and Comparison Rules for P-UBLTS 
	Proposed Distance Measure and Entropy Measure for P-UBLTS 

	Prioritized Aggregation Operators for P-UBLTS 
	PUBL-PWA Operator 
	PUBL-IPOWA Operator 

	Approaches for MAGDM under Probabilistic Hybrid Linguistic Environments with Decision Hesitancy and Attribute Prioritization Relationships 
	Illustrative Application Study 
	Case Study on Governmental Website Usability Evaluation 
	Comparative Studies 
	Comparative Experiments with Various Configurations of  and  
	Comparative Experiments with Different Approaches 

	Sensitivity Analysis 
	Further Discussion: Vector Optimization Based Approach to Solving Website Usability Evaluation with Priority Attributes 

	Conclusions 
	
	References

