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Abstract: In this paper, we consider the mixed initial boundary value problem in the context of a
thermoelastic porous body having a dipolar structure. We intend to analyze the rate of decay of
solutions to this problem to ensure that in a finite time, they become null. In our main result, we find
that the combined contribution of the dipolar constitution of the body together with voids dissipation
and thermal behavior cannot cause vanishing of the deformations in a finite time.

Keywords: body with dipolar structure; decay of solutions; localization in time of solution; combined
effects; vanishing of deformations

1. Introduction

We must outline that our study is dedicated to the dipolar structure for a porous thermoelastic
body. The unanimous opinion of the specialists is that the porous media with a dipolar structure very
accurately shapes the structure and behavior of the bones of humans and, obviously, of animals.

This kind of material is an integral part of a more general theory, namely the microstructure,
whose initiator was Eringen (see, for instance, [1,2]). The utility of the dipolar bodies can be observed
from the great number of appeared papers in this subject, see for instance [3–7]. Therefore, our present
study is a continuation of research in this domain.

Another kind of the microstructure is also obtained by considering the pores (voids) in the
materials, and this was starting by the paper [8] of Nunziato and Cowin. Then, the number of papers
with this subject has become impressive. Here, we mention some of these [9–16]. In the opinion of
many researchers, the backward in time problem and the problem of localization in a finite time of
solutions have many points in common. It is considered that the initiator of the backward in time
problems is Serrin which approached this kind of problem by taking into account the Navier–Stokes
Equations (see [17]). Some results of uniqueness for the forward in time problem can be found in the
study [17]. Recently, the number of articles having as a subject the problem of backward in time has
increased greatly. Therefore, we can recommend the work in [18–27]. As a particular observation,
the results of Quintanilla in [25] improves the studies of Ciarletta [23] and Ciarletta and Chirita [24].
Other studies of Quintanilla solve some questions regarding the location in time considering the
solutions for problems back in time even in the case of theory of thermoelastic bodies with voids and of
the theory of Green and Naghdi for thermoelasticity [26,27]. Iovane and Passarella in [28] approached
also the elastic bodies with voids. Passarella and Tibullo consider in [29] the problem of backward in
time for the thermo-microstretch elastic bodies. Similar results can be found in [30,31].
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We should point out that our idea to consider the problem of localization in a finite time of
solutions in the case of the theory of dipolar bodies with voids was inspired by the paper [32] of
Quintanilla and Straughan.

The structure of our paper is the following.
In Section 2, we write the system of the differential equations that govern the evolution of our body.

After that, as usual, we add the initial conditions and, to complete the mixed problem, we consider the
boundary data. Then, we continue with few auxiliary results, which offer some estimations regarding
the displacements, the displacements of dipolar type and regarding the function of voids. The main
result of our work is regarding the localization in time of solution four our mixed problem. In fact,
we prove that is not possible to locate a finite time for vanishing of the deformations.

2. Preliminaries

As already seen, our study is dedicated to a thermoelastic dipolar body with voids. We consider
the general of an anisotropic and non-homogeneous body, which occupies a regular region D, included
in the Euclidean space R3. The border of the domain D is a regular surface, denoted by ∂D. As usual,
we use the notation D̄ for the closure of the domain D, and we have D̄ = D ∪ ∂D. We will suppose
that the vectors and tensors have components with indices over 1, 2, and 3. The convention for
summation in the case of repeated index is used and the derivation operations are corresponding
defined. Therefore, a partial derivative with respect to a spatial coordinate is designates by a subscript
preceded by a comma. A superposed dot is used to designate the derivative with regards to t,
the time time variable. All functions used in our study are supposed be sufficient regular as necessary.
Sometimes, the dependence of functions regarding the time or spatial independent variables is omitted,
of course, when is no possibility of confusion.

To describe the evolution of a dipolar thermoelastic body, we will use the following variables,

ui(t, x), φij(t, x), θ(t, x), ϕ(t, x), (1)

where we denoted by u = (ui) the vector field for displacement, and by φ =
(
φij
)

the tensor field
for dipolar displacement. Also, here, θ is the temperature variation and ϕ is a function for the
volume distribution.

All these functions are defined for (t, x) ∈ [0, t0)× D.
Using the above variables ui(x, t), φij(x, t), we will introduce the components of the tensors of

strain, namely, eij, νij and χijk, as follows,

2eij = uj,i + ui,j, νij = uj,i − φij, χijk = φjk,i. (2)

We must specify that our further considerations refers to linear theory as such we can consider
the Helmholtz’s free energy as a quadratic form, regarding to all its independent variables. Let us
denote by W the Helmholtz’s free density of energy in the initial configuration. As a consequence,
in accordance with the principle of conservation of energy, we will develop the function W in series
and we retain only the terms of first order and of second order. If we take into account that the initial
state (the reference state) is supposed free of charges, we are led to the conclusion that the energy
density of Helmholtz has the following expression,

W =
1
2

Aijmneijemn + Dijmneijνmn + Fijmnreijχmnr +
1
2

Bijmnνijνmn

+Gijmnrνijχmnr +
1
2

Cijkmnrχijkχmnr + aijeijθ + bijνijθ + cijkχijkθ − (3)

−1
2

cθ2 −mθϕ +
1
2

Aij ϕ,i ϕ,j + αijeij ϕ + βijνij ϕ + δijkχijk ϕ +
1
2

ξϕ2.
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If we substitute the Helmholtz’s energy in the entropy production inequality, we obtain a relation
from where the equations of motion are deduced. Also, the same relation can be used to deduce the
constitutive equations. As is known, the constitutive equations give the expression of stress tensors as
functions of the strain tensors and some constants of the material. In what follows, we will use the
notations tij, σij and ηijk for the stress tensors. As such, the connections between the tensors tij, σij, ηijk
and the tensors eij, νij, χijk are the constitutive equations

Inspired by the procedure used by Green and Rivlin in the paper [6], we adopt a similar
technique, so that by taking into account the Helmholtz’s energy (3) we are led to the following
constitutive equations,

tij =
∂W
∂eij

= Aijmnemn + Dmnijνmn + Fmnrijχmnr + aijθ + αij ϕ,

σij =
∂W
∂νij

= Dijmnemn + Bijmnνmn + Gijmnrχmnr + bijθ + βij ϕ,

ηijk =
∂W

∂χijk
=Fijkmnemn+Gmnijkνmn+Cijkmnrχmnr+cijkθ + δij ϕ, (4)

hi =
∂W
∂ϕ,j

= Aij ϕ,i,

S = −∂W
∂θ

= −aijeij − bijνij − cijkχijk + cθ + mϕ,

g = −∂W
∂ϕ

= −αijeij − βijνij − δijkχijk + mθ − ξϕ,

where we use the notation S to designate the entropy (per unit mass).
We will consider that the above equations take place in the cylinder [0, t0)× D.
Denoting by q the heat flux vector of components qi, we can deduce a constitutive relation,

similar to that from the classical theory, namely,

qj = Kijθ,i, (5)

where we denoted by Kij the tensor of the thermal conductivity and assume that Kij is a
symmetric tensor.

In the absence of supply terms, the differential equations that govern the thermoelasticity of
dipolar bodies with voids, obtained as in [5,6], are as follows.

The equations of motion: (
tij + σij

)
,j = ρüi,

ηijk,i + σjk = Ikrφ̈jr; (6)

The balance of the equilibrated forces:

hi,i + g = J ϕ̈; (7)

The equation of energy:

ρT0Ṡ = qi,i + ρr. (8)

In the preceding equations, we used some notions with following signification; ρ-the constant
mass density, and Iij-the tensor of microinertia, which is a symmetric tensor.
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Aijmn, Bijmn, ..., aij are the coefficients that characterize the properties of the material with regards
to the elasticity. Clearly, from (3), we can deduce the following symmetry relations,

Aijmn = Ajimn = Amnij, Bijmn = Bmnij, Aij = Aji, aij = aji,

Cijkmnr = Cmnrijk, Fijkmn = Fijknm, Dijmn = Dijnm, αij = αji. (9)

If we consider Equations (6)–(8), and then involve the kinematic equations (2) and the constitutive
relations (4) and (5), from the equations of motion and the energy equations, we obtain the following
system of equations,

ρüi =
[(

Cijmn + Gijmn
)

emn +
(
Gmnij + Bijmn

)
νmn+

+
(

Fmnrij + Dijmnr
)

χmnr +
(
aij + bij

)
θ +

(
αij + βij

)
ϕ
]

,j ,

Ikrφ̈jr =
[

Fijkmnemn+Dmnijkνmn + Aijkmnrχmnr + cijkθ + δijk ϕ
]

,i
+ (10)

+Gjkmnemn+Bjkmnνmn +Djkmnrχmnr+bjkθ +β jk ϕ,

cθ̇ = −
(
Kijθ,i

)
,j + aij ėij + bijνij + cijkχ̇ijk −mϕ̇,

J ϕ̈ =
(

Aij ϕ,i
)

,j − αij ėij − βijνij − δijkχ̇ijk + mθ − ξϕ,

which take place for (t, x) ∈ [0, ∞)× D.
We also suppose that the Equations (2) and (4) take place for (t, x) ∈ [0, ∞)× D.
We now want to define a surface tractions vector of components ti, a surface couple tensor of

components ηjk, the flux of heat denoted by q, and the traction of the equilibrated stress vector h.
For this we need the unit normal to the border ∂D, of components ni, outward oriented. These have
the following expressions,

ti =
(
tij + σij

)
nj, ηjk = ηijkni, q = qini, h = hini,

and are defined at regular points of the border ∂D.
Having these tractions, we can now consider the following boundary data, in their

nonhomogeneous form,

ui(t, x) = ũi, (t, x) ∈ [0, ∞)× ∂Du, ti(t, x) = t̃i, (t, x) ∈ [0, ∞)× ∈ ∂Dc
u,

φij(t, x) = φ̃ij, (t, x) ∈ [0, ∞)× ∈ ∂Dφ, ηjk(t, x) = η̃jk, (t, x) ∈ [0, ∞)× ∈ ∂Dc
φ, (11)

θ(t, x) = θ̃, (t, x) ∈ [0, ∞)× ∈ ∂Dθ , q(t, x) = q̃, (t, x) ∈ [0, ∞)× ∈ ∂Dc
θ ,

ϕ(t, x) = ϕ̃, (t, x) ∈ [0, ∞)× ∈ ∂Dϕ, h(t, x) = h̃, (t, x) ∈ [0, ∞)× ∈ ∂Dc
ϕ,

where the subsets ∂Du, ∂Dφ, ∂Dθ , and ∂Dϕ and its complements ∂Dc
u, ∂Dc

φ, ∂Dc
θ , ∂Dc

ϕ are surfaces from
the boundary ∂D, having the following properties,

∂D̄u ∪ ∂Dc
u = ∂D̄φ ∪ ∂Dc

φ = ∂D̄θ ∪ ∂Dc
θ = ∂D̄ϕ ∪ ∂Dc

ϕ = ∂D,

∂Du ∩ ∂Dc
u = ∂Dφ ∩ ∂Dc

φ = ∂Dθ ∩ ∂Dc
θ = ∂Dϕ ∩ ∂Dc

ϕ = ∅.

The mixed problem will be complete if we add the initial restrictions:

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x), θ(x, 0) = θ0(x),

φij(x, 0) = φ0
ij(x), φ̇ij(x, 0) = φ1

ij(x), ϕ(x, 0) = ϕ0(x), (12)

which take place on the closed domain D̄.
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Here, u0
i (x), u1

i (x), φ0
ij(x), φ1

ij(x), θ0(x), and ϕ0(x) are given functions and are assume be
continuous. Furthermore, we must suppose that the above functions are adequacy with the restrictions
(11) on the respective subsurfaces of ∂D.

By Ψ we denote the internal energy and consider it as a quadratic form, as follows,

Ψ =
1
2

Aijmneijemn + Dijmneijνmn + Fijmnreijχmnr +

+
1
2

Bijmnνijνmn + Gijmnrνijχmnr +
1
2

Cijkmnrχijkχmnr. (13)

Let us denote by P our initial boundary value problem, which includes the differential equations
from (10), the initial restrictions from (12), and the data to the limit (11).

The results we want to expose will only be possible if certain restrictions are met, imposed on all
the functions we will deal with.

First, we denote by Jm(x) the smallest eigenvalue of the inertia tensor Iij(x), and we must suppose
that Jm is a continuous function. Also, the density ρ and the constitutive coefficients are assumed be
functions of class C1(D). Also, we must suppose that

(a) ρ(x) ≥ a1, Jm(x) ≥ a2, c(x) ≥ a3, where the real constants a1, a2, a3 are positive;
(b) Kij is a positive definite tensor;
(c) the quadratic form Ψ is positive definite.

As a consequence of the hypothesis (b), we can deduce the inequalities:

Kmθ,iθ,j ≤ Kijθ,iθ,j ≤ KMθ,iθ,j, (14)

where Km and KM are two positive constants.
If we take into account the hypothesis (c), then we can determine two positive numbers M1 and

M2 to satisfy the double inequality that follows,

M1

2

(
eijeij + νijνij + χijkχijk

)
≤ Ψ ≤ M2

2

(
eijeij + νijνij + χijkχijk

)
. (15)

The above restrictions are commonly imposed in mechanics of solids, therefore they cannot be
considered as very restrictive.

As such, our mixed problem P consists of the following restrictions and equations.

- the equations of motion (10)1 and (10)2, which take place in cylinder D× [0, ∞);
- the equation of energy:

Kij
(
θ,j
)

,i = T0

[
aiju̇i,j + bij

(
u̇j,i − φ̇ij

)
+ cijkφ̇ij,k + cθ̇

]
, in [0, ∞)× D; (16)

- the kinematic equations (2), which take place in cylinder [0, ∞)× D;
- the constitutive conditions (4), which take place in cylinder [0, ∞)× D;
- the initial restrictions (11), which take place in D̄;
- the conditions to the limit:

ui(x, t) = 0, (x, t) ∈ [0, ∞)× ∂Du, ti = 0, (x, t) ∈ [0, ∞)× ∂Dc
u,

φij(x, t) = 0, (x, t) ∈ [0, ∞)×, ∂Dφ mjk = 0, (x, t) ∈ [0, ∞)× ∂Dc
φ, (17)

θ(x, t) = 0, (x, t) ∈ [0, ∞)× ∂Dθ , q = 0, (x, t) ∈ [0, ∞)× ∂Dc
θ ,

ϕ(x, t) = 0, (x, t) ∈ [0, ∞)× ∂Dϕ, h = 0, (x, t) ∈ [0, ∞)× ∂Dc
ϕ.
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3. Auxiliary Results

At the beginning of this section, we will establish some identities of integral type, with regards to
the solutions u =

(
ui, φij, θ, ϕ

)
of the above mixed problem P . The important results of our study will

be based on these identities.

Proposition 1. If u =
(
ui, φij, θ

)
is a solution of our above problem P ′, then the following identity is satisfied

1
2

∫
B

[(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ J ϕ̇2(t) + cθ2(t)

]
dV +

+
∫

B

[
1
2

Aijmneij(t)emn(t) + Dijmneij(t)νmn(t) + Fijmnreij(t)χmnr(t)+

+
1
2

Bijmnνij(t)νmn(t) + Gijmnrνij(t)χmnr(t) +
1
2

Cijkmnrχijk(t)χmnr(t)
]

dV + (18)

+
∫

B

[
Aij ϕ,i ϕ,j + αijeij ϕ + βijνij ϕ + δijkχijk ϕ + ξϕ2

)
dV =

+
∫ t

0

∫
D

1
T0

Kijθ,i(s)θ,j(s)dVds, ∀t ≥ 0.

Proof. We multiply the equations of motion (10)1 by u̇i and consider the kinematic Equation (2), after
simple calculations, the following identity is obtained,

ρu̇iu̇i =
{[(

Aijmn + Gijmn
)

emn +
(
Gmnij + Bijmn

)
νmn+

+
(

Fmnrij + Dijmnr
)

χmnr +
(
aij + bij

)
θ +

(
αij + βij

)
ϕ
]

u̇i
}

,j − (19)

−
[(

Aijmn + Gijmn
)

emn +
(
Gmnij + Bijmn

)
νmn+

+
(

Fmnrij + Dijmnr
)

χmnr +
(
aij + bij

)
θ +

(
αij + βij

)
ϕ
]

u̇i,j.

If we multiply the equations of motion (10)2 by φ̇ij and consider the kinematic Equation (2), after
simple calculations, the following identity is obtained,

Ijkφ̇jmφ̇km =
[(

Fijkmnemn+Dmnijkνmn + Cijkmnrχmnr + cijkθ + δijk ϕ
)

φ̇jk

]
,i
−

−
[

Fijkmnemn+Dmnijkνmn + Cijkmnrχmnr + cijkθ + δijk ϕ
]

φ̇jk,i + (20)

+
[

Gjkmnemn+Bjkmnνmn +Djkmnrχmnr+bjkθ +β jk ϕ
]

φjk.

Now we multiply the equations of motion (10)3 by θ. After simple calculations the following
identity is obtained,

cθθ̇ = −
(
Kijθ,iθ

)
,j + Kijθ,iθ,j +

+aij ėijθ + bijν̇ijθ + cijkχ̇ijkθ −mθϕ̇. (21)

Finally, we multiply the equations of motion (10)4 by ϕ, so that after simple calculations,
the following identity is obtained,

J ϕ̇ϕ̈ =
(

Aij ϕ,i ϕ̇
)

,j − Aij ϕ,i ϕ̇,j −
−αijeij ϕ̇− βijνij ϕ̇− δijkχijk ϕ̇− ξϕϕ̇ + mθϕ̇. (22)
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Now we sum up, term with term, the equalities (19)–(22) and take into account the geometric
relations (5) so that we reach the equality

ρu̇iüi + Ijkφ̇jmφ̈km + cθθ̇ + J ϕ̇ϕ̈ =

=
{[(

Aijmn + Gijmn
)

emn +
(
Gmnij + Bijmn

)
νmn+

+
(

Fmnrij + Dijmnr
)

χmnr +
(
aij + bij

)
θ +

(
αij + βij

)
ϕ
]

u̇i
}

,j +

+
[(

Fijkmnemn+Dmnijkνmn + Cijkmnrχmnr + cijkθ + δijk ϕ
)

φ̇jk

]
,i
−

−
[(

Aijmn + Gijmn
)

emn +
(
Gmnij + Bijmn

)
νmn+

+
(

Fmnrij + Dijmnr
)

χmnr +
(
aij + bij

)
θ +

(
αij + βij

)
ϕ
]

u̇i,j − (23)

−
[

Fijkmnemn+Dmnijkνmn + Cijkmnrχmnr + cijkθ + δijk ϕ
]

φ̇jk,i +

+
[

Gjkmnemn+Bjkmnνmn +Djkmnrχmnr+bjkθ +β jk ϕ
]

φjk −

−
(
Kijθ,iθ

)
,j + Kijθ,iθ,j + aij ėijθ + bijν̇ijθ + cijkχ̇ijkθ +

+
(

Aij ϕ,i ϕ̇
)

,j − Aij ϕ,i ϕ̇,j + αijeij ϕ̇ + βijνij ϕ̇ + δijkχijk ϕ̇− ξϕϕ̇,

which can be restated in the following form

ρu̇iüi + Ijkφ̇jmφ̈km + cθθ̇ + J ϕ̇ϕ̈ +

+Aijmnemn ėij + Gmnij
(
νmn ėij + ν̇mneij

)
+ Fmnrij

(
χmnr ėij + χ̇mnreij

)
+Bijmnνmnν̇ij + Dmnijkνmn

(
νmnχ̇ijk + ν̇mnχijk

)
+ Cijkmnrχmnrχ̇ijk +

+αij
(
eij ϕ̇ + ėij ϕ

)
+ βij

(
νij ϕ̇ + ν̇ij ϕ

)
+ δijk

(
χijk ϕ̇ + χ̇ijk ϕ

)
+

+Aij ϕ,i ϕ̇,j + ξϕϕ̇ = (24)

=
{[(

Aijmn + Gijmn
)

emn +
(
Gmnij + Bijmn

)
νmn+

+
(

Fmnrij + Dijmnr
)

χmnr +
(
aij + bij

)
θ +

(
αij + βij

)
ϕ
]

u̇i
}

,j +

+
[(

Fijkmnemn+Dmnijkνmn+Cijkmnrχmnr+cijkθ+δijk ϕ
)

φ̇jk

]
,i
+

+
(

Aij ϕ,i ϕ̇
)

,j −
(
Kijθ,iθ

)
,j + Kijθ,iθ,j.

We can now integrate this identity over domain [0, t]× D. Taking into account the divergence
theorem and considering that we have null boundary data, we obtain the identity (18), as such the
proof of Proposition 1 is finished.

A new energy relation is obtained in next proposition. We consider the case of null initial data.

Proposition 2. Let
(
ui, φij, θ, ϕ

)
be a solution of the mixed problem, P , corresponding to zero initial conditions.

Then, the following equality is satisfied:

1
2

∫
B

(
ρu̇iu̇i + Ijkφ̇jmφ̇km + J ϕ̇2 − cθ2

)
dV +

+
∫

B

(
1
2

Aijmneijemn + Dijmneijνmn + Fijmnreijχmnr+

+
1
2

Bijmnνijνmn + Gijmnrνijχmnr +
1
2

Cijkmnrχijkχmnr

)
dV + (25)

+
∫

B

(
1
2

Aij ϕ,i ϕ,j+αijeij ϕ+βijνij ϕ+δijkχijk ϕ+
1
2

ξϕ2
)

dV=

=−
∫ t

0

∫
D

(
Kijθ,iθ,j−aij ėijθ−bijν̇ijθ−cijkχ̇ijkθ−mθϕ̇

)
dVdτ,
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for any t ∈ [0, ∞).

Proof. If we multiply the equation of motion (10)1 by u̇i, then Equation (19) is obtained. If we multiply
the equation of motion (10)2 by φ̇ij, then Equation (20) is obtained. If we multiply the equation of
motion (10)4 by ϕ̇, then Equation (22) is obtained. Now, we multiply the equation of motion (10)3 by
−θ so that the following identity is obtained,

−cθθ̇ =
(
Kijθ,iθ

)
,j − Kijθ,iθ,j −

−aij ėijθ − bijν̇ijθ − cijkχ̇ijkθ + mθϕ̇. (26)

From Equations (19), (20), (22), and (26) we deduce

ρu̇iüi + Ijkφ̇jmφ̈km − cθθ̇ + J ϕ̇ϕ̈ +

+Aijmnemn ėij + Gmnij
(
νmn ėij + ν̇mneij

)
+ Fmnrij

(
χmnr ėij + χ̇mnreij

)
+Bijmnνmnν̇ij + Dmnijkνmn

(
νmnχ̇ijk + ν̇mnχijk

)
+ Cijkmnrχmnrχ̇ijk +

+αij
(
eij ϕ̇ + ėij ϕ

)
+ βij

(
νij ϕ̇ + ν̇ij ϕ

)
+ δijk

(
χijk ϕ̇ + χ̇ijk ϕ

)
+

+Aij ϕ,i ϕ̇,j + ξϕϕ̇ = (27)

=
{[(

Aijmn + Gijmn
)

emn +
(
Gmnij + Bijmn

)
νmn+

+
(

Fmnrij + Dijmnr
)

χmnr +
(
aij + bij

)
θ +

(
αij + βij

)
ϕ
]

u̇i
}

,j +

+
[(

Fijkmnemn+Dmnijkνmn+Cijkmnrχmnr+cijkθ+δijk ϕ
)

φ̇jk

]
,i
+

+
(

Aij ϕ,i ϕ̇
)

,j +
(
Kijθ,iθ

)
,j − Kijθ,iθ,j +

+aij ėijθ + bijν̇ijθ + cijkχ̇ijkθ + mθϕ̇.

Finally, we integrate the last identity over domain [0, t]× D, so that considering the divergence
theorem and taking into account that we have null initial data, we obtain the identity (25), as such the
proof of Proposition 2 is finished.

In the following proposition, we deduce another energy relation, obtained by a method of the
Lagrange identity type.

Proposition 3. Let
(
ui, φij, θ, ϕ

)
be a solution of the mixed problem P , corresponding to zero initial conditions

and null boundary data. Then, the following equality is satisfied,∫
B

(
ρu̇iu̇i + Ijkφ̇jmφ̇km + J ϕ̇2 − cθ2

)
dV =

=
∫

B

(
Aijmneijemn + 2Dijmneijνmn + 2Fijmnreijχmnr+

+Bijmnνijνmn + 2Gijmnrνijχmnr + Cijkmnrχijkχmnr

)
dV + (28)

+
∫

B

(
Aij ϕ,i ϕ,j+2αijeij ϕ+2βijνij ϕ+2δijkχijk ϕ+ξϕ2

)
dV,

for any t ∈ [0, ∞).
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Proof. Let us consider the Equation (10)1 and fix an arbitrary t ∈ (0, ∞). By simple calculations, we
reach the identity

∂

∂τ
[ρu̇i(τ)u̇i(2t− τ)] = ρüi(τ)u̇i(2t− τ)− ρu̇i(τ)üi(2t− τ) =

=
{[(

Aijmn + Gijmn
)

emn(τ) +
(
Gmnij + Bijmn

)
νmn(τ)+

+
(

Fmnrij + Dijmnr
)

χmnr(τ) +
(
aij + bij

)
θ(τ) +

(
αij + βij

)
ϕ(τ)

]
u̇i(2t− τ)

}
,j −

−
[(

Aijmn + Gijmn
)

emn(τ) +
(
Gmnij + Bijmn

)
νmn(τ)+

+
(

Fmnrij + Dijmnr
)

χmnr(τ) +
(
aij + bij

)
θ(τ) +

(
αij + βij

)
ϕ(τ)

]
u̇i,j(2t− τ)− (29)

−
{[(

Aijmn + Gijmn
)

emn(2t− τ) +
(
Gmnij + Bijmn

)
νmn(2t− τ)+

+
(

Fmnrij+Dijmnr
)

χmnr(2t−τ)+
(
aij+bij

)
θ(2t−τ)+

(
αij+βij

)
ϕ(2t−τ)

]
u̇i(τ)

}
,j+

+
[(

Aijmn + Gijmn
)

emn(2t− τ) +
(
Gmnij + Bijmn

)
νmn(2t− τ)+

+
(

Fmnrij+Dijmnr
)

χmnr(2t−τ)+
(
aij+bij

)
θ(2t−τ)+

(
αij+βij

)
ϕ(2t−τ)

]
u̇i,j(τ).

Now we take into account the Equation (10)2, for an arbitrary fixed t ∈ (0, ∞). After some
calculations, we reach the identity

∂

∂τ

[
Ijkφ̇jm(τ)φ̇km(2t− τ)

]
= Ijkφ̈jm(τ)φ̇km(2t− τ)− Ijkφ̇jm(τ)φ̈km(2t− τ) =

=
{[

Fijkmnemn(τ)+Dmnijkνmn(τ)+Cijkmnrχmnr(τ)+cijkθ(τ)+δijk ϕ(τ)
]

φ̇jk(α)
}

,i
−

−
[

Fijkmnemn(τ)+Dmnijkνmn(τ)+Cijkmnrχmnr(τ)+cijkθ(τ)+δijk ϕ(τ)
]

φ̇jk,i(α)+

+
[

Gjkmnemn(τ)+Bjkmnνmn(τ) +Djkmnrχmnr(τ)+bjkθ(τ) +β jk ϕ(τ)
]

φjk(α)− (30)

−
{[

Fijkmnemn(α)+Dmnijkνmn(α)+Cijkmnrχmnr(α)+cijkθ(α)+δijk ϕ(α)
]
φ̇jk(τ)

}
,i
+

+
[

Fijkmnemn(α)+Dmnijkνmn(α)+Cijkmnrχmnr(α)+cijkθ(α)+δijk ϕ(α)
]

φ̇jk,i(τ)

−
[

Gjkmnemn(α)+Bjkmnνmn(α) +Djkmnrχmnr(α)+bjkθ(α) +β jk ϕ(α)
]

φjk(τ),

where, to simplify the writing, we used the notation 2t− τ = α.
Now, similarly, for an arbitrarily fixed t ∈ (0, ∞) we consider the Equation (10)3 to deduce

∂

∂τ
[cθ(τ)θ(2t− τ)] = cθ̇(τ)θ(2t− τ)− cθ(τ)θ̇(2t− τ) =

=−
(
Kijθ,i(τ)θ(2t−τ)

)
,j+
[

aij ėij(τ)+bijν̇ij(τ)+cijkχ̇ijk(τ)−mϕ̇(τ)
]

θ(2t−τ)+ (31)

+
(
Kijθ,i(2t−τ)θ(τ)

)
,j−
[

aij ėij(2t−τ)+bijν̇ij(2t−τ)+cijkχ̇ijk(2t−τ)−mϕ̇(2t−τ)
]
θ(τ).

Finally, for an arbitrarily fixed t ∈ (0, ∞) we will use the Equation (10)4 to obtain

∂

∂τ
[J ϕ̇(τ)ϕ̇(2t− τ)] = J ϕ̈(τ)ϕ̇(2t− τ)− J ϕ̇(τ)ϕ̈(2t− τ) =

=
(

Aij ϕ,i(τ)ϕ̇(2t− τ)
)

,j − Aij ϕ,i(τ)ϕ̇,j(2t− τ)− αijeij(τ)ϕ̇(2t− τ)−

−βijνij(τ)ϕ̇(2t−τ)−δijkχijk(τ)ϕ̇(2t−τ)−ξϕ(τ)ϕ̇(2t−τ)+mθ(τ)ϕ̇(2t−τ)− (32)

−
(

Aij ϕ,i(2t− τ)ϕ̇(τ)
)

,j + Aij ϕ,i(2t− τ)ϕ̇,j(τ) + αijeij(2t− τ)ϕ̇(τ) +

+βijνij(2t−τ)ϕ̇(τ)+δijkχijk(2t−τ)ϕ̇(τ)+ξϕ(2t−τ)ϕ̇(τ)−mθ(2t−τ)ϕ̇(τ).
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Now we use the geometric Equation (2) so that from Equations (29)–(32) we are led to the identity

∂

∂τ

[
ρu̇i(τ)u̇i(2t−τ)+ Ijkφ̇jm(τ)φ̇km(2t−τ)−cθ(τ)θ(2t−τ)+ J ϕ̇(τ)ϕ̇(2t−τ)

]
=

+
{[(

Aijmn + Gijmn
)

emn(τ) +
(
Gmnij + Bijmn

)
νmn(τ)+

+
(

Fmnrij + Dijmnr
)

χmnr(τ) +
(
aij + bij

)
θ(τ) +

(
αij + βij

)
ϕ(τ)

]
u̇i(2t− τ)

}
,j −

−
{[(

Aijmn + Gijmn
)

emn(2t− τ) +
(
Gmnij + Bijmn

)
νmn(2t− τ)+

+
(

Fmnrij+Dijmnr
)

χmnr(2t−τ)+
(
aij+bij

)
θ(2t−τ)+

(
αij+βij

)
ϕ(2t−τ)

]
u̇i(τ)

}
,j+

+
{[

Fijkmnemn(τ)+Dmnijkνmn(τ)+Cijkmnrχmnr(τ)+cijkθ(τ)+δijk ϕ(τ)
]
φ̇jk(2t−τ)

}
,i
−

−
{[

Fijkmnemn+Dmnijkνmn+Cijkmnrχmnr+cijkθ+δijk ϕ
]
(2t−τ)φ̇jk(τ)

}
,i
+ (33)

+
(
Kijθ,j(τ)θ(2t−τ)

)
,i−
(
Kijθ,i(2t−τ)θ(τ)

)
,j+
(
Aij ϕ,i(τ)ϕ̇(2t−τ)

)
,j−
(
Aij ϕ,i(2t−τ)ϕ̇(τ)

)
,j

+
∂

∂τ

{
Aijmneij(τ)emn(2t− τ) + Dijmn

[
eij(τ)νmn(2t− τ) + eij(2t− τ)νmn(τ)

]
+

+Fijkmn

[
emn(τ)χijk(2t− τ) + emn(2t− τ)χijk(τ)

]
+ Bijmnνij(τ)νmn(2t− τ) +

+Gijkmn

[
νmn(τ)χijk(2t−τ)+νmn(2t−τ)χijk(τ)

]
+Cijkmnrχijk(τ)χmnr(2t−τ)

}
+

+
∂

∂τ

{
αij
[
eij(2t−τ)ϕ̇(τ)+eij(τ)ϕ̇(2t−τ)

]
+βij

[
νij(2t−τ)ϕ̇(τ)+νij(τ)ϕ̇(2t−τ)

]}
+

+
∂

∂τ

{
δijk

[
χijk(2t− τ)ϕ̇(τ) + χijk(τ)ϕ̇(2t− τ)

]
+ ξϕ(2t− τ)ϕ̇(τ)

}
.

This last equality is integrated over [0, t]× D. Applying the divergence theorem and taking into
account the initial conditions (12) and the boundary data (17), we arrive at the desired identity (28).
As such, the proof of proposition is finished.

4. On Localization in Time of Solutions

The following theorem is essential to obtain the main result of our study.

Theorem 1. Suppose the main hypotheses (a)–(c) are satisfied. If
(
ui, φij, θ, ϕ

)
is a solution of the mixed

problem P , which corresponds to zero initial conditions (12) and null boundary data (17), then this solution can
only be null, that is,

ui(t, x) = 0, φij(t, x) = 0, θ(t, x) = 0, ϕ(t, x) = 0, ∀(t, x) ∈ [0, ∞)× D. (34)

Proof. By combining the results from Equations (25) and (28), we obtain∫
B

(
Aijmneijemn + 2Dijmneijνmn + 2Fijmnreijχmnr+

+Bijmnνijνmn + 2Gijmnrνijχmnr + Cijkmnrχijkχmnr

)
dV + (35)

+
∫

B

(
Aij ϕ,i ϕ,j+2αijeij ϕ+2βijνij ϕ+2δijkχijk ϕ+ξϕ2

)
dV=

=−
∫ t

0

∫
D

(
Kijθ,iθ,j−aij ėijθ−bijν̇ijθ−cijkχ̇ijkθ−mθϕ̇

)
dVdτ,

for any t ∈ [0, ∞).
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Inspired by the identities (18) and (35), we introduce the functions G, E and F, defined by

E(t) =
1
2

∫
B

[(
ρu̇iu̇i + Ijkφ̇jmφ̇km

)
+ J ϕ̇2 + cθ2

]
dV +

+
∫

B

[
1
2

Aijmneijemn + Dijmneijνmn + Fijmnreijχmnr+

+
1
2

Bijmnνijνmn+Gijmnrνijχmnr+
1
2

Cijkmnrχijkχmnr

]
dV+

+
∫

B

[
1
2

Aij ϕ,i ϕ,j+αijeij ϕ+βijνij ϕ+δijkχijk ϕ+
1
2

ξϕ2
]

dV,

G(t) =
∫

B

[
1
2

Aijmneijemn + Dijmneijνmn + Fijmnreijχmnr+ (36)

+
1
2

Bijmnνijνmn+Gijmnrνijχmnr+
1
2

Cijkmnrχijkχmnr

]
dV+

+
∫

B

[
1
2

Aij ϕ,i ϕ,j+αijeij ϕ+βijνij ϕ+δijkχijk ϕ+
1
2

ξϕ2
]

dV,

F(t) = G(t) + αE(t),

for any t ∈ [0, ∞).
In (36)3 α is a positive constant, conveniently of small chosen.
It is easy to see that F(t) can be rewritten in the form

F(t) =
1
2

∫
B

[
α
(

ρu̇iu̇i + Ijkφ̇jmφ̇km + J ϕ̇2 + cθ2
)
+

+(2 + α)
(

Aijmneijemn + 2Dijmneijνmn + 2Fijmnreijχmnr+ (37)

+Bijmnνijνmn+2Gijmnrνijχmnr+Cijkmnrχijkχmnr+

+Aij ϕ,i ϕ,j+2αijeij ϕ+2βijνij ϕ+2δijkχijk ϕ+ξϕ2
)]

dV.

Based on Equations (35) and (37), the function F receives the following from

F(t) = (α− 1)
∫ t

0

∫
D

Kijθ,iθ,j dVdτ −

−2
∫ t

0

∫
D

(
aij ėijθ+bijν̇ijθ+cijkχ̇ijkθ

)
dVdτ−2

∫ t

0

∫
D

mθϕ̇dVdτ, (38)

so we can immediately deduce that

dF(t)
dt

= (α− 1)
∫

D
Kijθ,iθ,j dV −

−2
∫

D

(
aij ėijθ+bijν̇ijθ+cijkχ̇ijkθ

)
dV−2

∫
D

mθϕ̇dV. (39)

Now, we can choose a sufficiently small positive constant β and a positive constant M1,
computed in terms of β and constitutive coefficients, so that∫

D

(
aij ėijθ+bijν̇ijθ+cijkχ̇ijkθ

)
dV ≤ β

∫
D

Kijθ,iθ,j dV +

+M1

∫
D

(
ρu̇iu̇i + Ijkφ̇jmφ̇km + J ϕ̇2 + cθ2

)
dV. (40)
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On the other hand, can be determined the positive constant M2 so that the following inequality
takes place, ∫

D
mθϕ̇ dV ≤ M2

∫
B

(
J ϕ̇2 + cθ2

)
dV. (41)

If we choose β ≤ 1− α and take into account the inequalities (39)–(41), we can find a positive
constant M3 so that

dF(t)
dt
≤ M3

∫
D

(
ρu̇iu̇i + Ijkφ̇jmφ̇km + J ϕ̇2 + cθ2

)
dV. (42)

Now, considering the inequalities (40)–(42) we can find a positive constant c so that for every
t ≥ 0, inequality occurs

dF(t)
dt
≤ cF(t), (43)

from where by direct integration, we are led to the inequality

F(t) ≤ F(0)ect, ∀t ≥ 0, (44)

so that we can deduce that F(t) = 0, for any t ≥ 0, taking into account the null initial data and the
expression of F(t) from (36).

Also, from (36), we deduce u̇i(x, t) = 0, φ̇ij(x, t) = 0, θ̇(x, t) = 0, ϕ̇(x, t) = 0, for any t ≥ 0, x ∈ D.
Now the conclusion of Theorem 1 is easy to obtain, again considering that the initial data

is null.

Finally, we want to formulate and prove the main theorem of our work. We will show that
it is impossible to localizate in a finite time any solutions of our mixed problem P consisting of
Equations (2), (4), and (6)–(8), the null initial conditions (12) and homogeneous boundary conditions
(17). In fact, we show that the only solution to this mixed problem that disappears in a finite time is
the null solution.

Theorem 2. Assume that the main hypotheses (a)–(c) are satisfied. If t1 ≥ 0 is a finite time and
(
ui, φij, θ, ϕ

)
is a solution of the mixed problem P , so that ui(t) = 0, φij(t) = 0, θ(t) = 0, ϕ(t) = 0, for any t ≥ t1, then we
have ui(t) = 0, φij(t) = 0, θ(t) = 0, ϕ(t) = 0, for any t ≥ t1.

Proof. To obtain the conclusion of Theorem 2, we consider the mixed problem P in the case of
homogeneous boundary conditions and considering the initial null data

ui(t1, x) = 0, u̇i(t1, x) = 0, φij(t1, x) = 0, φ̇ij(t1, x) = 0,

θ(t1, x) = 0, ϕ(t1, x) = 0, ϕ̇(t1, x) = 0, t1 ≥ 0, x ∈ D.

If we take into account these null initial data, according to Theorem 1, the problem P admits only
the null solution.

5. Conclusions

This paper is dedicated to the linear mixed initial-boundary value problem in the context of the
theory of thermoelasticity for bodies with voids that have a dipolar structure. After we put down some
auxiliary identities, we approach the issue of the uniqueness for the solution for the mixed problem.
Then, we approach the question of the possibility of locating in time of solution for this problem,
namely, we have shown that it is impossible to locate in a finite time of the solution of mixed problem.
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Even if we combined the effect of the dipolar structure with the effect of the voids and with the thermal
one, not were ensured the sufficient conditions for deformations vanish in a finite time.

If we take into account the fact that the porous media with a dipolar structure very accurately
models the structure and behavior of the bones, we can deduce that a concrete application of our
calculations is the following. If a bone is hit in one part accidentally, the time interval after which the
pain caused by the blow completely disappears cannot be established exactly. However, the porous
bodies with a dipolar structure also model other practical media, such as polystyrene, artificial porous
materials, rocks, soils, and so on. A number of concrete applications of the theoretical results from
our study can be made for these particular media. To this aim we must consider the isotropic case
because in this situation the number of coefficients decreases significantly. Then, we will look for a
specialized laboratory, of high performance, that can provide us with concrete values of the coefficients,
for specific materials.
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