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Abstract: In this paper, the unsteady magnetohydrodynamic (MHD) flow of hybrid nanofluid
(HNF) composed of Cu − Al2O3/water in the presence of a thermal radiation effect over the
stretching/shrinking sheet is investigated. Using similarity transformation, the governing partial
differential equations (PDEs) are transformed into a system of ordinary differential equations (ODEs),
which are then solved by using a shooting method. In order to validate the obtained numerical results,
the comparison of the results with the published literature is made numerically as well as graphically
and is found in good agreements. In addition, the effects of many emerging physical governing
parameters on the profiles of velocity, temperature, skin friction coefficient, and heat transfer rate
are demonstrated graphically and are elucidated theoretically. Based on the numerical results, dual
solutions exist in a specific range of magnetic, suction, and unsteadiness parameters. It was also
found that the values of f ′′ (0) rise in the first solution and reduce in the second solution when the
solid volume fraction φCu is increased. Finally, the temporal stability analysis of the solutions is
conducted, and it is concluded that only the first solution is stable.

Keywords: dual solutions; stability analysis; HNF; magnetic field; thermal radiation

1. Introduction

Researchers are interested in studying the enhancement of heat transfer due to its significant
applications in engineering and industries. The heat transfer of convectional fluids such as ethylene
glycol, water, and oil can be utilized in various apparatus of engineering, for instance, devices of electrons
and heat exchangers. However, these base liquids keep limited thermal conductivity or, in other
words, they have low thermal conductivity. To overcome this shortcoming, engineers, mathematicians,
and researchers of various fields attempt to improve thermal conductivity of previously mentioned
liquids by including a solitary kind of nanosized particles to form a mixture called ‘nanofluid’, which
was initially presented by Choi and Eastman [1]. It is easily shown from the previous studies that
solid nanoparticles possess the ability increase thermal conductivity and the rate of heat transfer of
convectional base fluids. Consequently, numerous analysts and thermal experts have carried out
investigations in order to enhance the rate of heat transfer of nanofluid for various perspectives,
numerically as well as experimentally. For instance, the examination of the single-phase models of
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nanofluids was established by Tiwari and Das [2]. This model has been constructed by considering
a solid volume fraction of nanoparticles in the base fluid, and, later, the governing equations have
been solved numerically by employing the finite volume method. As a result, this model has been
widely considered by many scientists, engineers, and mathematicians, such as Benzema et al. [3],
Dero et al. [4], Lund et al. [5,6], Dogonchi, et al. [7,8], Amini, et al. [9], Zaib et al. [10], Raza et al. [11],
Rasool et al. [12,13], Dinarvand et al. [14], and Roşca, et al. [15] to investigate different types of flow.
Furthermore, to keep the demand of the high heat transfer rate from industries and other sectors,
researchers have introduced a new kind of the nanofluid by considering the two different types of
the solid particles in the single convectional base fluid. This kind of nanofluid is known as a hybrid
nanofluid [16]. It is worth mentioning that thermal conductivity of regular base fluid in hybrid
nanofluid is higher than in simple nanofluid.

Due to this nice property, studies of different types of hybrid nanofluids have gained attention.
Devi and Devi [17] examined the Cu−Al2O3/ water hybrid nanofluid. The obtained numerical results
were compared with the experimental results of Suresh et al. [18] and were found in excellent agreement.
Toghraie et al. [19] further adopted this model for the ZnO− TiO2/EG hybrid nanofluid. Meanwhile,
Moghadassi et al. [20] studied the Al2O3 −Cu/ water base hybrid nanofluid numerically and found that
“for the hybrid nanofluids, the average Nusselt number increase was 4.73% and 13.46% in compared
to Al2O3 water and pure water, respectively”. Moreover, this model has been widely employed by
many researchers, such as Hayat et al. [21], Saba et al. [22], Acharya et al. [23], Afridi et al. [24],
Shafiq et al. [25,26], and Manh et al. [27]. Furthermore, Khashi’ie et al. [28] found dual solutions of
magnetohydrodynamic (MHD) flow of a hybrid nanofluid in the presence of Joule heating and noticed
that higher values of Eckert number do not affect boundary layer separation. Lund et al. [29] studied
hybrid nanofluids by considering copper and alumina as solid particles with water as a base fluid.
Dual solutions were noticed in the presence of high suction. Dual solutions of a hybrid nanofluid over
a vertical thin needle were investigated by Waini et al. [30]. They performed a stability analysis on
dual solutions and discovered that only the first solution is stable. Later, Waini et al. [31] considered an
unsteady flow of hybrid nanofluid over a stretching/shrinking surface and found that dual solutions
appeared in certain ranges of an unsteadiness parameter.

This paper is an extension of the study carried out by Waini et al. [31] by considering the unsteady
magnetohydrodynamic (MHD) flow of the Cu −Al2O3/ water hybrid nanofluid in the presence of
thermal radiation over the stretching/shrinking parameter. A model of Tiwari and Das [2] is used to
deal with governing equations by including two solid nanoparticles, namely copper (Cu) and alumina
(Al2O3), with water as a base fluid. To the best of authors’ knowledge and based on a survey of
previous literature, this kind of study has not been investigated.

2. Problem Formulation

Let us consider an unsteady MHD incompressible flow of the Cu − Al2O3/ water nanofluid
flow on a stretching/shrinking sheet in the presence of thermal radiation effect. Figure 1 shows the
physical model and coordinate system of the concerned problem. The velocity of wall mass transfer is

vw(x) = −
(
ϑ f c

(1−εt)

) 1
2

f (η) where c is a positive constant. It is also assumed that the flow is subjected to a

transverse magnetic field of strength B = B0

(1−εt)1/2 where B0 is the constant applied magnetic field. By

including the considered assumptions, the equation of mass, momentum, and energy in the form of a
boundary layer are expressed in Tiwari and Das’ model [2], as below:

∂u
∂x

+
∂v
∂y

= 0 (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
µhn f

ρhn f

∂2u
∂y2 −

σ∗B2u
ρhn f

(2)
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∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=

 khn f(
ρcp

)
hn f

+
16σ1T3

∞

3k∗
(
ρcp

)
hn f

∂2T
∂y2 (3)

subject to the following boundary conditions:
t < 0, u = v = 0, T = T∞

t ≥ 0, v = vw, u = λuw, T = Tw at y = 0
u→ 0, T→ T∞ as y→∞

(4)

where uw(x, t) = = cx
(1−εt) is the velocity of the surface. In the current study, thermophoresis properties

of Waini et al. [31] are adopted. These properties of hybrid nanofluid are presented in Tables 1 and 2.
In order to reduce the governing equations into a system of ordinary differential equations (ODEs),

the following similarity transformation variables are employed:

η =

(
c

ϑ f (1− εt)

) 1
2

y, u =
cx

(1− εt)
f ′(η), v = −

(
ϑ f c

(1− εt)

) 1
2

f (η),θ(η) =
T − T∞

Tw − T∞
(5)

Substituting Equation (5) in Equations (1)–(3), Equation (1) is definitely fulfilled, and Equations
(2)–(3) take the accompanying dimensionless form of ODEs:

f ′′′ + ξ1
{

f f ′′ − f ′2 −A(0.5η f ′′ + f ′)
}
− ξ2M f ′ = 0 (6)

1
ξ3Pr

[(
khn f /k f

)
+

4Rd
3

]
θ′′ + fθ′ − 0.5Aηθ′ = 0 (7)

subject to the following boundary conditions:{
f (0) = S, f ′(0) = λ, θ(0) = 1
f ′(η)→ 0,θ(η)→ 0 as η→∞

(8)

The reduced quantities are expressed as A = ε
c , M =

σ∗B2
0

c ρ f
, Pr =

ϑ f
α f

, Rd =
4σ1T3

∞

k∗k f
.


ξ1 =

(
1−φAl2O3

)2.5
(1−φCu)

2.5
{
(1−φCu)

[
1−φAl2O3 + φAl2O3

(
ρAl2O3
ρ f

)]
+ φCu

(
ρCu
ρ f

)}
ξ2 = (1−φCu)

2.5
(
1−φAl2O3

)2.5

ξ3 =

{
(1−φCu)

[
1−φAl2O3 + φAl2O3

(ρcp)Al2O3

(ρcp) f

]
+ φCu

(ρcp)Cu

(ρcp) f

} (9)

The physical quantities of attention are the skin friction coefficient C f and the local Nusselt number
Nux, which are expressed as follows:

C f =
µhn f

ρ f u2
w

(
∂u
∂y

)∣∣∣y = 0 , Nux = −
xkhn f

k f (Tw − T∞)

(
∂T
∂y

)∣∣∣y = 0 (10)

Applying Equation (5) in Equation (10), leads to:

√

ReC f =
1(

1−φAl2O3

)2.5
(1−φCu)

2.5
f ′′ (0);

√
1

Re
Nux = −

khn f

k f

[
1 +

4Rd
3

]
θ′(0) (11)

where Re = xuw
ϑ f

is the local Reynold number.
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Figure 1. Physical models and coordinate systems. 
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3. Stability Analysis

In order to perform a temporal analysis of the solutions’ stability, introducing a new dimensionless
time-dependent similarity transformation variable is required, as recommended by Merkin [32],
Dero et al. [33,34], and Lund et al. [35–37]. Letting τ = ct

(1−εt) yields the following new similarity
transformation variables:

u = cx
(1−εt)

∂ f (η, τ)
∂η , v = −

(
ϑ f c

(1−εt)

) 1
2

f (η, τ),θ(η, τ) = T−T∞
Tw−T∞

η =
(

c
ϑ f (1−εt)

) 1
2

y; τ = ct
(1−γt)

(12)

Substituting Equation (12) in Equations (2) and (3) leads to:

∂3 f
∂η3 + ξ1

 f
∂2 f
∂η2 −

(
∂ f
∂η

)2

−A
(
0.5η

∂2 f
∂η2 +

∂ f
∂η

)
− (1 + Aτ)

∂2 f
∂τ∂η

− ξ2M
∂ f
∂η

= 0 (13)

1
ξ3Pr

[(
khn f /k f

)
+

4Rd
3

]
∂2θ

∂η2 + f
∂θ
∂η
− 0.5Aη

∂θ
∂η
− (1 + Aτ)

∂θ
∂τ

= 0 (14)

subject to the following boundary conditions: f (0, τ) = S, ∂ f (0, τ)
∂η = λ,θ(0, τ) = 1

∂ fη(, τ)
∂η = θ(η, τ) = 0 as η→∞

(15)

To check the stability of the steady flow solutions, where f (η) = f0(η),θ(η) = θ0(η), and
∅(η) = ∅0(η), the following boundary value problem (8)-(11) must be satisfied:{

f (η, τ) = f0(η) + e−γτF(η, τ)
θ(η, τ) = θ0(η) + e−γτG(η, τ)

(16)

where F(η) and G(η) are small relatives of f0(η) and θ0(η), respectively, and γ is an unknown
eigenvalue parameter, which need to be determined. Substituting Equation (16) in Equations (13)–(14)
by considering τ = 0, gives the following linearized eigenvalue problem:

F′′′0 + ξ1
{

f0F′′0 − 2 f ′0F′0 + F0 f ′′0 −A
(
0.5ηF′′0 + F′0

)
+ F′0

}
− ξ2MF′0 = 0 (17)

1
ξ3Pr

[(
khn f /k f

)
+

4Rd
3

]
G′′0 + f0G′0 + F0θ

′

0 − 0.5ηAG′0 + G0 = 0 (18)
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subject to the following boundary conditions:{
F0(0) = 0, F′0(0) = 0, G0(0) = 0
F′0(η)→ 0, G0(η)→ 0 as η→∞

(19)

According to Haris et al. [38] and Khashi’ie et al. [39], one boundary condition has to be relaxed
in order to obtain the value(s) of the smallest eigenvalue. It should be noted that this relaxation in
boundary condition does not affect the results [40]. In this particular problem, F′0(η)→ 0 as η→∞ is
relaxed into F′′0 (0) = 1.

4. Result and Discussion

In this section, Equations (6) and (7) with boundary conditions (8) have been solved numerically
by employing the shooting method in Maple software. The shooting method has been employed by
many researchers [41–44]. As suggested by Devi and Deci [17], the solid volume fraction φAl2O3 = 0.1
is kept as a constant in many graphs. Furthermore, the solid volume fraction φCu is added in order to
make the Cu−Al2O3/ water hybrid nanofluid. As recommended by Dero et al. [4] and Iqbal et al. [45],
the Prandtl number Pr = 6.2 is kept as constant and employed to produce the results of the current
study. Table 3 shows the comparison of the numerical values of f ′′ (0) and −θ′(0) with the published
results of waini et al. [31] for Cu–water nanofluid. It is worth mentioning that Waini et al. [31] used the
3-stage Labatto IIIa formula in a BVP4C solver to solve the resultant similarity equations. It is found
that the current results show outstanding agreement with the results of Waini et al. [31]. Therefore,
it can be concluded that the accuracy of the present method is fine, and it can be used in this study.
Figure 2 is demonstrated for the comparison purpose in order to check the accuracy of the used method.
It is observed that the critical values of the current study have a good agreement with the critical values
of published paper (allude Figure 6 in Waini et al. [31]). After comparison, this method can be used
confidently in this problem.

Figures 3 and 4 show the variation of f ′′ (0) and −θ′(0) against A for φCu = 0.001, 0.01, and 0.1.
By keeping A fixed, an expansion of φCu creates a reduction in the heat transfer rate, which implies
that the heat transfer coefficient is decreased on the sheet, while an opposite nature is observed for the
f ′′ (0) in the second solution. On the other hand, the coefficient of skin friction decreases in the first
solution. Moreover, it is noticed that multiple solutions exist for A > Ac, whereas no solution exists
for A < Ac. It is worth mentioning here that Ac is the critical value where multiple solutions exist.
Variations of f ′′ (0) and −θ′(0) along M for numerous values of φCu were drawn in Figures 5 and 6,
respectively. It is observed from them that when the solid volume fraction φCu increases the values of
the critical point of M are also increased. Furthermore, Mc1 = 0.4492, Mc2 = 0.3912 are the respective
critical values of M for φCu = 0.001 and 0.01. It is examined that the critical values of M get smaller
for higher values of the solid volume fraction φCu, which is the physical reason of the extension of
the thickness of boundary layer separation. Moreover, it can be seen that the values of f ′′ (0) rises in
the first solution and reduces in the second solution when the solid volume fraction φCu is increased.
In the meantime, the rate of heat transfer decreases for the unstable solution and increases for the
stable solution with the increasing of φCu.

In detail, Figures 7 and 8 show the variation of f ′′ (0) and −θ′(0) with A for the numerous values
of the mass suction parameter S. It is observed that the domain of the solutions increases along the
critical value of A, moving to one side when the mass suction parameter S is decreased. In light of our
calculations, Ac1 = −10.1708, Ac2 = −7.2207, and Ac3 = −5.2042 are the respective critical values of A
for S = 1.8, 1.75 and 1.7. At the same time, it is examined that the smaller critical value is for S = 1.8
as compared to S = 1.75 and S = 1.7. Henceforth, boundary layer separation is delayed for the higher
values of the mass suction S. In addition, the coefficient of skin friction increases in the first solution
with the developing of S, whereas it declines in the second solution. The expanding of S prompts to rise
the effect of the heat transfer rate −θ′(0) in both solutions. Figures 9 and 10 demonstrate the variation
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of f ′′ (0) and −θ′(0) with S for the numerous values of φCu. It can be found that the increments in φCu
lead to smaller critical values of Sc. According to our computation, Sc1 = 1.7886, Sc2 = 1.78234, and
Sc3 = 1.7496 are the respective critical values of S for φCu = 0.001, 0.01, and 0.1. Furthermore, the heat
transfer rate rises in both solutions for the higher values of the mass suction S. This is due to fact that
mass suction S helps the molecules of the hybrid nanofluid to transfer the heat effectively. On the other
hand, f ′′ (0) increases (decreases) in the first (second) solution when φCu is enhanced.

Figures 11 and 12 illustrate the profiles of velocity f ′(η) and the temperature θ(η) for S. It was
demonstrated that the rise in S decreases the velocity of the fluid in the first solution but it increases the
velocity of the fluid in the second solution. On the other hand, it is perceived that the temperature of
fluid decreases with the expansion of the mass suction S. The effect of the thermal radiation parameter
on θ(η) is shown in Figure 13. It can be noticed that the thickness of the thermal boundary layer,
as well as temperature of the fluid, increases with the increasing values of Rd.

Finally, the linearized eigenvalue Equations (17) and (18) have been solved using a 3-stage Labatto
IIIa formula in a BVP4C solver in MATLAB 2017b. The results of the stability analysis of the solutions
are demonstrated graphically in Figure 14. It can be easily observed from the figure that the initial
decay of disturbance is denoted by the positive value of γ and a stable flow, while the initial growth of
disturbance is indicated by the negative values of γ and an unstable flow. Additionally, it is noticed
that γ tends to zero at the critical values of A from both solutions.

Table 1. Thermophysical properties of the hybrid nanofluid [46].

Properties Hybrid Nanofluid

Dynamic viscosity µhn f =
µ f

(1−φAl2O3 )
2.5
(1−φCu)

2.5

Density ρhn f = (1−φCu)
[(

1−φAl2O3

)
ρ f + φAl2O3ρAl2O3

]
+ φCuρCu

Thermal conductivity
khn f =

kCu + 2kn f−2φCu(kn f−kCu)
kCu + 2kn f + φCu(kn f−kCu)

×

(
kn f

)
where kn f =

kAl2O3 + 2k f−2φAl2O3 (k f−kAl2O3 )
kAl2O3 + 2k f + φAl2O3 (k f−kAl2O3 )

×

(
k f

)
Heat capacity

(
ρcp

)
hn f

= (1−φCu)
[(

1−φAl2O3

)(
ρcp

)
f
+ φAl2O3

(
ρcp

)
Al2O3

]
+ φCu

(
ρcp

)
Cu

Table 2. The thermo physical properties of the base fluid (water) and the nanoparticles [47,48].

Fluids ρ cp(J/kg K) k (W/m K)

Alumina (Al2O3) 3970 765 40
Copper (Cu) 8933 385 400
Water (H2O) 997.1 4179 0.613

Table 3. Values of f ′′ (0) and θ′(0) for the Cu–water nanofluid (φCu = 0.2) with various values of A
when M = Rd = 0, S = 2.1, Pr = 6.2, and λ = −1.

A φAl2O3 f”(0) −θ
′

(0)

Waini [31] Present Results Waini [31] Present Results

1st Soln 2nd Soln 1st Soln 2nd Soln 1st
Soln

2nd
Soln 1st Soln 2nd Soln

−1 0 2.194247 −1.491281 2.19424658 −1.49128119 7.073680 6.884548 7.0736798 6.88454793
−1 0.1 – – 1.60888878 −0.69818494 – – 5.2238150 5.0737595
−3 0 1.521197 −4.144746 1.52119229 −4.14474572 7.497151 7.296176 7.4971508 7.2961762
−3 0.1 – – 0.83697819 −2.53135605 – – 5.6316794 5.4925121
−5 0 0.844435 −6.431507 0.84443506 −6.43150738 7.858446 7.657801 7.8584457 7.6578012
−5 0.01 – – 0.77597819 −6.20435575 – – 7.6375695 7.4426329
−9 0 −0.517287 −10.58983 −0.51728551 −10.5898303 8.473316 8.277676 8.4733163 8.27767616
−9 0.01 – – −0.60021181 −10.2417356 – – 8.24709639 8.05819003
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5. Conclusions

The problem of the unsteady MHD flow of the Cu−Al2O3/ water hybrid nanofluid in the presence
of the thermal radiation effect over the stretching/shrinking sheet is examined. Two methods are
adopted to carry out the numerical computations of the current problem, a shooting method is used to
get the dual solutions of ODEs (6–8) in MAPLE software 2018, and the computation of the stability
analysis is carried out by employing a 3-stage Labatto IIIa formula in a BVP4C solver in MATLAB 2017b.
The impacts of φCu unsteadiness parameter S and suction parameter S on the f ′′(0), −θ′(0), f ′(η),
and θ(η) were exhibited graphically and examined. The results show that the development (reduction)
of f ′′(0) and the decline (reduction) of −θ′(0) past a shrinking sheet is found with the expansion of
φCu in the first (second) solution. The temperature of fluid in both solutions increase (decrease) for the
higher values of Rd and S. The fluid velocity decreases when the effect of suction parameter S enhanced
in the first solution, whereas it increases in the second solution. Furthermore, it is found that the skin
friction coefficient increases with an increase in solid volume friction of φCu and suction parameter S in
the first solution, while it decreases in the second solution. On the other hand, an improvement in the
heat transfer rate is noticed when suction parameter S is increased for both solutions, whereas the
totally opposite trend is noticed for the case of solid volume friction of φCu. For the certain ranges
of the suction parameter S, unsteadiness parameter A, and magnetic parameter M, dual solutions
are noticed. Furthermore, the results of the temporal stability analysis confirm that the first solution
is stable, whereas the second solution is unstable. In future, this work can be continued to assess
the impact of viscous dissipation, joule heating, boundary slip conditions, and convective boundary
conditions. Other than these impacts, it can be extended for three-dimensional boundary layer flows
by conserving various possible effects.
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Abbreviation

Nomenclature
T 0 a constant φAl2O3 nanoparticle volume fraction of the iron oxide.
T∞ ambient temperature M magnetic parameter
′ differentiation with respect to η K1 Porous parameter
Rd Thermal radiation c constant
ρhn f effective density of hybrid nanofluid Pr Prandtl number
ρn f effective density of nanofluid C f skin friction coefficient

µhn f
effective dynamic viscosity of hybrid
nanofluid

γ1 smallest eigen value

µn f effective dynamic viscosity of nanofluid τ Stability transformed variable
σ∗ electrical conductivity vw suction/injection velocity
f fluid fraction T Temperature
M Hartmann/magnetic number khn f thermal conductivity of the hybrid nanofluid(
ρcp

)
hn f heat capacitance of the hybrid nanofluid kn f thermal conductivity of the nanofluid(

ρcp
)
n f heat capacitance of the nanofluid t time

hnf Hybrid nanofluid η transformed variable
Nu local Nusselt number A Unsteadiness parameter
Re local Reynolds number T w variable temperature at the sheet
B Magnetic field u, v velocity components
n f nanofluid fraction λ shrinking/stretching parameter
k∗ mean absorption coefficient σ1 Stefan–Boltzmann constant

φCu
nanoparticle volume fraction of the
copper

S
S < 0 for suction parameter and S > 0 for
blowing parameter
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