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Abstract: In recent decades, there has been a massive growth towards the prime interest of
the hydrogen energy industry in automobile transportation fuel. Hydrogen is the most plentiful
component and a perfect carrier of energy. Generally, evaluating a suitable hydrogen power plant site
is a complex selection of multi-criteria decision-making (MCDM) problem concerning proper location
assessment based on numerous essential criteria, the decision-makers expert opinion, and other
qualitative/quantitative aspects. This paper presents the novel single-valued neutrosophic (SVN)
multi-attribute decision-making method to help decision-makers choose the optimal hydrogen power
plant site. At first, novel operating laws based on sine trigonometric function for single-valued
neutrosophic sets (SVNSs) are introduced. The well-known sine trigonometry function preserves the
periodicity and symmetric in nature about the origin, and therefore it satisfies the decision-maker
preferences over the multi-time phase parameters. In conjunction with these properties and laws,
we define several new aggregation operators (AOs), called SVN weighted averaging and geometric
operators, to aggregate SVNSs. Subsequently, on the basis of the proposed AOs, we introduce
decision-making technique for addressing multi-attribute decision-making (MADM) problems and
provide a numerical illustration of the hydrogen power plant selection problem for validation.
A detailed comparative analysis, including a sensitivity analysis, was carried out to improve the
understanding and clarity of the proposed methodologies in view of the existing literature on
MADM problems.

Keywords: single-valued neutrosophic sets; sine trigonometric operational laws; sine trigonometric
aggregation operators; decision-making technique; hydrogen power plant selection problem

1. Introduction

Fossil fuels and renewable energy are the most important natural resources for the social and
economic growth of a country. Invariably and exceptionally, it is clearly observed that energy demand
is increasing significantly over time throughout the world. The major dependence on fossil fuels leads
directly to carbon dioxide emissions that harm the environment and also rapidly exhaust the natural
stock. The implementation of the electrification technique decreased the emission factor dramatically,
but could not ultimately be considered a viable solution. However, hydrogen energy, wind power,
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biomass fertility, biofuel, solar energy, geothermal, etc. are the sustainable energy sources that can be
misused and used in practical purposes that have been differentiated up to this point.

In the current scenario, the viability in terms of technology, economic efficiency and environment
give rise to the selection of hydrogen energy as a new kind of renewable energy source. Significant
advantageous features of hydrogen are as follows, it is a extreme heat-burning gas and its chemical
composition is free from elements which on combustion releases toxic gases e.g., CO2, SO2, and NO2,
whereas hydrogen releases only water upon combustion. As hydrogen can be obtained from water
(electrolysis) and solar energy (solar hydrogen), we can have an ample and endless source of hydrogen
energy for the society and its need. Therefore, the consideration of hydrogen energy is supposed
to be a kind of clean renewable energy having perfectly zero emissions for the future prospects
and it has received due attention of the researchers in recent past [1]. Various researchers dealt
with issues of felicitating the hydrogen energy for the energy balance [2]. For the sake of electricity
production, alternative energy sources such as hydrogenated fuels have also been utilized in [3].
Juste [4] experimented with hydrogen injection as an augmented fuel and investigated the gas turbine
combustion chambers.

Over the past few decades, numerous researchers and decision-makers have focused almost
entirely on renewable energy/technology selection issues, particularly on hydrogen power, which
has always been a major task. The task of choosing the right and most appropriate site for such
sustainable energy comprises of demographic view point, socio-economic factor and infrastructure.
The decision-making algorithms certainly enhance the capabilities of the experts/decision-makers
to moderate the content of decisions in terms of their rationality and efficiency in a better sense.
The process of site selection for hydrogen power plant can be modeled as a multi-attribute
decision-making (MADM) problem as various available inter-conflicting attributes must be explored.

There are several challenges in decision-making due to uncertainty. Zadeh [5] developed the
concept of a fuzzy set (FS) in 1965 to address the uncertainty in decision-making problems (DMPs).
FSs can describe fuzzy information in real-life, and analyze a certain imprecise phenomenon. Since
then, researches on FSs have emerged in large numbers, like FSs for decision-making [6,7]. In 1983,
Atanassove [8] proposed the intuitionistic fuzzy set (IFS) to extend FSs. IFS contains positive and
negative membership grades that meet the sum of two grades being less than or equal to 1. Thereby,
ushering a new era for fuzzy mathematics, and many studies such as aggregation operator [9–11]
have been completed. Based on IFS, to break its constraint, Yager [12] given a notion of generalized
orthopair fuzzy set, i.e., q-rung orthopair fuzzy set (q-ROFS). There are also a positive and negative
membership grades included in q-ROFS, but they satisfy the q-th power of membership grades makes
a result which is less than or equal to 1. From the respective of available universe, it is obvious q-ROFSs
can describe more fuzzy data than IFSs, thus many researches concerning q-ROFS [13–18] appeared.

Both the IF set and the PyF set addressed just two classes, i.e., “yes” and “no”, but in the case of
selection we have three types of responses, e.g., "yes”, “no”, and “neutral”, and the complicated answer
is “refusal”. To overcome this business, Cuong [19] implemented a novel concept of picture fuzzy set
(PFS), dignifying the positive, neutral and negative membership grades with the condition that sum
of its membership grades be less or equal to 1. Since then, researches on PFSs have emerged in large
numbers, like decision-making techniques under picture fuzzy information are discussed in [20–27].
However, in some uncertain environments, the sum of positive, neutral and negative membership
grades may be greater than 1, which is not suitable for PFS. In view of this, the spherical fuzzy set
(SFS) [28] proposed by Ashraf and Abdullah relaxes the condition to allow the sum of the membership
grades to be greater than 1, whose sum of squares is less than or equal to 1.

Since Ashraf and Abdullah proposed the spherical fuzzy set theory, many scholars have
introduced various aggregation methods for handling the spherical fuzzy data, which enriched
the theory and application of SFS. Ashraf et al. [29] presented the arithmetic/geometric aggregation
operations over the spherical fuzzy sets. Also, Ashraf et al. [30] presented the concept of the spherical
fuzzy Dombi aggregation operators under spherical fuzzy information. Jin et al. [31] developed the
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logarithmic-based aggregation operators for spherical fuzzy numbers to deal with uncertainty in
decision-making problems. Jin et al. [32] proposed the linguistic spherical fuzzy aggregation operators
under SF information. Rafiq et al. [33] proposed the decision-making technique based on the cosine
similarity measures under SF information. Ashraf et al. [34] presented the spherical distance measure
based decision-making technique under spherical fuzzy environments. Ashraf et al. [35] introduced
the spherical fuzzy set representation of spherical fuzzy t-norm and t-conorm and discussed the
TOPSIS-based decision-making technique under SF information. Zeng et al. [36] introduced the
spherical fuzzy rough set based TOPSIS approach to deal the uncertainty in the form of spherical fuzzy
sets. Ashraf et al. [37] presented the GRA technique user spherical linguistics fuzzy information by
utilizing the concept of Choquet integral.

Smarandache [38] presented a novel set called neutrosophic set (NS), which is consist
of a truth-membership, an indeterminacy-membership and a falsity-membership functions.
Each membership function is a non-standard subset of a non-standard interval. Three membership
functions of NS are mutually independent, therefore NS can be utilized to deal with more varied
fuzzy events than previous fuzzy sets. Wang et al. [39] presented the single-valued neutrosophic set
(SVNS). Due to the superiority of SVNS, there are many researches associated with it, such as Ye [40]
that introduced the correlation coefficient of SVNSs. Liu et al. [41] presented the 2-tuple linguistic
Dombi power Heronian mean AOs under SVN information. Liu et al. [42] presented the power
muirhead mean AOs under SVN information and discussed their application in decision-making
problem. liu et al. [43] established the power Heronian AOs under linguistic neutrosophic information
and discussed their application in decision-making. Liu et al. [44] presented the group decision-making
technique under hesitant interval neutrosophic uncertain linguistic information. Ye [45] introduced
the cross-entropy under SVN information and also discussed their application in DMPs. Subsequently,
some aggregation operators were studied, like [46–48]. From many theories and applications of SVNS,
its applicability has been realized. For more study, we refer to [49–53].

It is understood that the laws of the operation play a key role model for any aggregation process.
In that direction, Ye [54] defined the exponential operational laws (EOLs) for interval neutrosophic set
and bases as real numbers. However, in terms of SVNSs, Garg [55] and Ashraf et al. [56] defined the
logarithm operational laws (LOLs) under the SVNSs. Another important function apart from these
exponential and logarithmic mathematical functions is the sine trigonometry (ST) function, which
plays a dominant role during the aggregation of data. The major advantages of this function are its
periodicity and that it is symmetric about the origin, and therefore it satisfies the decision-maker
preferences over the multi-time phase parameters. In this manner, by keeping in mind the advantages
and usefulness of ST function, there is a need to build up some new ST operational laws (STOLs) for
SVNSs and SVNNs and studies their behavior. As a consequence, the aim of the paper is to design
some new operational laws for SVNSs by challenging the above mentioned points and therefore
presented the MADM algorithm to managing the evaluation information for SVNSs.

The rest of this paper is arranged as follows. Section 2 presents some knowledge related to FSs,
IFSs, PyFSs, PFSs, SFSs, and SVNSs. Section 3 gave some novel sine trigonometric operational laws for
SVNNs. In Section 4, proposed the sine trigonometric operational laws based aggregation operators
under single-valued neutrosophic information, together with related proof on its properties. Backbone
of this work is the novel decision-making technique to deal the uncertainty in decision-making
problems to sort out the finest alternative according to list of attributes is proposed in Section 5.
Section 6 reports a numerical example on hydrogen power plant selection problem is provided to
illustrate the feasibility of the proposed method, and some comparative analyses are conducted.
The paper ends with some conclusions in Section 7.

2. Preliminaries

Some fundamental notions of FS, IFS, PFS, SFS, and SVNS have been explored here in this section.
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Definition 1. [5] For a fixed set ℵ, a FS ∂ in ℵ is defined as

∂ = {〈h̄,i∂ (h̄)〉 |h̄ ∈ ℵ} ,

for each h̄ ∈ ℵ, the positive membership grade i∂ : ℵ → Θ specifies the degree to which the element h̄ ∈ ℵ,
where Θ = [0, 1] is the unit interval.

Definition 2. [8] For a fixed set ℵ, an IFS ∂ in ℵ is defined as

∂ = {〈h̄,i∂ (h̄) , ∂ג (h̄)〉 |h̄ ∈ ℵ} ,

for each h̄ ∈ ℵ, the positive, negative membership grades, i∂ : ℵ → Θ and ∂ג : ℵ → Θ, respectively,
of the element h̄ to the IFS ∂, where Θ = [0, 1] is the unit interval. Furthermore, it is required that 0 ≤
i∂ (h̄) + ∂ג (h̄) ≤ 1, for each h̄ ∈ ℵ.

Definition 3. [19] For a fixed set ℵ, a PFS ∂ in ℵ is defined as

∂ = {〈h̄,i∂ (h̄) ,k∂ (h̄) , ∂ג (h̄)〉 |h̄ ∈ ℵ} ,

for each h̄ ∈ ℵ, the positive, neutral, and negative membership grades i∂ : ℵ → Θ, k∂ : ℵ → Θ and
∂ג : ℵ → Θ, respectively, of the element h̄ to the PFS ∂, where Θ = [0, 1] is the unit interval. Furthermore, it is
required that 0 ≤ i∂ (h̄) +k∂ (h̄) + ∂ג (h̄) ≤ 1, for each h̄ ∈ ℵ.

Definition 4. [28] For a fixed set ℵ, a SFS ∂ in ℵ is defined as

∂ = {〈h̄,i∂ (h̄) ,k∂ (h̄) , ∂ג (h̄)〉 |h̄ ∈ ℵ} ,

for each h̄ ∈ ℵ, the positive, neutral, and negative membership grades i∂ : ℵ → Θ, k∂ : ℵ → Θ and
∂ג : ℵ → Θ respectively, of the element h̄ to the SFS ∂, where Θ = [0, 1] is the unit interval. Furthermore, it is
required that 0 ≤ i2

∂ (h̄) +k2
∂ (h̄) + 2ג

∂ (h̄) ≤ 1, for each h̄ ∈ ℵ.

Definition 5. [38] For a fixed set ℵ, a neutrosophic set ∂ in ℵ is defined as

∂ = {〈h̄,i∂ (h̄) ,k∂ (h̄) , ∂ג (h̄)〉 |h̄ ∈ ℵ} ,

for each h̄ ∈ ℵ, the truth, indeterminacy, and falsity membership grades i∂ : ℵ → Θ, k∂ : ℵ → Θ, and
∂ג : ℵ → Θ, respectively, of the element h̄ to the neutrosophic set ∂, where Θ = ]0−, 1+[ . Furthermore, it is
required that 0− ≤ i∂ (h̄) +k∂ (h̄) + ∂ג (h̄) ≤ 3+, for each h̄ ∈ ℵ.

Definition 6. [39] For a fixed set ℵ, a single-valued neutrosophic set (SVNS) ∂ in ℵ is defined as

∂ = {〈h̄,i∂ (h̄) ,k∂ (h̄) , ∂ג (h̄)〉 |h̄ ∈ ℵ} ,

for each h̄ ∈ ℵ, the truth, indeterminacy, and falsity membership grades i∂ : ℵ → Θ, k∂ : ℵ → Θ and
∂ג : ℵ → Θ, respectively, of the element h̄ to the neutrosophic set ∂, where Θ = [0, 1] is the unit interval.
Furthermore, it is required that 0 ≤ i∂ (h̄) +k∂ (h̄) + ∂ג (h̄) ≤ 3, for each h̄ ∈ ℵ.

In simplicity, the triplet ∂ = {i∂,k∂, {∂ג called single-valued neutrosophic number (SVNN) in
whole study and collection of SVNNs denoted by SVNN (ℵ).

Wang et al. [39], Ye [57], and Zhang & Bo [58] introduced the basic operational laws of SVNNs,
which are as follows.
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Definition 7. [58] Let ∂1 =
{
i∂1 ,k∂1 , 1∂ג

}
and ∂2 =

{
i∂2 ,k∂2 , 2∂ג

}
∈ SVNN (ℵ) . than,

(1) ∂1 ⊆ ∂2 if and only if i∂1 ≤ i∂2 ,k∂1 ≥ k∂2 and 1∂ג ≥ 2∂ג for each h̄ ∈ ℵ.
(2) ∂1 = ∂2 if and only if ∂1 ⊆ ∂2 and ∂2 ⊆ ∂1.
(3) ∂1 ∩ ∂2 =

{
inf
(
i∂1 ,i∂2

)
, sup

(
k∂1 ,k∂2

)
, sup

(
1∂ג , 2∂ג

)}
,

(4) ∂1 ∪ ∂2 =
{

sup
(
i∂1 ,i∂2

)
, inf

(
k∂1 ,k∂2

)
, inf

(
1∂ג , 2∂ג

)}
,

(5) ∂c
1 =

{
1∂ג ,k∂1 ,i∂1

}
.

Definition 8. [39,45,54] Let ∂1 =
{
i∂1 ,k∂1 , 1∂ג

}
and ∂2 =

{
i∂2 ,k∂2 , 2∂ג

}
∈ SVNN (ℵ) with ` > 0 .

than,
(1) ∂1 � ∂2 =

{
i∂1i∂2 ,k∂1 +k∂2 −k∂1 ·k∂2 , 1∂ג + 2∂ג − 1∂ג · 2∂ג

}
;

(2) ∂1 � ∂2 =
{
i∂1 +i∂2 −i∂1i∂2 ,k∂1k∂2 , 2∂ג1∂ג

}
;

(3) (∂1)
` =

{(
i∂1

)` , 1−
(
1−k∂1

)` , 1−
(
1− 1∂ג

)`} ;

(4) ` · ∂1 =
{

1−
(
1−i∂1

)` ,
(
k∂1

)` ,
(
1∂ג

)`} ;

(5) `∂1 =


(
`1−i∂1 , 1− `k∂1 , 1− 1∂ג`

)
i f ` ∈ (0, 1)((

1
`

)1−i∂1 , 1−
(

1
`

)k∂1 , 1−
(

1
`

1∂ג(

)
i f ` ≥ 1

.

Definition 9. Let ∂g =
{
i∂g ,k∂g , g∂ג

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n). Then, the Algebraic averaging

aggregation operator for SVNN (ℵ) is denoted by SVNWA and defined as follows,

SVNWA (∂1, ∂2, ∂3, ..., ∂n) =
n

∑
g=1

`g∂g,

=
{

1−Πn
g=1(1−i∂g)

`g , Πn
g=1(k∂g)

`g , Πn
g=1(ג∂g)

`g
}

where `g (g = 1, 2, ..., n) represents the weights of ∂g (g = 1, 2, 3, ..., n) with `g ≥ 0 and ∑n
g=1 `g = 1.

Definition 10. Let ∂g =
{
i∂g ,k∂g , g∂ג

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n). Then, the Algebraic geometric

aggregation operator for SVNN (ℵ) is denoted by SVNWG and defined as follows,

SFWG (∂1, ∂2, ∂3, ..., ∂n) =
n

∏
g=1

(
∂g
)`g ,

=
{

Πn
g=1(i∂g)

`g , 1−Πn
g=1(1−k∂g)

`g , 1−Πn
g=1(1− (g∂ג

`g
}

where `g (g = 1, 2, ..., n) represents the weights of ∂g (g = 1, 2, 3, ..., n) with `g ≥ 0 and ∑n
g=1 `g = 1.

3. Novel Sine Trigonometric Operational Laws For SVNNs

In this section, we propose the novel operational laws using sine trigonometric function under
single-valued neutrosophic environments.

Definition 11. Let ∂ = {i∂,k∂, {∂ג ∈ SVNN (ℵ) . Then, sine trigonometric operational laws (STOLs) of
SVNN ∂ is defined as follows,

sin (∂) =

{(
h̄, sin

(
π
2 i∂ (h̄)

)
, 1− sin

(
π
2 1−k∂ (h̄)

)
,

1− sin
(

π
2 1− ∂ג (h̄)

) )
|h̄ ∈ ℵ

}

It is clearly seen that the sin (∂) is also SVNS. As it is clear that, for each h̄ ∈ ℵ, the truth, indeterminacy,
and falsity, i∂ : ℵ → Θ, k∂ : ℵ → Θ and ∂ג : ℵ → Θ, respectively, of the element h̄ to the SVNS ∂, where
Θ = [0, 1] be the unit interval. Furthermore, it is required that 0 ≤ i∂ (h̄) + k∂ (h̄) + ∂ג (h̄) ≤ 3, for each
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h̄ ∈ ℵ.
Furthermore, the truth membership grade

sin
(π

2
i∂

)
: ℵ → Θ, for each h̄ ∈ ℵ → sin

(π

2
i∂ (h̄)

)
∈ [0, 1] ,

indeterminacy membership grade

1− sin
(π

2
1−k∂

)
: ℵ → Θ, for each h̄ ∈ ℵ → 1− sin

(π

2
1−k∂ (h̄)

)
∈ [0, 1] ,

and falsity membership grade

1− sin
(π

2
1− ∂ג

)
: ℵ → Θ, for each h̄ ∈ ℵ → 1− sin

(π

2
1− ∂ג (h̄)

)
∈ [0, 1] .

Therefore,

sin (∂) =

{(
h̄, sin

(
π
2 i∂ (h̄)

)
, 1− sin

(
π
2 1−k∂ (h̄)

)
,

1− sin
(

π
2 1− ∂ג (h̄)

) )
|h̄ ∈ ℵ

}
is SVNS.

Definition 12. Let ∂ = {i∂,k∂, {∂ג ∈ SVNN (ℵ) . If

sin (∂) =

{(
h̄, sin

(
π
2 i∂ (h̄)

)
, 1− sin

(
π
2 1−k∂ (h̄)

)
,

1− sin
(

π
2 1− ∂ג (h̄)

) )
|h̄ ∈ ℵ

}

Then, the function sin (∂) is called the sine trigonometric operator and the value of sin (∂)is called the sine
trigonometric SVNN (STSVNN).

Theorem 1. Let ∂ = {i∂,k∂, {∂ג ∈ SVNN (ℵ) . Then, the value of the operator sin (∂) is SVNN.

Proof. As ∂ = {i∂,k∂, {∂ג ∈ SVNN (ℵ), that is, 0 ≤ i∂ ≤ 1, 0 ≤ k∂ ≤ 1 and 0 ≤ ∂ג ≤ 1. Furthermore,
i∂ (h̄) +k∂ (h̄) + ∂ג (h̄) ≤ 3, for each h̄ ∈ ℵ. To show sin (∂) is SVNN, for this we have following two
conditions.
(1) sin

(
π
2 i∂

)
, 1− sin

(
π
2 1−k∂

)
and 1− sin

(
π
2 1− ∂ג

)
∈ [0, 1]

(2) sin
(

π
2 i∂

)
+ 1− sin

(
π
2 1−k∂

)
+ 1− sin

(
π
2 1− ∂ג

)
≤ 3.

As 0 ≤ i∂ ≤ 1 this implies that 0 ≤ π
2 i∂ ≤ π

2 . Also we know that “sin” is the increasing function
in first quadrant, so we have 0 ≤ sin

(
π
2 i∂

)
≤ 1.

As 0 ≤ k∂ ≤ 1this implies that 0 ≤ π
2 1− k∂ ≤ π

2 , which implies that 0 ≤ sin
(

π
2 1−k∂

)
≤ 1.

Thus, we get 0 ≤ 1− sin
(

π
2 1−k∂

)
≤ 1. Similarly, we obtain 0 ≤ 1− sin

(
π
2 1− ∂ג

)
≤ 1.

Therefore part (1) hold.
As ∂ ∈ SVNN (ℵ)⇒ 0 ≤ i∂,k∂, ∂ג ≤ 1 and i∂ (h̄) +k∂ (h̄) + ∂ג (h̄) ≤ 3, for each h̄ ∈ ℵ. Then (1)

implies that 0 ≤ sin
(

π
2 i∂

)
, 1− sin

(
π
2 1−k∂

)
, 1− sin

(
π
2 1− ∂ג

)
≤ 1 and by Definition 11, we have

0 ≤ sin
(

π
2 i∂

)
+ 1− sin

(
π
2 1−k∂

)
+ 1− sin

(
π
2 1− ∂ג

)
≤ 3.

Therefore, sin (∂) is SVNN.

Definition 13. Let sin (∂1) =


 sin

(
π
2 i∂1

)
,

1− sin
(

π
2 1−k∂1

)
,

1− sin
(

π
2 1− 1∂ג

)

 and sin (∂2) =


 sin

(
π
2 i∂2

)
,

1− sin
(

π
2 1−k∂2

)
,

1− sin
(

π
2 1− 2∂ג

)

 be two STSVNNs. Then the operational laws are as follows
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(1) sin (∂1)� sin (∂2) =

 1−
(
1− sin

(
π
2 i∂1

)) (
1− sin

(
π
2 i∂2

))
,(

1− sin
(

π
2 1−k∂1

)) (
1− sin

(
π
2 1−k∂2

))
,(

1− sin
(

π
2 1− 1∂ג

)) (
1− sin

(
π
2 1− 2∂ג

))
 ,

(2) ψ · sin (∂1) =

(
1−

(
1− sin

(
π
2 i∂1

))ψ ,
(
1− sin

(
π
2 1−k∂1

))ψ ,(
1− sin

(
π
2 1− 1∂ג

))ψ

)
,

(3) sin (∂1)� sin (∂2) =

 sin
(

π
2 i∂1

)
sin
(

π
2 i∂2

)
,

1−
(
sin
(

π
2 1−k∂1

)) (
sin
(

π
2 1−kκ2

))
,

1−
(
sin
(

π
2 1− 1∂ג

)) (
sin
(

π
2 1− κ2ג

))
 ,

(4) (sin (∂1))
ψ =


(
sin
(

π
2 i∂1

))ψ ,
1−

(
sin
(

π
2 1−k∂1

))ψ ,
1−

(
sin
(

π
2 1− 1∂ג

))ψ

 .

To compare the STSVNNs, we have mentioned the following definitions.

Definition 14. [38] Let ∂ = {i∂,k∂, {∂ג ∈ SVNN (ℵ) . Then, the score and accuracy of ∂ is denoted and
defined as
(1) sc (∂) = i∂ −k∂ − ,∂ג and
(2) ac (∂) = i∂ +k∂ + .∂ג

Definition 15. Let ∂1 =
{
i∂1 ,k∂1 , 1∂ג

}
and ∂2 =

{
i∂2 ,k∂2 , 2∂ג

}
∈ SVNN (ℵ) . Then,

(1) If sc(∂1) < sc(∂2) then ∂1 < ∂2,
(2) If sc(∂1) > sc(∂2) then ∂1 > ∂2,
(3) If sc(∂1) = sc(∂2) then
(a) ac(∂1) < ac(∂2) then ∂1 < ∂2,
(b) ac(∂1) > ac(∂2) then ∂1 > ∂2,
(c) ac(∂1) = ac(∂2) then ∂1 = ∂2.

Next we discussed some basic properties of STSVNNs based on proposed STOLs.

Theorem 2. Let ∂1 =
{
i∂1 ,k∂1 , 1∂ג

}
and ∂2 =

{
i∂2 ,k∂2 , 2∂ג

}
∈ SVNN (ℵ) . Then,

(1) sin (∂1)� sin (∂2) = sin (∂2)� sin (∂1) ,
(2) sin (∂1)� sin (∂2) = sin (∂2)� sin (∂1) .

Proof. Straightforward from the Definition 12, so we omit the proofs of them.

Theorem 3. Let ∂g =
{
i∂g ,k∂g , g∂ג

}
∈ SVNN (ℵ) (g = 1, 2, 3). Then,

(1) (sin (∂1)� sin (∂2))� sin (∂3) = sin (∂1)� (sin (∂2)� sin (∂3)) ,
(2) (sin (∂1)� sin (∂2))� sin (∂3) = sin (∂1)� (sin (∂2)� sin (∂3)) .

Proof. Straightforward from the Definition 12, so we omit the proofs of them.

Theorem 4. Let ∂g =
{
i∂g ,k∂g , g∂ג

}
∈ SVNN (ℵ) (g = 1, 2) and ψ, ψ1, ψ2 > 0. Then,

(1) ψ (sin (∂1)� sin (∂2)) = ψ sin (∂1)� ψ sin (∂2) ,
(2) (sin (∂1)� sin (∂2))

ψ = (sin (∂1))
ψ � (sin (∂2))

ψ ,
(3) ψ1 sin (∂1)� ψ2 sin (∂1) = (ψ1 + ψ2) sin (∂1) ,
(4) (sin (∂1))

ψ1 � (sin (∂1))
ψ2 = (sin (∂1))

ψ1+ψ2 ,

(5)
(
(sin (∂1))

ψ1
)ψ2

= (sin (∂1))
ψ1.ψ2 .
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Proof. Let ∂g =
{
i∂g ,k∂g , g∂ג

}
∈ SVNN (ℵ) (g = 1, 2) and ψ, ψ1, ψ2 > 0. Then, by the Definition 12,

we have sin (∂1) =


 sin

(
π
2 i∂1

)
,

1− sin
(

π
2 1−k∂1

)
,

1− sin
(

π
2 1− 1∂ג

)

 and sin (∂2) =


 sin

(
π
2 i∂2

)
,

1− sin
(

π
2 1−k∂2

)
,

1− sin
(

π
2 1− 2∂ג

)

 be

two STSVNNs. Therefore, using the STOLs for SVNNs, we obtain

sin (∂1)� sin (∂2) =

 1−
(
1− sin

(
π
2 i∂1

)) (
1− sin

(
π
2 i∂2

))
,(

1− sin
(

π
2 1−k∂1

)) (
1− sin

(
π
2 1−k∂2

))
,(

1− sin
(

π
2 1− 1∂ג

)) (
1− sin

(
π
2 1− 2∂ג

))
 .

(1) For any ψ > 0, we have

ψ (sin (∂1)� sin (∂2))

=

 1−
(
1− sin

(
π
2 i∂1

))ψ (1− sin
(

π
2 i∂2

))ψ ,((
1− sin

(
π
2 1−k∂1

)) (
1− sin2 (π

2 1−k∂2

)))ψ
,((

1− sin
(

π
2 1− 1∂ג

)) (
1− sin

(
π
2 1− 2∂ג

)))ψ


=

(
1−

(
1− sin

(
π
2 i∂1

))ψ ,
(
1− sin

(
π
2 1−k∂1

))ψ ,(
1− sin

(
π
2 1− 1∂ג

))ψ

)

�

(
1−

(
1− sin

(
π
2 i∂2

))ψ ,
(
1− sin

(
π
2 1−k∂2

))ψ ,(
1− sin

(
π
2 1− 2∂ג

))ψ

)
= ψ sin (∂1)� ψ sin (∂2) .

Proved.
(2) Proof is similarly as (1).
(3) For any ψ1, ψ2 > 0, we have

ψ1 sin (∂1) =

(
1−

(
1− sin

(
π
2 i∂1

))ψ1 ,
(
1− sin

(
π
2 1−k∂1

))ψ1 ,(
1− sin

(
π
2 1− 1∂ג

))ψ1

)

and

ψ2 sin (∂1) =

(
1−

(
1− sin

(
π
2 i∂1

))ψ2 ,
(
1− sin

(
π
2 1−k∂1

))ψ2 ,(
1− sin

(
π
2 1− 1∂ג

))ψ2

)
.

Thus, by STOLs for SVNNs, we get

ψ1 sin (∂1)� ψ2 sin (∂1)

=

(
1−

(
1− sin

(
π
2 i∂1

))ψ1 ,
(
1− sin

(
π
2 1−k∂1

))ψ1 ,(
1− sin

(
π
2 1− 1∂ג

))ψ1

)

�

(
1−

(
1− sin

(
π
2 i∂1

))ψ2 ,
(
1− sin

(
π
2 1−k∂1

))ψ2 ,(
1− sin

(
π
2 1− 1∂ג

))ψ2

)

=

(
1−

(
1− sin

(
π
2 i∂1

))ψ1+ψ2 ,
(
1− sin

(
π
2 1−k∂1

))ψ1+ψ2 ,(
1− sin

(
π
2 1− 1∂ג

))ψ1+ψ2

)
= (ψ1 + ψ2) sin (∂1)

Proved.
(4,5) Proof is similarly as (3).
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Theorem 5. Let ∂g =
{
i∂g ,k∂g , g∂ג

}
∈ SVNN (ℵ) (g = 1, 2) such that i∂1 ≥ i∂2 ,k∂1 ≤ k∂2 and

1∂ג ≤ 2∂ג . Then
sin (∂1) ≥ sin (∂2) .

Proof. For ∂g =
{
i∂g ,k∂g , g∂ג

}
∈ SVNN (ℵ) (g = 1, 2) , we have i∂1 ≥ i∂2 . As “sin” is an increasing

function in
[
0, π

2
]

, thus we have sin
(

π
2 i∂1

)
≥ sin

(
π
2 i∂2

)
. Similarly, we have k∂1 ≤ k∂2 , which implies

that 1−k∂1 ≥ 1−k∂2 . Thus, sin
(

π
2 1−k∂1

)
≥ sin

(
π
2 1−k∂1

)
, which further implies that

1− sin
(π

2
1−k∂1

)
≤ 1− sin

(π

2
1−k∂2

)
and similarly we get

1− sin
(π

2
1− 1∂ג

)
≤ 1− sin

(π

2
1− 2∂ג

)
.

Therefore, we get 
 sin

(
π
2 i∂1

)
,

1− sin
(

π
2 1−k∂1

)
,

1− sin
(

π
2 1− 1∂ג

)

 ≥


 sin

(
π
2 i∂2

)
,

1− sin
(

π
2 1−k∂2

)
,

1− sin
(

π
2 1− 2∂ג

)

 .

Therefore, by Definition 12, we get sin (∂1) ≥ sin (∂2) .
Proved.

4. Novel Sine Trigonometric Aggregation Operators for SFNs

In this section, we present some novel aggregation operators based on the proposed STOLs of
SVNNs. we define the following weighted averaging and geometric aggregation operators (AOs).

4.1. Sine Trigonometric Weighted Averaging AOs

Definition 16. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n). Then, the sine

trigonometric weighted averaging aggregation operator for SVNN (ℵ) is denoted by ST − SVNWA and
defined as follows:

ST − SVNWA (∂1, ∂2, ..., ∂n) = `1 sin (∂1)� `2 sin (∂2)� ... � `n sin (∂n)

=
n

∑
g=1

`g sin
(
∂g
)

,

where `g (g = 1, 2, ..., n) represents the weights of ∂g (g = 1, 2, 3, ..., n) with `g ≥ 0 and ∑n
g=1 `g = 1.

Theorem 6. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) and the weight vector of

∂g (g = 1, 2, 3, ..., n) be denoted by ` = (`1, `2, ..., `n)
T subject to

n
∑

g=1
`g = 1. The ST − SVNWA operator is

a mapping Gn −→ G such that

ST − SVNWA (∂1, ∂2, ..., ∂n) =
n

∑
g=1

`g sin
(
∂g
)

=


1−

n
∏

g=1

(
1− sin

(
π
2 i∂g

))`g
,

n
∏

g=1

(
1− sin

(
π
2 1−k∂g

))`g
,

n
∏

g=1

(
1− sin

(
π
2 1− g∂ג

))`g


(1)
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Proof. We prove Theorem 6, by employing mathematical induction on n. As for each g, ∂g ={
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ), which implies that i∂g ,k∂g , g∂ג ∈ [0, 1] and i∂g + k∂g +

g∂ג ≤ 3. Then the following steps of the mathematical induction have been executed.
Step-1: For n = 2, we get

ST − SVNWA (∂1, ∂2) = `1 sin (∂1)� `2 sin (∂2) .

As by the Definition 12, we have sin (∂1) and sin (∂2) are SVNNs, and therefore `1 sin (∂1)�
`2 sin (∂2) is also SVNN. Further, for ∂1 and ∂2, we have

ST − SVNWA (∂1, ∂2)

= `1 sin (∂1)� `2 sin (∂2)

=

 1−
(
1− sin

(
π
2 i∂1

))`1 ,(
1− sin

(
π
2 1−k∂1

))`1 ,(
1− sin

(
π
2 1− 1∂ג

))`1

�

 1−
(
1− sin

(
π
2 i∂2

))`2 ,(
1− sin

(
π
2 1−k∂2

))`2 ,(
1− sin

(
π
2 1− 2∂ג

))`2



=



1−
2

∏
g=1

(
1− sin

(
π
2 i∂g

))`g
,

2
∏

g=1

(
1− sin

(
π
2 1−k∂g

))`g
,

2
∏

g=1

(
1− sin

(
π
2 1− g∂ג

))`g


Step-2: Suppose that Equation (1) is holds for n = κ, we have

ST − SVNWA (∂1, ∂2, ...∂κ) =


1−

κ

∏
g=1

(
1− sin

(
π
2 i∂g

))`g
,

κ

∏
g=1

(
1− sin

(
π
2 1−k∂g

))`g
,

κ

∏
g=1

(
1− sin

(
π
2 1− g∂ג

))`g


Step-3: Now we have to prove that Equation (1) is holds for n = κ + 1.

ST − SVNWA (∂1, ∂2, ...∂κ+1)

=
κ

∑
g=1

`g sin
(
∂g
)
� `κ+1 sin (∂κ+1)

=


1−

κ

∏
g=1

(
1− sin

(
π
2 i∂g

))`g
,

κ

∏
g=1

(
1− sin

(
π
2 1−k∂g

))`g
,

κ

∏
g=1

(
1− sin

(
π
2 1− g∂ג

))`g


�


1−

(
1− sin

(
π
2 i∂κ+1

))`κ+1
,(

1− sin
(

π
2 1−k∂κ+1

))`κ+1
,(

1− sin
(

π
2 1− κ+1∂ג

))`κ+1



=



1−
κ+1
∏

g=1

(
1− sin

(
π
2 i∂g

))`g
,

κ+1
∏

g=1

(
1− sin

(
π
2 1−k∂g

))`g
,

κ+1
∏

g=1

(
1− sin

(
π
2 1− g∂ג

))`g


that is, when n = z + 1, Equation (1) also holds.



Symmetry 2020, 12, 298 11 of 27

Therefore, Equation (1) holds for any n. The proof is completed.

Example 1. Suppose ∂1 = {0.61, 0.15, 0.53} , ∂2 = {0.16, 0.35, 0.62} , ∂3 = {0.56, 0.17, 0.44}, and ∂4 =

{0.37, 0.32, 0.65} are the single-valued neutrosophic numbers with ` = (0.256, 0.248, 0.245, 0.251)T is the
weight vector.
First, we find the lg = sin2

(
π
2 i∂g

)
we get

l1 = 0.6693 l2 = 0.0618
l3 = 0.5936 l4 = 0.3012

Thus, we have

4

∏
g=1

(
1− sin2

(π

2
i∂g

))`g
= (1− l1)

0.256 × (1− l2)
0.248 × (1− l3)

0.245 × (1− l4)
0.251

= 0.7533× 0.9843× 0.8020× 0.9139

= 0.5434

Similarly, if mg = sin2
(

π
2

√
1−k2

∂g

)
,we get

m1 = 0.9996 m2 = 0.9901
m3 = 0.9994 m4 = 0.9931

Thus, we have

4

∏
g=1

(√
1− sin2

(π

2

√
1−k2

∂g

))`g

=
(√

1−m1

)0.256
×
(√

1−m2

)0.248

×
(√

1−m3

)0.245
×
(√

1−m4

)0.251

= 0.3673× 0.5642× 0.5343× 0.5355

= 0.0592

Similarly, if ng = sin2
(

π
2

√
1− 2ג

∂g

)
, we get

m1 = 0.9440 m2 = 0.8898
m3 = 0.9745 m4 = 0.8644

Thus, we have

4

∏
g=1

(√
1− sin2

(π

2

√
1− 2ג

∂g

))`g

=
(√

1− n1

)0.256
×
(√

1− n2

)0.248

×
(√

1− n3

)0.245
×
(√

1− n4

)0.251

= 0.6914× 0.7607× 0.6379× 0.7782

= 0.2611
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Therefore,

ST − SVNWA (∂1, ∂2, ∂3, ∂4) =



√
1−

4
∏

g=1

(
1− sin2

(
π
2 i∂g

))`g
,

4
∏

g=1

(√
1− sin2

(
π
2

√
1−k2

∂g

))`g

,

4
∏

g=1

(√
1− sin2

(
π
2

√
1− 2ג

∂g

))`g


=

(√
1− 0.5434, 0.0592, 0.2611

)
= (0.6757, 0.0592, 0.2611)

Next, we give the some properties of the proposed ST − SVNWA aggregation operator. As these
aggregation operators are based on the sine trigonometric function, they preserve the idempotency,
boundedness, monotonically, and symmetry.

Theorem 7. (Idempotency) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) such that

∂g = ∂. Then
ST − SVNWA (∂1, ∂2, ..., ∂n) = sin (∂) .

Proof. As ∂g = ∂ (g = 1, 2, 3, ..., n) . Then, by Theorem 6, we get

ST − SVNWA (∂1, ∂2, ..., ∂n) =


1−

n
∏

g=1

(
1− sin

(
π
2 i∂g

))`g
,

n
∏

g=1

(
1− sin

(
π
2 1−k∂g

))`g
,

n
∏

g=1

(
1− sin

(
π
2 1− g∂ג

))`g



=


1−

n
∏

g=1

(
1− sin

(
π
2 i∂

))`g ,

n
∏

g=1

(
1− sin

(
π
2 1−k∂

))`g ,

n
∏

g=1

(
1− sin

(
π
2 1− ∂ג

))`g



=

 1−
(
1− sin

(
π
2 i∂

))∑n
g=1 `g ,(

1− sin
(

π
2 1−k∂

))∑n
g=1 `g ,(

1− sin
(

π
2 1− ∂ג

))∑n
g=1 `g


=

(
sin
(

π
2 i∂

)
, 1− sin

(
π
2 1−k∂

)
,

1− sin
(

π
2 1− ∂ג

) )
= sin (∂)

Proved.

Theorem 8. (Boundedness) Let ∂g = {i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)}, ∂−g ={
min

(
i∂g (h̄)

)
, max

(
k∂g (h̄)

)
, max

(
g∂ג (h̄)

)}
and ∂+g =

{
max

(
i∂g (h̄)

)
, min

(
k∂g (h̄)

)
, min

(
g∂ג (h̄)

)}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) . Then,

sin
(

∂−g

)
≤ ST − SVNWA (∂1, ∂2, ..., ∂n) ≤ sin

(
∂+g

)
.
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Proof. As, for any g, ming

(
i∂g

)
≤ i∂g ≤ ming

(
i∂g

)
, ming

(
k∂g

)
≤ k∂g ≤ ming

(
k∂g

)
and

ming

(
g∂ג

)
≤ g∂ג ≤ming

(
g∂ג

)
. This implies that ∂−g ≤ ∂g ≤ ∂+g .

Suppose that ST − SVNWA (∂1, ∂2, ..., ∂n) = sin
(
∂g
)

=
{
i∂g ,k∂g , g∂ג

}
, sin

(
∂−g

)
={

i−∂g
,k−∂g

, g∂−ג

}
and sin

(
∂+g

)
=
{
i+

∂g
,k+

∂g
, g∂+ג

}
. Then, based on the monotonicity of sine function,

we have

i∂g = 1−
n

∏
g=1

(
1− sin

(π

2
i∂g

))`g

≥ 1−
n

∏
g=1

(
1− sin

(π

2
ming

(
i∂g

)))`g

= sin
(π

2
ming

(
i∂g

))
= i−∂g

and,

k∂g =
n

∏
g=1

(
1− sin

(π

2
1−k∂g

))`g

≥
n

∏
g=1

(
1− sin

(π

2
1−

(
ming k∂g

)))`g

= 1− sin
(π

2
1−

(
ming k∂g

))
= k−∂g

Similarly,

g∂ג =
n

∏
g=1

(
1− sin

(π

2
1− g∂ג

))`g

≥
n

∏
g=1

(
1− sin

(π

2
1−

(
ming g∂ג

)))`g

= 1− sin
(π

2
1−

(
ming g∂ג

))
= g∂−ג

Also, we have

i∂g =

√√√√1−
n

∏
g=1

(
1− sin2

(π

2
i∂g

))`g

≤

√√√√1−
n

∏
g=1

(
1− sin2

(π

2
maxg

(
i∂g

)))`g

= sin
(π

2
maxg

(
i∂g

))
= i+

∂g

and

k∂g =
n

∏
g=1

(
1− sin

(π

2
1−k∂g

))`g

≤
n

∏
g=1

(
1− sin

(π

2
· 1−

(
maxg k∂g

)))`g

= 1− sin
(π

2
· 1−

(
maxg k∂g

))
= k+

∂g
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Similarly,

g∂ג =
n

∏
g=1

(
1− sin

(π

2
1− g∂ג

))`g

≤
n

∏
g=1

(
1− sin

(π

2
1−

(
maxg g∂ג

)))`g

= 1− sin
(π

2
1−

(
maxg g∂ג

))
= g∂+ג

Based on the sore function, we get

sc
(
sin
(
∂g
))

= i∂g −k∂g − g∂ג

≤ i+
∂g
−k−∂g

− g∂−ג
= sc

(
sin
(

∂+g

))
and

sc
(
sin
(
∂g
))

= i∂g −k∂g − g∂ג

≥ i−∂g
−k+

∂g
− g∂+ג

= sc
(

sin
(

∂−g

))
Therefore, sc

(
sin
(

∂−g

))
≤ sc

(
sin
(
∂g
))
≤ sc

(
sin
(

∂+g

))
. Now, we discuss the three cases:

(Case-1): If sc
(

sin
(

∂−g

))
< sc

(
sin
(
∂g
))

< sc
(

sin
(

∂+g

))
, then the result holds.

(Case-2): If sc
(

sin
(

∂+g

))
= sc

(
sin
(
∂g
))

then i+
∂g
−k+

∂g
− g∂+ג

= i∂g −k∂g − g∂ג , which implies that

i+
∂g

= i∂g ,k+
∂g

= k∂g and g∂+ג
= g∂ג , and therefore ac

(
sin
(
∂g
))

= ac
(

sin
(

∂+g

))
.

(Case-3): If sc
(
sin
(
∂g
))

= sc
(

sin
(

∂−g

))
then i∂g − k∂g − g∂ג = i−∂g

− k−∂g
− g∂−ג

which implies

that i∂g = i−∂g
,k∂g = k−∂g

and g∂ג = g∂−ג
, and therefore ac

(
sin
(
∂g
))

= ac
(

sin
(

∂−g

))
. Therefore,

we finally obtain
sin
(

∂−g

)
≤ ST − SVNWA (∂1, ∂2, ..., ∂n) ≤ sin

(
∂+g

)
.

Proved.

Theorem 9. (Monotonically) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂∗g =

{
i∗∂g

(h̄) ,k∗∂g
(h̄) , g∂∗ג

(h̄)
}
∈

SVNN (ℵ) (g = 1, 2, 3, ..., n) . If i∂g ≤ i∗∂g
,k∂g ≤ k∗∂g

and g∂ג ≤ g∂∗ג
, then

ST − SVNWA (∂1, ∂2, ..., ∂n) ≤ ST − SVNWA (∂∗1 , ∂∗2 , ..., ∂∗n) .

Proof. Follows from Theorem 8, so we omit here.

Theorem 10. (Symmetric) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂∗g =

{
i∗∂g

(h̄) ,k∗∂g
(h̄) , g∂∗ג

(h̄)
}
∈

SVNN (ℵ) (g = 1, 2, 3, ..., n) . Then,

ST − SVNWA (∂1, ∂2, ..., ∂n) = ST − SVNWA (∂∗1 , ∂∗2 , ..., ∂∗n) ,

whenever ∂∗g (g = 1, 2, 3, ..., n) is any version of ∂g (g = 1, 2, 3, ..., n) .

Proof. Follows from Theorem 8, so we omit here.
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Definition 17. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n). Then, the sine

trigonometric ordered weighted averaging aggregation operator for SVNN (ℵ) is denoted by ST − SVNOWA
and defined as follows,

ST − SVNOWA (∂1, ∂2, ..., ∂n) = `1 sin
(

∂υ(1)

)
� `2 sin

(
∂υ(2)

)
� ... � `n sin

(
∂υ(n)

)
=

n

∑
g=1

`g sin
(

∂υ(g)

)
,

where υ (g) is denoted for ordered and (υ (1) , υ (2) , υ (3) , ..., υ (n)) is a permutation of (1, 2, 3, ..., n) , subject
to ευ(g−1) ≥ ευ(g) for all g. Also, `g (g = 1, 2, ..., n) represents the weights of ∂g (g = 1, 2, 3, ..., n) with `g ≥ 0
and ∑n

g=1 `g = 1.

Theorem 11. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) and the weight vector

of ∂g (g = 1, 2, 3, ..., n) be denoted by ` = (`1, `2, ..., `n)
T subject to

n
∑

g=1
`g = 1. The ST− SVNOWA operator

is a mapping Gn −→ G such that

ST − SVNOWA (∂1, ∂2, ..., ∂n) =
n

∑
g=1

`g sin
(

∂υ(g)

)

=


1−

n
∏

g=1

(
1− sin

(
π
2 i∂υ(g)

))`g
,

n
∏

g=1

(
1− sin

(
π
2 · 1−k∂υ(g)

))`g
,

n
∏

g=1

(
1− sin

(
π
2 · 1− υ(g)∂ג

))`g


(2)

Proof. Follows from Theorem 6 similarly.

Theorem 12. (Idempotency) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) such

that ∂g = ∂. Then
ST − SVNOWA (∂1, ∂2, ..., ∂n) = sin (∂) .

Theorem 13. (Boundedness) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂−g ={

min
(
i∂g (h̄)

)
, max

(
k∂g (h̄)

)
, max

(
g∂ג (h̄)

)}
and ∂+g =

{
max

(
i∂g (h̄)

)
, min

(
k∂g (h̄)

)
, min

(
g∂ג (h̄)

)}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) . Then,

sin
(

∂−g

)
≤ ST − SVNOWA (∂1, ∂2, ..., ∂n) ≤ sin

(
∂+g

)
.

Theorem 14. (Monotonically) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂∗g =

{
i∗∂g

(h̄) ,k∗∂g
(h̄) , g∂∗ג

(h̄)
}
∈

SVNN (ℵ) (g = 1, 2, 3, ..., n) . If i∂g ≤ i∗∂g
,k∂g ≤ k∗∂g

and g∂ג ≤ g∂∗ג
, then

ST − SVNOWA (∂1, ∂2, ..., ∂n) ≤ ST − SVNOWA (∂∗1 , ∂∗2 , ..., ∂∗n) .

Theorem 15. (Symmetric) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂∗g =

{
i∗∂g

(h̄) ,k∗∂g
(h̄) , g∂∗ג

(h̄)
}
∈

SVNN (ℵ) (g = 1, 2, 3, ..., n) . Then,

ST − SVNOWA (∂1, ∂2, ..., ∂n) = ST − SVNOWA (∂∗1 , ∂∗2 , ..., ∂∗n) ,

whenever ∂∗g (g = 1, 2, 3, ..., n) is any version of ∂g (g = 1, 2, 3, ..., n) .
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Proof of above theorems are follows form Theorems 7–10 similarly.

4.2. Sine Trigonometric Weighted Geometric AOs

Definition 18. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n). Then, the sine

trigonometric weighted geometric aggregation operator for SVNN (ℵ) is denoted by ST − SVNWG and
defined as follows:

ST − SVNWG (∂1, ∂2, ..., ∂n) = (sin (∂1))
`1 � (sin (∂2))

`2 � ... � (sin (∂n))
`n

=
n

∏
g=1

(
sin
(
∂g
))`g

where `g (g = 1, 2, ..., n) represents the weights of ∂g (g = 1, 2, 3, ..., n) with `g ≥ 0 and ∑n
g=1 `g = 1.

Theorem 16. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) and the weight vector

of ∂g (g = 1, 2, 3, ..., n) be denoted by ` = (`1, `2, ..., `n)
T subject to

n
∑

g=1
`g = 1. The ST − SVNWG operator

is a mapping Gn −→ G such that

ST − SVNWG (∂1, ∂2, ..., ∂n) =
n

∏
g=1

(
sin
(
∂g
))`g

=


∏n

g=1

(
sin
(

π
2 i∂g

))`g
,

1−∏n
g=1

(
sin
(

π
2 1−k∂g

))`g
,

1−∏n
g=1

(
sin
(

π
2 1− g∂ג

))`g

 (3)

Proof. We prove Theorem 16, by employing mathematical induction on n. As for each g,
∂g =

{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ), which implies that i∂g ,k∂g , g∂ג ∈ [0, 1] and

i∂g +k∂g + g∂ג ≤ 3. Then, the following steps of the mathematical induction have been executed.
Step-1: For n = 2, we get

ST − SVNWG (∂1, ∂2) = (sin (∂1))
`1 � (sin (∂2))

`2 .

As by the Definition 12, sin (∂1) and sin (∂2) are SFNs, and therefore (sin (∂1))
`1 � (sin (∂2))

`2 is
also SVNN. Further, for ∂1 and ∂2, we have

ST − SVNWG (∂1, ∂2)

= (sin (∂1))
`1 � (sin (∂2))

`2

=


(
sin
(

π
2 i∂1

))`1 ,
1−

(
sin
(

π
2 1−k∂1

))`1 ,
1−

(
sin
(

π
2 1− 1∂ג

))`1

�


(
sin
(

π
2 i∂2

))`2 ,
1−

(
sin
(

π
2 1−k∂2

))`2 ,
1−

(
sin
(

π
2 1− 2∂ג

))`2



=


∏2

g=1

(
sin
(

π
2 i∂g

))`g
,

1−∏2
g=1

(
sin
(

π
2 1−k∂g

))`g
,

1−∏2
g=1

(
sin
(

π
2 1− g∂ג

))`g


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Step-2: Suppose that Equation (3) is holds for n = κ, we have

ST − SVNWG (∂1, ∂2, ...∂κ) =


∏κ

g=1

(
sin
(

π
2 i∂g

))`g
,

1−∏κ
g=1

(
sin
(

π
2 1−k∂g

))`g
,

1−∏κ
g=1

(
sin
(

π
2 1− g∂ג

))`g


Step-3: Now we have to prove that Equation (3) is holds for n = κ + 1.

ST − SVNWG (∂1, ∂2, ...∂κ+1)

=
κ

∏
g=1

(
sin
(
∂g
))`g � (sin (∂κ+1))

`κ+1

=


∏κ

g=1

(
sin
(

π
2 i∂g

))`g
,

1−∏κ
g=1

(
sin
(

π
2 1−k∂g

))`g
,

1−∏κ
g=1

(
sin
(

π
2 1− g∂ג

))`g

�


(

sin
(

π
2 i∂κ+1

))`κ+1
,

1−
(

sin
(

π
2 1−k∂κ+1

))`κ+1
,

1−
(

sin
(

π
2 1− κ+1∂ג

))`κ+1



=


∏κ+1

g=1

(
sin
(

π
2 i∂g

))`g
,

1−∏κ+1
g=1

(
sin
(

π
2 1−k∂g

))`g
,

1−∏κ+1
g=1

(
sin
(

π
2 1− g∂ג

))`g


that is, when n = z + 1, Equation (3) also holds.

Therefore, Equation (3) holds for any n. The proof is completed.

Theorem 17. (Idempotancy) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) such

that ∂g = ∂. Then,
ST − SVNWG (∂1, ∂2, ..., ∂n) = sin (∂) .

Theorem 18. (Boundedness) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂−g ={

min
(
i∂g (h̄)

)
, max

(
k∂g (h̄)

)
, max

(
g∂ג (h̄)

)}
and ∂+g =

{
max

(
i∂g (h̄)

)
, min

(
k∂g (h̄)

)
, min

(
g∂ג (h̄)

)}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) . Then,

sin
(

∂−g

)
≤ ST − SVNWG (∂1, ∂2, ..., ∂n) ≤ sin

(
∂+g

)
.

Theorem 19. (Monotonically) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂∗g =

{
i∗∂g

(h̄) ,k∗∂g
(h̄) , g∂∗ג

(h̄)
}
∈

SVNN (ℵ) (g = 1, 2, 3, ..., n) . If i∂g ≤ i∗∂g
,k∂g ≤ k∗∂g

and g∂ג ≤ g∂∗ג
, then

ST − SVNWG (∂1, ∂2, ..., ∂n) ≤ ST − SVNWG (∂∗1 , ∂∗2 , ..., ∂∗n) .

Theorem 20. (Symmetric) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂∗g =

{
i∗∂g

(h̄) ,k∗∂g
(h̄) , g∂∗ג

(h̄)
}
∈

SVNN (ℵ) (g = 1, 2, 3, ..., n) . Then

ST − SVNWG (∂1, ∂2, ..., ∂n) = ST − SVNWG (∂∗1 , ∂∗2 , ..., ∂∗n) ,

whenever ∂∗g (g = 1, 2, 3, ..., n) is any version of ∂g (g = 1, 2, 3, ..., n) .

Proof of above theorems are follows from Theorems 7–10 similarly.
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Definition 19. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n). Then, the sine

trigonometric ordered weighted geometric aggregation operator for SVNN (ℵ) is denoted by ST − SVNOWG
and defined as follows,

ST − SVNOWG (∂1, ∂2, ..., ∂n) =
(

sin
(

∂υ(1)

))`1
�
(

sin
(

∂υ(2)

))`2
� ... �

(
sin
(

∂υ(n)

))`n

=
n

∏
g=1

(
sin
(

∂υ(g)

))`g

where υ (g) is denoted for ordered and (υ (1) , υ (2) , υ (3) , ..., υ (n)) is a permutation of (1, 2, 3, ..., n) , subject
to ευ(g−1) ≥ ευ(g) for all g. Also, `g (g = 1, 2, ..., n) represents the weights of ∂g (g = 1, 2, 3, ..., n) with `g ≥ 0
and ∑n

g=1 `g = 1.

Theorem 21. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) and the weight vector

of ∂g (g = 1, 2, 3, ..., n) be denoted by ` = (`1, `2, ..., `n)
T subject to

n
∑

g=1
`g = 1. The ST− SVNOWG operator

is a mapping Gn −→ G such that

ST − SVNOWG (∂1, ∂2, ..., ∂n) =
n

∏
g=1

(
sin
(

∂υ(g)

))`g

=


∏n

g=1

(
sin
(

π
2 i∂υ(g)

))`g
,

1−∏n
g=1

(
sin
(

π
2 1−k∂υ(g)

))`g
,

1−∏n
g=1

(
sin
(

π
2 1− υ(g)∂ג

))`g

 (4)

Proof. Follows from Theorem 16 similarly.

Theorem 22. (Idempotancy) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) such

that ∂g = ∂. Then,
ST − SVNOWG (∂1, ∂2, ..., ∂n) = sin (∂) .

Theorem 23. (Boundedness) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂−g ={

min
(
i∂g (h̄)

)
, max

(
k∂g (h̄)

)
, max

(
g∂ג (h̄)

)}
and ∂+g =

{
max

(
i∂g (h̄)

)
, min

(
k∂g (h̄)

)
, min

(
g∂ג (h̄)

)}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) . Then,

sin
(

∂−g

)
≤ ST − SVNOWG (∂1, ∂2, ..., ∂n) ≤ sin

(
∂+g

)
.

Theorem 24. (Monotonically) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂∗g =

{
i∗∂g

(h̄) ,k∗∂g
(h̄) , g∂∗ג

(h̄)
}
∈

SVNN (ℵ) (g = 1, 2, 3, ..., n) . If i∂g ≤ i∗∂g
,k∂g ≤ k∗∂g

and g∂ג ≤ g∂∗ג
, then

ST − SVNOWG (∂1, ∂2, ..., ∂n) ≤ ST − SVNOWG (∂∗1 , ∂∗2 , ..., ∂∗n) .

Theorem 25. (Symmetric) Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
, ∂∗g =

{
i∗∂g

(h̄) ,k∗∂g
(h̄) , g∂∗ג

(h̄)
}
∈

SVNN (ℵ) (g = 1, 2, 3, ..., n) . Then

ST − SVNOWG (∂1, ∂2, ..., ∂n) = ST − SVNOWG (∂∗1 , ∂∗2 , ..., ∂∗n) ,

whenever ∂∗g (g = 1, 2, 3, ..., n) is any version of ∂g (g = 1, 2, 3, ..., n) .
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Proof of above theorems follows from Theorems 7–10 similarly.

4.3. Fundamental Properties of the Proposed AOs

In this section, we investigated the several relations between the proposed AOs and study their
some fundamental properties as follows.

Theorem 26. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2) . Then, we have

sin (∂1)� sin (∂2) ≥ sin (∂1)� sin (∂2)

Proof. Since, ∂g ∈ SVNN (ℵ) (g = 1, 2) . Then, by using Definition 13, we have

sin (∂1)� sin (∂2) =

 1−
(
1− sin

(
π
2 i∂1

)) (
1− sin

(
π
2 i∂2

))
,(

1− sin
(

π
2 1−k∂1

)) (
1− sin

(
π
2 1−k∂2

))
,(

1− sin
(

π
2 1− 1∂ג

)) (
1− sin

(
π
2 1− 2∂ג

))


and

sin (∂1)� sin (∂2) =

 sin
(

π
2 i∂1

)
sin
(

π
2 i∂2

)
,

1−
(
sin
(

π
2 1−k∂1

)) (
sin
(

π
2 1−kκ2

))
,

1−
(
sin
(

π
2 1− 1∂ג

)) (
sin
(

π
2 1− κ2ג

))


As for any two non-negative real numbers l and m, their arithmetic mean is greater than or equal
to their geometric mean, l+m

2 ≥ lm ⇒ l + m − lm ≥ lm ⇒ 1 − (1− l) (1−m) ≥ lm. Thus,
by taking l = sin

(
π
2 i∂1

)
and m = sin

(
π
2 i∂2

)
we have 1 −

(
1− sin

(
π
2 i∂1

)) (
1− sin

(
π
2 i∂2

))
≥

sin
(

π
2 i∂1

)
sin
(

π
2 i∂2

)
, which implies that

1−
(

1− sin
(π

2
i∂1

)) (
1− sin

(π

2
i∂2

))
≥ sin

(π

2
i∂1

)
sin
(π

2
i∂2

)
Similarly, we have(

1− sin
(π

2
1−k∂1

)) (
1− sin

(π

2
1−k∂2

))
≤ 1−

(
sin
(π

2
1−k∂1

)) (
sin
(π

2
1−kκ2

))
and (

1− sin
(π

2
1− 1∂ג

)) (
1− sin

(π

2
1− 2∂ג

))
≤ 1−

(
sin
(π

2
1− 1∂ג

)) (
sin
(π

2
1− κ2ג

))
Therefore,

sin (∂1)� sin (∂2) ≥ sin (∂1)� sin (∂2)

Proved.

Theorem 27. Let ∂ = {i∂ (h̄) ,k∂ (h̄) , ∂ג (h̄)} ∈ SVNN (ℵ) and ψ ≥ 0 be any real number, then
(1) ψ sin (∂) ≥ (sin (∂))ψ iff ψ ≥ 1,
(2) ψ sin (∂) ≤ (sin (∂))ψ iff 0 < ψ ≤ 1.

Proof. Follows from Theorem 26, similarly.

Lemma 1. For lg ≥ 0 and mg ≥ 0, then we have ∏n
g=1

(
lg
)mg ≤ ∑n

g=1 mglg and if l1 = l2 = ... = ln then
equality holds.

Lemma 2. Let 0 ≤ l, m ≤ 1, and 0 ≤ x ≤ 1, then 0 ≤ lx + m (1− x) ≤ 1.

Lemma 3. Let 0 ≤ l, m ≤ 1, then
√

1− (1− l2) (1−m2) ≥ lm.
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Theorem 28. Let ∂g =
{
i∂g (h̄) ,k∂g (h̄) , g∂ג (h̄)

}
∈ SVNN (ℵ) (g = 1, 2, 3, ..., n) . Then,

ST − SVNWA (∂1, ∂2, ..., ∂n) ≥ ST − SVNWG (∂1, ∂2, ..., ∂n)

where equality holds iff ∂1 = ∂2 = ... = ∂n.

Proof. Follows from Theorem 26, similarly.

5. Decision-Making Technique

This part presents a decision-making methodology, followed by an illustrative example, to solve
decision-making problems (DMPs) under SVNS setting. Multi-attribute decision-making issues
can be demonstrated in the form of a decision matrix, in which the columns reflect the set of
attributes and the rows are alternatives [59–63]. Thus, for decision matrix Dn×m, consider a set
of n alternatives {ℵ1,ℵ2,ℵ3, ...,ℵn} and m criteria/attributes {t1, t2, t3, ..., tm}. The unknown weight
vector of m criteria/attributes is denoted by W = {κ1, κ2, κ3, ..., κm} with subject to `g ∈ [0, 1] such that

m
∑

g=1
`g = 1.

Suppose that the single-valued neutrosophic decision matrix is denoted by D =
(
∂ij
)

n×m =

〈iij,kij, ,ij〉n×mג where iij represents the truth degree of the alternative gratifies the criteria tj
considered by decision-maker (DM), kij represents the degree of the alternative is indeterminacy
for the criteria tj considered by decision maker (DM), and ijג represents the degree of the alternative
does not gratify the criteria tj considered by decision-maker (DM). The algorithm consists of the
following steps.

Step-1 Summarize the values of each alternative in term of decision matrix D(k) =
(

∂
(k)
ij

)
n×m

with

SVNS information.
Step-2 Construct the normalized decision matrix P =

(
pij
)

from D =
(
∂ij
)

, where pij is calculated as

pij =


(
iij,kij, ijג

)
If criteria are benefit type

(
ij,kij,iijג

)
If criteria are cost type

(5)

Step-3 Calculate the aggregate information of the decision-makers information either SFWA/SFWG
operator.

SVNWA (∂1, ∂2, ..., ∂n) =
{

1−Πn
g=1(1−i∂g)

`g , Πn
g=1(k∂g)

`g , Πn
g=1(ג∂g)

`g
}

or

SVNWG (∂1, ∂2, ..., ∂n) =
{

Πn
g=1(i∂g)

`g , 1−Πn
g=1(1−k∂g)

`g , 1−Πn
g=1(1− (g∂ג

`g
}

Step-4 If the attribute weights are known as a prior then utilize them. Otherwise, we compute them
by utilizing the concept of the entropy measure. For it, the information of criteria tj based on
entropy measure is computed as

Ej (∂) =
1(√

2− 1
)

m

m

∑
i=1

[
sin
(π

4

(
1 +i∂ij

−k∂ij
− ij∂ג

))
+ sin

(π

4

(
1−i∂ij

+k∂ij
+ ij∂ג

))
− 1
]

where 1
(
√

2−1)m
is a constant for assuring 0 ≤ Ej (∂) ≤ 1.

Step-5 Using proposed sine trigonometric aggregation operators and attributes weight vector,
the collective single-valued neutrosophic information of the each alternative {ℵ1,ℵ2,ℵ3, ...,ℵn}
are obtained.
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Step-6 Evaluate the scores values sc (∂) of collective single-valued neutrosophic numbers and rank
according the maximum score values. If the score values of two ∂1 and ∂2 are same, then find
the accuracy degrees ac (∂1) and ac (∂2) , respectively, then we rank the ∂1 and ∂2 according the
maximum degree.

Step-7 Select the optimal alternative according the maximum score value or accuracy degree.

6. Application of Proposed Decision-Making Technique

In this section, a numerical application about hydrogen power plant selection problem is firstly
used to illustrate the designed decision-making method. Then, a comparison between the presented
sine trigonometric aggregation operators and the existing aggregation operators of SVNNs are carried
out to demonstrate the characteristic and benefit of the presented AOs.

6.1. Practical Case Study

Maximizing the reach of technologies and the efficient use of renewable resources has always
been a key task for developing sustainable and environmentally friendly energy with a view to future
prospects. Invariably, in dealing with all renewable energy projects, the problem of site selection is
always a very important one, where experts and decision-makers take all possible qualitative and
quantitative factors into account. In particular, selecting the right location for the hydrogen power plant
project is an important task that is consistently addressed through a multi-criteria decision-making
process. Hydrogen energy is one of the most efficient and cleanest energy sources that contribute
significantly to the share of energy in the world.

The sites under consideration must have been chosen through professional communication by
the competent experts. All the attributes affecting the site selection have been determined on the basis
of the expert’s/decision-maker’s opinion and the available literature. For the sake of selecting the
best site/location, the decision-makers must take the social aspects, environment aspects, technology
aspects, financial implications, and also some major characteristic aspects. We take a case study for
this selection problem in a conventional frame where there are five available sites, say, S1, S2, S3, S4

and S5, which are under consideration in solving the problem. These sites have been systematically
examined with respect to the five main attributes, say, f1 (Social Aspect) , f2 (Environment Aspect) ,
f3 (Technology Aspect) , f4 (Economical Aspect), and f5 (Site Characteristics). Naturally, a better
solution is expected if the number of attributes are increased. The problem of selecting the best possible
hydrogen power plant site from the available set of alternatives is being mathematically and critically
solved under the expert’s/decision-maker’s opinion and criteria weights taking the single-valued
neutrosophic environment. Due to the fuzziness and uncertainty of the experts’ cognition, they cannot
provide the complete decision information, and the evaluation information is shown in the following
Table 1. In this evaluation, the expert was asked to use SVN information and attributes weights are
(0.15, 0.28, 0.20, 0.22, 0.15)T .

Step-1 Information result of the expert is listed in Table 1;

Table 1. SVN Information (D).

f1 f2 f3 f4 f5

S1 (0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.2, 0.2, 0.6) (0.4, 0.2, 0.3) (0.3, 0.3, 0.4)
S2 (0.7, 0.1, 0.3) (0.3, 0.2, 0.7) (0.6, 0.3, 0.2) (0.2, 0.4, 0.6) (0.7, 0.1, 0.2)
S3 (0.5, 0.3, 0.4) (0.4, 0.2, 0.6) (0.6, 0.1, 0.2) (0.3, 0.1, 0.5) (0.6, 0.4, 0.3)
S4 (0.7, 0.3, 0.2) (0.2, 0.2, 0.7) (0.4, 0.5, 0.2) (0.2, 0.2, 0.5) (0.4, 0.5, 0.4)
S5 (0.4, 0.1, 0.3) (0.2, 0.1, 0.5) (0.4, 0.1, 0.5) (0.6, 0.3, 0.4) (0.3, 0.2, 0.4)

Step-2 According to the expert, attributes t1, t3, and t5 are benefits type, t2 and t4 are cost attributes.
Normalized matrix computed as given formula 5, and results are shown in Table 2;
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Table 2. Normalized SVN information (P).

f1 f2 f3 f4 f5

S1 (0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4) (0.3, 0.3, 0.4)
S2 (0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2) (0.7, 0.1, 0.2)
S3 (0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3) (0.6, 0.4, 0.3)
S4 (0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2) (0.4, 0.5, 0.4)
S5 (0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6) (0.3, 0.2, 0.4)

Step-3 In this practical case study, only one expert (decision-maker) is involved, so here we do not
need to compute the aggregated decision matrix.

Step-4 Known criteria weight vector is:

κ = {κ1 = 0.15, κ2 = 0.28, κ3 = 0.20, κ4 = 0.22, κ5 = 0.15}

Step-5 Based on the weight vector and utilizing the proposed sine trigonometric AOs, the aggregated
single-valued neutrosophic information of each alternatives are obtained in Table 3:

Table 3. Aggregated single-valued neutrosophic information.

ST − SV NWA ST − SV NOWA ST − SV NWG ST − SV NOWG

S1 (0.562, 0.025, 0.078) (0.567, 0.029, 0.081) (0.508, 0.027, 0.089) (0.518, 0.032, 0.088)
S2 (0.862, 0.020, 0.028) (0.865, 0.016, 0.029) (0.855, 0.033, 0.030) (0.859, 0.028, 0.031)
S3 (0.776, 0.015, 0.048) (0.770, 0.016, 0.048) (0.769, 0.026, 0.054) (0.763, 0.030, 0.053)
S4 (0.784, 0.042, 0.024) (0.782, 0.048, 0.024) (0.732, 0.060, 0.029) (0.729, 0.065, 0.029)
S5 (0.609, 0.009, 0.064) (0.583, 0.009, 0.067) (0.595, 0.016, 0.088) (0.570, 0.014, 0.084)

Step-6 Compute the score value of the each aggregated single-valued neutrosophic information of
each alternative as follows in Table 4.

Table 4. Score values.

sc (S1) sc (S2) sc (S3) sc (S4) sc (S5)

ST − SVNWA 0.45785 0.81292 0.71225 0.71723 0.53521
ST − SVNOWA 0.45577 0.82036 0.70536 0.70931 0.50665
ST − SVNWG 0.39152 0.79117 0.68839 0.64236 0.49041

ST − SVNOWG 0.39711 0.79969 0.67968 0.63447 0.47160

Step-7 Select the optimal alternative according the maximum score value given in Table 5.

Table 5. Ranking.

Score Ranking Best Alternative

ST − SVNWA sc (S2) > sc (S4) > sc (S3) > sc (S5) > sc (S1) S2
ST − SVNOWA sc (S2) > sc (S4) > sc (S3) > sc (S5) > sc (S1) S2
ST − SVNWG sc (S2) > sc (S3) > sc (S4) > sc (S5) > sc (S1) S2

ST − SVNOWG sc (S2) > sc (S3) > sc (S4) > sc (S5) > sc (S1) S2

In our case study, we aim to select the the right location for the hydrogen power plant according
to five attributes: Social Aspect, Environment Aspect, Technology Aspect, Economical Aspect,
and Site Characteristics. After implementing the designed algorithm steps to the collective data
in the form of a single-valued neutrosophic set based on the novel sine trigonometric operational
rules. Based on the above computational process, we can conclude that the alternative S2 is the
best among the others and therefore it is highly recommended to select for the task/plan that
is required.
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6.2. Verification and the Comparison Analysis

In the following, we provides some suitable examples to show the feasibility as well as
effectiveness of the proposed novel decision-making method and make a comparison with the
existing studies.

To using existing methods and different aggregation operators to computed aggregated
single-valued information information are shown in Tables 6 and 7.

Table 6. Average aggregated SVN information.

SVNWA [64] SVNOWA [64] NWA [57] SVNFWA [65]

S1 {0.377, 0.225, 0.400} {0.382, 0.244, 0.407} {0.377, 0.231, 0.422} {0.375, 0.226, 0.401}
S2 {0.661, 0.205, 0.238} {0.666, 0.180, 0.243} {0.661, 0.242, 0.244} {0.661, 0.207, 0.238}
S3 {0.565, 0.176, 0.313} {0.559, 0.183, 0.312} {0.565, 0.210, 0.327} {0.565, 0.177, 0.314}
S4 {0.572, 0.292, 0.221} {0.570, 0.314, 0.221} {0.572, 0.334, 0.233} {0.569, 0.295, 0.222}
S5 {0.416, 0.141, 0.360} {0.396, 0.137, 0.369} {0.416, 0.163, 0.413} {0.415, 0.142, 0.364}

Table 7. Average aggregated SVN information.

SVNHWA [66] γ = 2 SVNHWA [66] γ = 3 L-SVNWA [55] L-SVNOWA [55]

S1 {0.372, 0.226, 0.403} {0.369, 0.226, 0.404} {0.313, 0.175, 0.354} {0.322, 0.192, 0.360}
S2 {0.660, 0.208, 0.238} {0.660, 0.209, 0.239} {0.648, 0.198, 0.231} {0.654, 0.171, 0.236}
S3 {0.564, 0.179, 0.314} {0.564, 0.180, 0.315} {0.498, 0.173, 0.332} {0.489, 0.182, 0.330}
S4 {0.566, 0.297, 0.223} {0.563, 0.300, 0.223} {0.558, 0.273, 0.194} {0.556, 0.297, 0.194}
S5 {0.415, 0.142, 0.368} {0.414, 0.143, 0.371} {0.284, 0.124, 0.375} {0.244, 0.120, 0.383}

Now, we analysis the ranking of the alternative according to their aggregated informations in
Tables 8 and 9.

Table 8. Overall ranking of the alternatives.

Existing Operators Ranking Best Alternative

NWA [57] S2 > S3 > S4 > S5 > S1 S2
SVNWA [64] S2 > S3 > S4 > S5 > S1 S2

SVNOWA [64] S2 > S3 > S4 > S5 > S1 S2
SVNWG [64] S2 > S3 > S4 > S5 > S1 S2

SVNOWG [64] S2 > S3 > S4 > S5 > S1 S2
SVNFWA [65] S2 > S3 > S4 > S5 > S1 S2

SVNHWA [66] γ = 2 S2 > S3 > S4 > S5 > S1 S2
SVNHWA [66] γ = 3 S2 > S3 > S4 > S5 > S1 S2

NWG [45] S2 > S3 > S4 > S5 > S1 S2
SVNFWG [65] S2 > S3 > S4 > S5 > S1 S2

SVNHWG [66] γ = 2 S2 > S3 > S4 > S5 > S1 S2
SVNHWG [66] γ = 3 S2 > S3 > S4 > S5 > S1 S2

SNWEA [54] S2 > S3 > S5 > S4 > S1 S2
L-SVNWA [55] S2 > S4 > S3 > S5 > S1 S2

L-SVNOWA [55] S2 > S4 > S3 > S5 > S1 S2
L-SVNWG [55] S2 > S4 > S3 > S1 > S5 S2

L-SVNOWG [55] S2 > S3 > S4 > S5 > S1 S2
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Table 9. Overall ranking of the alternatives.

Proposed Operators Ranking Best Alternative

L-SVNWA S2 > S4 > S3 > S5 > S1 S2
L-SVNWG S2 > S3 > S4 > S5 > S1 S2

L-SVNOWA S2 > S4 > S3 > S5 > S1 S2
L-SVNOWG S2 > S3 > S4 > S5 > S1 S2

The bast alternative is S2. The results achieved using novel single sine trigonometric-valued
neutrosophic-weighted aggregation operators were the same as the results demonstrate existing
techniques. Therefore, this study proposed the list of novel sine trigonometric aggregation operators
to aggregate the single-valued neutrosophic information more effectively and efficiently. Using the
proposed sine trigonometric aggregation operators, we sound the best alternative out of a collection
of alternatives given by the decision-maker. Therefore, the proposed decision-making methodology
based on sine trigonometric operational rules, helps us to find the best solution in decision-support
systems as applications.

7. Conclusions

The process of industrialization has significantly increased energy consumption throughout
the world. The objective of the proposed research is to present a novel decision-making approach
for the selection of hydrogen power plant sites. To accomplish this task, novel sine trigonometric
function-based operational laws are introduced under SVNNs. Utilizing these STOLs proposed some
aggregation operators, namely, sine trigonometric SVN weighted averaging/geometric aggregation
operators and sine trigonometric SVN-ordered weighted averaging/geometric aggregation operators.
The various fundamental relations between the developed AOs are studied and presented in details.
To implement the proposed laws on to the DMPs, we designed a new MADM algorithm with
decision-making problems where the preferences are assessed in terms of SVNNs. The utilized
single-valued neutrosophic information measures have been found to be significantly efficient to
handle the uncertainty in decision-making problems. The functionality of the developed method are
tested over the illustrated example of hydrogen power plant site selection and superiority as well as
feasibility of the method are examined in details. A comparative analysis with several existing works
are also done to check its performance.

In the future research, the method proposed in this paper will be applied to other uncertain fields,
such as probabilistic linguistic term sets, interval-value SVNSs, and so on. Besides, the proposed
method can be applied to other areas, such as medical health diagnosis, green supplier selection,
and so on.
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