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Abstract: Face recognition (FR) has received considerable attention in the field of security, especially
in the use of closed-circuit television (CCTV) cameras in security monitoring. Although significant
advances in the field of computer vision are made, advanced face recognition systems provide
satisfactory performance only in controlled conditions. They deteriorate significantly in the face of
real-world scenarios such as lighting conditions, motion blur, camera resolution, etc. This article
shows how we design, implement, and conduct the empirical comparisons of machine learning
open libraries in building attendance taking (AT) support systems using indoor security cameras
called ATSS. Our trial system was deployed to record the appearances of 120 students in five classes
who study on the third floor of FPT Polytechnic College building. Our design allows for flexible
system scaling, and it is not only usable for a school but a generic attendance system with CCTV.
The measurement results show that the accuracy is suitable for many different environments.

Keywords: face recognition; CCTV; attendance taking system; deep learning; computer vision

1. Introduction

1.1. Problem and Motivation

Every day, the CCTV system operates to monitor the inside of a building for security. The system’s
resources allow developers to build computer vision-based applications to integrate with CCTV. Face
recognition (FR) is an excellent biometric technique for identity authentication [1]. It is possible to apply
FR technology for automatic attendance taking at schools. There are several benefits from attendance
considering using the existing camera system, such as save time and effort, provide striking evidence for
quality assurance and human resource management tasks, avoid intermediary of infectious diseases [2].
The existing attendance taking system that uses fingerprint recognition is facing several challenges due
to large intra-class variability and substantial inter-class similarity mentioned by Dyre and Sumathi [3].
Ngo et al. combined the data from the academic portal with different FR techniques for the task of
taking attendance in the classroom [2]. The result shows that their system works smoothly. However,
the investment costs for procurement, camera installation at the school, and a large number of video
processing are expensive. This research describes the solution to apply deep FR technology to perform
AT via the existing CCTV system, which takes advantage of the available resources better and more
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suitable for different situations. We used a case study at FPT Polytechnic college to illustrate our design.
Figure 1 displays some photos captured from the real deployed system.
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Figure 1. Real installation of the attendance taking support system (ATSS) at the third floor at FPT
Polytechnic School.

1.2. Related Works

Recently, deep learning techniques have made many significant achievements in FR, such as deep
convolutional neural networks [4] use a cascade of multiple layers of processing units for feature
extraction. They learn various levels of representations that correspond to different levels of abstraction.
These techniques are called deep FR. The evolution of the FR is around network architectures and
loss functions. Deep face model trained on the large dataset. We often lack resources to learn
a complex model with minimal training samples for a specific face recognition task. Therefore, using
the pre-trained model as transfer learning is usually applied [5]. Wang and Deng reviewed many model
techniques [6] such as ArcFace [7] proposed a new loss function, additive angular margin to learn
highly discriminative features for robust face recognition. SphereFace [8] used ResNet 64 architecture
and angular softmax loss to learn discriminative face features with the angular margin. Another face
embedding is FaceNet [9] that uses a new triplet loss function and a large private dataset to train
a GoogleNet. Cosface [10] introduced their loss function based on a cosine margin term to maximize
the decision margin in the angular space. They are some of the famous representatives along with
other Deep FR works that are recently published. The surveys show that most of the review models
gain high achievements, with more than 98% to almost 100% accuracy on the tested datasets.

Ranjan et al. summarized FR’s component consists of three modules usually used in face
recognition [11], as shown in Figure 2: (A) The face detector: applied to localize faces in images
or videos. A powerful face detector can provide different pose, illumination, and scale. It returns
a bounding box of the face that minimizes the background [12–15]. (B) Facial landmarks extractor:
detects the facial landmarks such as eye centers, nose tip, and mouth corners. These points are
essential to align the faces to normalized canonical coordinates. Typically, the deep face detector
also goes with landmarks points [12–16]. Landmarks make it easy to detect face poses and some
other processes such as face alignment. (C) Feature descriptor: that encodes the identity information
secured from the aligned face. The similarity scores are then obtained between them that are used
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in face identification [7–9,17]. The purpose of this is to enhance the separation between the face data
of different individuals, and through that improve the ability to classify and cluster. The universal
approaches of classification algorithms, one-versus-all, all-versus-all (alternative of one-all-all) can all
be severe with a large number of labels [18]. As mentioned in the previous section Ngo and colleagues
proposed to narrow the scope of classification problems by using multiple classifiers, each of which
will be used only for a specific group of students based on their class schedule [2]. Their contributions
inspire our research.
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Figure 2. Illustration of three main components of the deep face system. (A) demonstrates the face
detection from an image frame, (B) shows the landmarks points of the cropped faces, and (C) plot
featured data in feature space archived by feature descriptor.

1.3. Problems of Face Recognition in Attendance Taking System Using CCTV

The picture seems simple when we think that we only need to use FR to determine if students are
present. However, when we carried out our investigation, we faced some problems: (1) Required almost
100% accuracy: attendance usually affects students directly. Many schools also require attendance as
part of the assessment process. See an example of the course syllabus for EBIO 6300 of the University of
Colorado in semester fall-2013 [19]. At FPT polytechnic, the minimum attendance required is 80% (over
30 slots of studying). There are several strategies to solve the problem apart from the special technical
efforts such as additional policy, system support, etc. (2) Constrained because of the environment:
installed equipment is mainly used for security purposes instead of attendance taking [20]. The cameras
are hung at the intersection in the corridor, such as the elevator hall, corridor corner. The AT must not
generate any effects on the existing CCTV system. (3) Performance of the current methods in a real
environment: even if the accuracy of ArcFace [7], the highest archive algorithm mentioned in [6] is
up to 99.83% on MS-Celeb-1M test set. Algorithms almost work well in an ideal environment, which
may not be satisfied in the real settings because of the effect of motion, camera resolution [21], light
conditions. The attendance taking task may not require to respond in runtime; however, the delay
should be as short as possible, or it is feasible to do this by increasing the processing capacity of
the system. Meanwhile, most of the high accuracy libraries implement the state-of-the-art in FR
asked for high processing time. (4) Ability to integrate with existing systems: attendance taking
system has a significant influence on the way the performance of attendees is measured. System
integration relates to user habits and operating experience. Therefore, they need to be able to leverage
the available resources of existing information systems. Besides, these systems also bring other benefits
to the attendance system.

1.4. Contribution of This Paper

The main contribution of this paper is to develop a complete algorithmic process that, at each step,
has been studied and evaluated to find the appropriate processing method for an automatic attendance
system using CCTV problems. The system consists of four major parts: the job master, job workers,
a central database, and user interface applications. The job master plays the role of a navigator and
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controls the AI processing units, which relates to the issues of performance of the system, and are
focused parts of this research.

The existing solution cannot solve the mentioned problems with AT using CCTV without adding
some calibrations. In this paper, we describe the way to provide experiments, combine techniques, and
to prepare some environment settings to tune our attendance taking system. Performance indicators,
along with business requirements, are considered to indicate detailed recommendations on investment
costs as well as the benefits for a particular system scale. Our system provides a guide that not only
allows the construction of a specific attendance system but is a general method for the attendance
system. Moreover, this architecture is workable for processing computer vision in real systems.
Our design allows the expansion of processing units (plug-ins) to deal with the system at a larger
scale. Combining with existing information systems plays a role in narrowing down the range of
calculations and improving reliability. Our proposed summarization algorithm improved the accuracy
of the methods used.

Several surveys summarize, and literature reviews the FR libraries [6,11,22]. In this study, we
provide an empirical comparison of the latest FR libs as well as classification algorithms through
our dataset in our real environment project. Ngo et al. also conducted a review on libraries, but
the reviewed facial embedding libs were out of date [2]. The remainder of the paper is organized as
follows: Section 2 describes the architectural design of the system. Section 3 shows the tested results,
and brief conclusions are finally discussed in part 4.

2. Proposed System

The attendance system, called ATSS, connects to the CCTV system. ATSS operates dependently
on the CCTV system but does not leave any effect on the existing system. Figure 3 depicts the general
picture of the system. There are several components in the system: the media recorder, job master, job
workers, central database, and user interface applications. The media recorder plays the role to record
frames captured from the CCTV system for further processes. The job master constructs, schedules, and
arranges tasks to job workers by using data leveraged from the academic portal. The processed data
then stored in the central database are accessed by the user for reporting and manipulating data via
the web application. The attendance data are also submitted to the academic portal. The system admin
can configure all parameters. The architecture has many similarities with the system architecture of
Bui et al. [23]. However, it allows the system to be more flexible in terms of processing; the system’s
response is possible to configure to fit the computational resources. The next parts of this section
provide a detailed description of the particular module.
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2.1. Job Master

As a navigator of the system, the job master is responsible as the navigator of the data streams
and process—the system runs according to the schedule data. The corresponding FR model is
also loaded based on the list of students instead of constructing a significant model for identifying
the whole students. The API Gateway allows APIs to communicate with existing systems. Class
diagram represents the exchanged data structure between ATSS and the academic portal as shown
in Figure 4. In the general problem, students are the attendees. The entities and relationships linked
with the scheduling entity may need to be modified according to actual conditions. The system
APIs are available with the building management system configured via the administrator’s web
application, for example, synchronized list attendees, floors list, rooms list, and so on. The process
of data synchronization allows the system to be compatible with existing systems, thus enhancing
the adaptability.
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According to the performance of the models reviewed by [2] and [6], because of our limited
computation resources, deep FR’s performance cannot be satisfied to perform run-time response.
We group the archived frames and corresponding schedules into several jobs and push to a queue.
Each of them dequeued to process by the job workers. Figure 5 demonstrates the process of dividing
the archived frames into tasks. This process allows speeding up the calculation by adding more job
workers. The job master acts as a workload balancer, which controls the works among the workers to
avoid bottleneck and race conditions.
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Figure 5. Archived image frames from CCTV are divided into jobs and stores in the queue for
next process.

2.2. Job Workers

Another module that plays an essential part in the architecture shown in Figure 3 is job worker.
It performs the simple task of an FR problem. All descriptions of FR building blocks are available
in this module (the detail of FR is already mentioned in Section 1). The video frames are processed
directly in this module. All processes are in parallel through the arrangement of the job master. They
are constructed based on master-slave architecture [24]. This architecture allows us to work efficiently
with extensive data when deploying systems on a larger scale (hundreds of cameras). There are
two tasks handled by the workers as shown in Figure 6: (1) Face identification: Photos of batches
taken from the queue passed to the identification module. The system does not have to process
the whole pixels of an image. The region of interest is cropped for the subsequent processing. Face and
landmark detections are executed to retrieve bounding boxes of the faces as well as facial landmarks
points. There are several techniques for face data augmentation reviewed by Wang et al. [25], such as
face rotation, transformation . . . etc. However, we applied a compelling face-embedding technique
for feature description based on our observation during the system development. We notice that
face alignment brings efficiency. All cropped faces passed to vectorization for the classification task.
The summarization algorithm (described in the section) was performed to make the final decision.
(2) Data collection: Features are extracted from video faces collected by the mobile application, and
then processed in frame processing component and stored as feature vectors in the database. This
process does not require an almost real-time response, so a parallel processing architecture is not
needed. To provide the front-end to collect the training dataset, we have built a mobile application to
record the user’s face video. The user uses the front camera of the phone to record different angles of
the face in the lowest resolution of 720 p, 30 fps. The average length of the trained videos is about
30 s. Videos are recorded by the data collector and then uploaded to the database server for further
processing via a web service. Section 2.3 describes in detail how each handle of the FR building block
is installed in job worker.
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2.3. Face Recognition Building Block

In this section, we describe in detail how we configure for each system component. The description
mainly lies around the modules that are the most effective, including data sampling, batch processing,
the defining region of interest (ROI), frame processing, and summarization algorithm.

2.3.1. Data Sampling

We do not take all retrieved frames from uploaded videos by the data collector application to
build a training dataset. Instead of doing so, on each video, we perform head pose detection using
HopeNet [26] to detect exactly three face turning angles. In our experiment, the best value of three face
turning angles is −0.3 rad, 0 rad, and 0.3 rad. After that, we perform face detection to extract three
faces in each corner. We have nine faces evenly spread from the input video that is the number of
training samples for each class. The facial embedding methods used are all pre-trained models with
millions of face data, so images in normal conditions can be encoded under feature vectors that are
separate from faces in other classes. Feature vectors are then extracted from the cropped faces to be
stored in the facial database. Figure 7 illustrates an example of nine faces collected.
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Figure 7. Example of nine faces collected of a particular student.

2.3.2. Region of Interest

We found that FR only works well within a certain distance; the problem may relate to the camera
resolution and motion blur effects in many types of CCTV. So we calculated the area to take attendance,
which is a rectangle called attendance area, and asked for a rule to guide students to go through this
area to record their presence. For specific identification, we propose a correction plan in each particular
camera type based on the labeled data. We found that if the center of the data belongs to a specific
label closest to the input sample, that is precisely the distance we find. In other words, if you sit on
the chair to watch for some known-people to pass by, the range you see that person’s face clear the best
is the region of interest (ROI). To do this, we used the similarity between the center of the group
and the input sample. There are many types of similarity measures. However, because of the face
embedding methods we choose, we decided to use the Euclidean distance. Different type of cameras
provide different resolution, projection angle; depending on the particular environment, we need to
perform calibration for each of them. The detail of the algorithm described is as follows:

Denote: Mi ∈ Rn×d
∀i = 1..7 are the training set of seven members in the project team. Where n

is the number of labelled images in the class ith and d is the size of dimension space, depending on
the face embedding methods we selected. We calculate the center µi of Mi:

µi =

[
1
n

n∑
j=1

Mi j,1 · · ·
1
n

n∑
j=1

Mi j,d

]
∀i = 1..7 (1)

s(i)j is the feature vector capture member ith when he stands j meters away from the camera, his

face turn directly to the camera. We compute the distance di

(
s(i)j ,µi

)
=

√∑d
z=1

(
s(i)j z
− µiz

)2
from s(i)j to

µi. Set g j =
1
m

∑7
i=1 di

(
s(i)j ,µi

)
is the mean of the particular distance to camera of the seven members.

Figure 8 displays similarity degrees and the corresponding distance to camera.
The camera is hanging at the height of 2.8 m. The distance from the face to the camera is about

2 m to 4 m, which is the ideal distance for FR. In practice, we choose 2.5 m to 3.5 m. To speed up
the processing, we set up so that three people can stand in horizontal line and still be able to check. We
set the height of the attendance area as 100 cm (equivalent to 3-floor tiles). We then cropped the image
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to fit the size of five humans step in the attendance area. The area is called the region of interest
(ROI) [17].
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2.3.3. Frame Processing and Responding Time

The system only considers faces that appear in the ROI. Ngo et al. reviewed the face detection
libraries. According to the results obtained from them, we use MTCNN [12] as a face and landmark
detector. The faces are aligned based on five returned landmark points (left eye, right eye, nose,
left corner mouth, and right corner mouth). We already consider some of the face embedding
libraries mentioned in Wang and Deng’s survey [6] including: Arcface [7], Sphereface [8], Facenet [9],
Cosface [10]. The main goal of these methods is to maximize face class separability by introducing
a new loss function that is highly discriminative to features for face recognition. According to the survey.
Although, Arcface showed the best results compared to other loss functions that are good with face
recognition like triplet loss, intra-loss, and inter-loss. However, through initial empirical results,
they all show adverse effects in the real environment (because of light condition, motion blur . . . )
without our post-processing. We tested some different FR libraries and their output feature vectors
with several machine learning algorithms including parametric and non-parametric, generative, and
discriminative [27].

At FPT polytechnic, if the student is late for the first 15 min, or leave early before the last 15 min,
he/she is counted as absent. Attendance usually takes place at this time. To increase flexibility in
attendance as well as to avoid affecting the class, we define the AT process consist of two phases:
check-in and check-out for this process. The check-in time starts 15 min earlier than the lesson and
ends after the first 15 min. Likewise, for check-out at the end of class. Students present in front of
the attendance taking area at the right time are considered as present. The AT may not strictly require
runtime responding. However, it should get a response as fast as possible. In this situation, we set
2 min as the size of a job. We tried many different sizes; however, 2 min is the best-observed value
because of the aspects of waiting time, processing time, and memory consumption.

2.3.4. Summarization Algorithm

Using pure FR to classify input faces generates a mess because of the motion blur and the deflection
angle of the faces to the camera. Each human goes through the ROI, creating dozens of frames. Some
of the samples are classified correctly, but some others are not. Our idea is to track every face in
ROI as object tracking [28], the class assigned to a particular sample will mostly be the final decision.
However, this number of identifiers must be more than one threshold, which we have set is ten frames.
The summarize algorithm consists two main steps as follows:

Step 1—connected bounding box detection: Each bounding box have four attributes:
xmin, xmax, ymin, ymax. Any two of the bounding boxes are considered connected if they are at most two
frames away from each other and their ratio of intersection is greater than p = 0.4 as we found in
the experiment, or they are connected with a common bounding box. A connected component of
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bounding boxes contain all the bounding boxes connected pairwise. They are the movement of a face
in a video. Figure 9 illustrates the connected bounding boxes.

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 19 

 

every face in ROI as object tracking [28], the class assigned to a particular sample will mostly be the 

final decision. However, this number of identifiers must be more than one threshold, which we have 

set is ten frames. The summarize algorithm consists two main steps as follows: 

Step 1—connected bounding box detection: Each bounding box have four attributes: 

 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 . Any two of the bounding boxes are considered connected if they are at most 

two frames away from each other and their ratio of intersection is greater than 𝑝 = 0.4 as we found 

in the experiment, or they are connected with a common bounding box. A connected component of 

bounding boxes contain all the bounding boxes connected pairwise. They are the movement of a face 

in a video. Figure 9 illustrates the connected bounding boxes. 

 

Figure 9. Example of connected bounding boxes. 

Step 2—final decision: For each connected component, we use a sliding window algorithm with 

window size 𝑠 = 10 and slide to the right to determine the range for labeling (see Figure 10). For 

each window, we label by using the time that label appear 𝑡𝑎𝑝𝑝𝑒𝑎𝑟 and the predicted ratio 
𝑡𝑎𝑝𝑝𝑒𝑎𝑟

𝑠
 is 

used to determine whether that label can label all the boxes in that window or not. As in the 

experiment, the best value for this ratio is 0.6. If no label satisfies the condition, all boxes in that 

window will be labeled “Unknown”. 

 

Figure 10. Example of a sliding window. 

As shown in Figure 11, all wrong labels are labeled again, and in the next window, we use the 

old (not updated) label and continue labeling. This function will reduce the rate of the wrong 

detection in our system. 

(A)

(B)
 

Figure 11. Example of the output of the summarization algorithm. (A) Illustrates the pure 

classification results. (B) The most frequent label (class) assigned to the whole boxes appear in the 

window. 

  

Figure 9. Example of connected bounding boxes.

Step 2—final decision: For each connected component, we use a sliding window algorithm with
window size s = 10 and slide to the right to determine the range for labeling (see Figure 10). For each
window, we label by using the time that label appear tappear and the predicted ratio

tappear
s is used to

determine whether that label can label all the boxes in that window or not. As in the experiment,
the best value for this ratio is 0.6. If no label satisfies the condition, all boxes in that window will be
labeled “Unknown”.
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Figure 10. Example of a sliding window.

As shown in Figure 11, all wrong labels are labeled again, and in the next window, we use the old
(not updated) label and continue labeling. This function will reduce the rate of the wrong detection in
our system.
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Figure 11. Example of the output of the summarization algorithm. (A) Illustrates the pure classification
results. (B) The most frequent label (class) assigned to the whole boxes appear in the window.

3. Experiment and Result

3.1. Experiment

We used the pre-trained models to build the system. Therefore, in order to carry out the evaluation
of appropriate models, we use the facial data of 120 students as the training data (as described in
Sections 2.2 and 3.1, there are nine facial images for each student). Test data were recorded in two
sessions, with 7490 labeled images in attendant time. We manually labeled each face that appears in
the ROI in videos. Figure 12 shows the frequencies of appearance of each label in the test set. All



Symmetry 2020, 12, 307 11 of 20

experiments are conducted using system of Intel Core i5 3470 3.20 GHz, GPU NVidia GTX 1050ti 4 GB,
RAM 8 GB.
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Figure 12. The frequencies of appearance of 60 labels (including unknown) in the test set. The first
chart represents the number of unknown samples in the test set.

It is easy to see that the number of samples of “unknown” class is very prominent. The reason for
this is because we used the camera facing the staircase in the building for installing our system. Many
students who were walking to their classroom at different floors go through this area.

We used MTCNN as a facial detector [12], according to Ngo et al. [2] and our observation,
the results of detected faces are complete. The extracted faces then automatically be aligned vertically
so that the next parts can operate smoothly. There are many famous and latest methods be selected as
candidates for feature descriptor. There are two main lines of research to train a feature representation
network. Those that train a multi-class classifier that can separate different identities in the training
set, such as by using a softmax-variance classification (e.g., ArcFace [7]), and those that learn directly
an embedding, such as the triplet loss (e.g., Facenet [9]). In this project, we evaluate the face feature
representations of two state-of-the-art models, which are Arcface and Facenet, and decide to apply
ArcFace as our feature extractor by its superb performance. Feature data then passed to train
our classifiers.

3.2. System Accuracy

Figures 13 and 14 illustrate the face embedding data for FaceNet and ArcFace respectively. Part
A of each figure shows the heat map of the data on the feature space. Meanwhile, part B visualizes
featured data in 2-dimensional space using technique t-SNE [29]. Each face is described by FaceNet
with a 512-dimensional vector meanwhile ArcFace uses a 500-dimensional vector to embed the same
faces. We can observe that extracted facial data by both descriptors visualized by t-SNE is linearly
separable, which is fit to the classification task.
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Figure 14. (A) The heat map to represent training set in feature space, learned by Arcface.
(B) The extracted vectors by Arcface visualized in two dimensions space by t-SNE.

Figure 15 shows smaller overlap area between inter-class (green) and intra-class (red) distance,
the more discriminative power model has. With this overlap area, we can set a threshold to decide
whether a feature of a test face belongs to a known-class or not. In our experiment, to minimize
the false positive, we choose a threshold which return largest inter-class area and smallest intra-class
area. We can clearly see that the overlap area of Arcface is much smaller compared to Facenet. With
face description learned from Arcface, threshold around 1.07 can capture 98% face in a same class in
training data. On the other hand, Facenet only found the best rate of 65% if we set threshold of 0.35.
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Figure 15. Inter-class and intra-class distance of face representation computed by Facenet and Arcface.

We build four classifiers: SVM Linear Kernel (Linear SVM) [27], SVM RBF Kernel (RBF-SVM) [30],
Gaussian Naive Bayes (NB) [27], and Weighted—KNN [31]. In this report, we only present the best
results we obtained for each classifier. Table 1 shows the number of errors for each combination. In
order to measure the performance of each method, we build a confusion matrix for each pair, denoted
by M( f ,c)

∈ Rd×d
∀ f ∈ {Facenet, ArcFace}, c ∈ {RBF− SVM, NB, KNN, Linear− SVM}. We then calculate

the total error E( f ,c) corresponding to each M( f ,c) by the sum of all cells not belonging to the diagonal

of the matrix, such that: E( f ,c) =
∑d

i=1
∑d

j=1(M
( f ,c)
i, j ∗ (i , j)).

Table 1. The number of errors in the test set corresponds to the combination of the methods.

Classifiers
Linear SVM RBF SVM NB WKNN MeanDescriptor

FaceNet 0.643 0.638 0.6 0.652 0.633
ArcFace 0.886 0.803 0.75 0.913 0.83

Through the numerical results obtained from Table 1, we can see the best results obtained from
the combination of Feature extractor ArcFace and the classifier KNN. Table 1 shows the fusion matrix
of the combination between different face embedding methods and classification methods.

We can see that when using Arcface as feature extraction, the result was excellent when combining
some algorithms using similarity based on distance like KNN or Linear SVM. Because we do not
have a definition of unknown class, so the predicted result P(y | x) is low. There are many samples
in the scope of research but misclassified into the “unknown” class. These miss classifying is
significantly improved when using the summarization process. Figure 16 illustrates the fusion matrix
before executing summarization. Our setting archives an accuracy of 91.3% on the test dataset.
The diagonal of the matrix has many zeros, which indicates that many students have been misidentified.
The summarization algorithm has dramatically reduced the unwanted effects of the environment.
The resulting output includes unqualified images obtained from the camera, which are synthesized
and corrected by better quality images. In Figure 17, we show the confusion matrix of the system,
and the accuracy is 92.7%. Although the efficiency only increases by 1.4%, the ratio of false positive
decreased significantly to 1%. If we remove the unknown samples from our data, the accuracy can
be up to 98.5%. The values of 0 on the diagonal line have replaced most. Our results almost reach
the results of Arcface even we do not have standard conditions, and we get many difficulties as listed
before in the school environment.
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Figure 16. Confusion matrix archived from the combination of Arcface (pre-trained model
LResNet100E-IR, ArcFace@ms1m-refine-v2) and KNN (K = 5 and confident distance threshold = 1.07).
The first column and row represent the label of “unknown,” other columns and rows show the result of
corresponding class. Displayed data is normalized because of the large number of “unknown” samples.
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Figure 17. The obtained confusion matrix after executing summarization process. The first column and
row represent the label of “unknown,” other columns and rows show the result of corresponding class.
Displayed data are normalized because of the large number of “unknown” samples.



Symmetry 2020, 12, 307 15 of 20

3.3. System Processing Time

To enhance the computational power of the system, we used master-slaves architecture. Each
instance of the above design implemented a separate process, so the job worker needs to be configured
and assigned its address to perform hand-shaking with the job master. We set the data exchange
method based on the Subscriber and Publisher pattern. This design allows us to make modifications to
use different FR open-sources easily—the calculation speed is expected to increase linearly proportional
to the number of job workers. The processing time of the system is not suitable for runtime responding.
While detection and alignment are not too affected by the number of faces on the same frame, this
dramatically affects the feature extractions (see Figure 18) and makes the performance decrease linearly.
The predicted speeds of the classification models are breakneck, so are not presented in this section.
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Figure 18. (A) shows the processing time of the FR processing. (B) illustrate the processing time of face
detection (including landmarks points) and face alignment. (C) visualizes the processing time of face
description, corresponding to number of faces in the same.

Figure 19 shows the ability to utilize system resources to parallelly execut multiple jobs at the same
time. As mentioned in Section 2.3.4, each attendance session lasts 25 min. We choose each job length to
be 2 min. So if there are four cameras, it needs to be processed in ~802 s, so before check-out, students
can receive attendance records at the time of their check-in. The system depends on the number of
cameras connected. The computer configuration we used to measure the experiment was average.
When using specialized workstations for deep learning, a CCTV system of hundred cameras with
similar performance can be used. For a job worker, the system processes 12 videos in 1200 s, but when
increasing the number of workers to 4, the processing time is reduced by only 1/3. The cause of this
non-smooth is because the workers are running on the same PC, so they must share CPU and memory
resources. This situation improves when using multiple PCs. Here we focus on proving flexibility to
speed up the calculation.
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Figure 19. (A) total processing time on 12 videos using different number of workers. (B) CPU usage in
percentage on 12 videos using different number of workers. (C) CPU usage in megabyte on 12 videos
using different number of workers.
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3.4. Application

As described above, the work of collecting data is difficult and essential in the construction of
attendance systems. To accomplish this, we have built a mobile application that allows users to receive
their faces. Figure 20 displays the screen captures of the data collector application. Students/academic
staff use the mobile app to record the video containing the faces of a student. The video is then uploaded
to the server for feature processing. Using the mobile application to collect face data dramatically
reduces costs, and users can control their attendance information from the mobile app more efficiently
than using a station. To modify the captured photos, the users need the license of the human resources
department or training department. Attendees do not have the right to correct it themselves after they
finish data collection for a duration.
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Figure 20. Screen captures of mobile data collector application. Students/academic staff use mobile
application to record the video-containing-faces of the student. Video then uploaded to server for
feature processing.

We have received an assessment of the lecturers and quality assurance staff to monitor information
about the entrance and exit time of the student during the session conveniently. The status of
complaints about miss attendance decreased significantly compared to before the system put into use.
Figure 21 shows the web page that an administrator can access to track attendance for a scheduled
class. In the figure there are three students present with photos and time they appear in videos. In
the picture, the “status” column shows the student’s current status, the “Images in video” column
displays the student’s face image recorded in the video. The “Time Appeared in Video” column
illustrates the time that the student identified in the video (this facility parameter allows the deduction
of the student’s check-in time). Data from the system synchronized with the academic portal, so when
there is a modification from the academic portal we will track through the “Actual Status” column,
the default value is 0 (absent). During the test run, the system plays the role of support attendance
taking system. The final decision made about whether or not a student is present in the class is still
the faculty’s discretion. However, the reason for the differences is recorded.
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4. Conclusions

In this paper, we describe the architecture to build an automatic system for attendance taking
using CCTV Camera. We illustrate the design by a case study at FPT Polytechnic. We showed the result
of the real system and the feasibility of attendance taking support system in a university environment.
In the experiment, the system worked with 120 students in five classes. We found out that it is
impossible to achieve state-of-the-art accuracy of FR in the real environment. Still, we had improved
efficiency using our algorithm using the movement of the face to remove some wrong results. It
seemed promising and showed that we increase the effectiveness of our system. We propose a full
system solution powered by state-of-the-art facial recognition model, from hardware to procedures
for handling many streaming videos with unknown faces recorded by CCTV. By taking advantage
of multi-process and job scheduling, we also leverage the hardware efficiency of face recognition to
minimize system cost but still meet the required response time.

Although state-of-the-art shows the result of high accuracy with millions of objects, it is currently
not possible to directly apply these techniques in the real world because of the difficulties of the real
environment. When the number of attendees increased to thousands, this leads to a decrease in
reliability and becomes the most significant risk of the attendance system. In our proposed method,
the scheduling data plays the role of narrowing down the search scale when the system matches
the student’s face with the face data. Therefore, when the number of users increases, it does not
affect the performance of the FR module if the traffic moving through the CCTV does not change.
The adaptation between the attendance system and existing information systems based on FR is vital.

Since attendance taking system required high precision, our policy is still struggling with low
recall. It is a disadvantage if the test environments are not optimal. Concerning the results of our
single classifiers, we can also expect to improve recall by not using a unique classifier technique.
The combination of parametric (SVM, DNN) and non-parametric classifier (KNN) to better define
“Unknown” class can increase the recall performance. Our system is also dependent on preprocessing.
In the future, we can use some other models to improve our results. Currently, our system’s target can
handle up to 500 students. However, because of some difficulty that we have mentioned above, we
have evaluated our policy only on 120 students. Shortly, we will increase the size of the evaluation
dataset to verify the comprehensiveness of our system.

In recent years, face recognition based on 3-dimensional data [32] has yielded incredible results
compared to 2-dimensional image processing techniques. 3-dimensional spatial data brings more
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valuable information to describe the face [33]. However, to collect 3D data with existing devices is not
an easy task. There are two ways to do this: (1) Use the RGB-D sensor—these sensors only need to be
invested once. Still, currently, the 3D point-cloud data obtained from this type of sensor is dependent
on the distance; it is greatly affected by sunlight conditions, not suitable for CCTV investment. (2) Using
multiple 2D cameras [34], this method is not feasible because it requires a more significant investment,
making it difficult to reuse the cameras invested for the original security purpose. In [35] Jiang,
L. introduced a new approach to creating 3D data from a single 2D image. Although their results
are promising, the method needs to be further studied with actual data. 3D based on FR is one of
the directions our research would continue in the future, besides the performance improvement.
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