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Abstract: Synthetic approaches to the preparation of non-racemic selenoxides and the problem of
their optical stability are discussed in this mini review.
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1. Introduction

Sulfoxides are the logical and obvious reference point when one is considering the reactivity and
optical activity of selenoxides. This is due to the fact that the reactivity of both groups of heterorganic
derivatives of general structures 1 and 2 (Figure 1) is dominated mainly by the presence of a highly
polarized heteroatom–oxygen bond, and their optical activity is associated with their tetrahedral
geometry, which induces the optical activity of compounds in which two different carbon chains and/or
rings are bonded to a stereogenic heteroatom.
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a) generate the α-carbanions 3 [3] or 4 [4] for compounds containing the acidic α-methylene 

hydrogen atoms 1a or 2a (Scheme 1); 

b) undergo an internal type elimination of the E2 type for compounds containing β-hydrogen 

atoms, which leads to the formation of the corresponding, generally very unstable, seleninic 5 
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Figure 1. General structure of selenoxides and sulfoxides.

The highly polarized heteroatom-oxygen bond is responsible for the interesting oxidative properties
of sulfoxides [1] and selenoxides [2], and their ability to:

a) generate theα-carbanions 3 [3] or 4 [4] for compounds containing the acidicα-methylene hydrogen
atoms 1a or 2a (Scheme 1);

b) undergo an internal type elimination of the E2 type for compounds containing β-hydrogen atoms,
which leads to the formation of the corresponding, generally very unstable, seleninic 5 or sulfenic
6 acids and unsaturated carbon derivatives 7 (Scheme 1) [5,6]. It should be noted here that both
acids can exist as chiral tetravalent (5a or 6a) or achiral divalent (5b [7–9] or 6b [10–12]) tautomers.
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Scheme 1. Deprotonation and elimination reactions of selenoxides and sulfoxides. 

When considering the optical activity of unsymmetrical selenoxides, it should be noted that 

their pyramidal configuration at selenium was for the first time proved only in 1946 by mixed crystal 

studies [13,14] and that the first attempts to resolve 4-carboxydiphenyl selenoxide 8 and 

4-carboxyphenyl methyl selenoxide 9 (figure 2) via diastereoisomeric salts with enantiomerically 

pure amines were unsuccessful [15]. 

 

Figure. 2 4-Carboxydiphenyl selenoxide 8 and 4-carboxyphenyl methyl selenoxide 

9 

The failure to observe resolution, which was in sharp contrast with the ease of resolution of the 

related sulfoxides [16] (due to the addition of water to unsymmetrical selenoxides, which should 

give rise to symmetrical dihydroxides) was mentioned in this paper. However, it was rejected by the 

authors because  specific rotation of a dry  sample  of diastereoisomeric salts of the selenoxide 8 

with enantiomerically pure α-phenylethylamine was observed by recrystallizing it from dry ethyl 

acetate was not changed. An open suggestion that the inability to isolate selenoxide enantiomers is 

due to the rapid formation of hydrates in the presence of water was formulated only in 1952 in a 

review paper [17]. This reaction is illustrated for the selenoxide 1a and the formed 

dihydroxyselenuranes 10 in Scheme 2. 

Scheme 1. Deprotonation and elimination reactions of selenoxides and sulfoxides.

When considering the optical activity of unsymmetrical selenoxides, it should be noted that
their pyramidal configuration at selenium was for the first time proved only in 1946 by mixed
crystal studies [13,14] and that the first attempts to resolve 4-carboxydiphenyl selenoxide 8 and
4-carboxyphenyl methyl selenoxide 9 (Figure 2) via diastereoisomeric salts with enantiomerically pure
amines were unsuccessful [15].
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Figure 2. 4-Carboxydiphenyl selenoxide 8 and 4-carboxyphenyl methyl selenoxide 9.

The failure to observe resolution, which was in sharp contrast with the ease of resolution of the
related sulfoxides [16] (due to the addition of water to unsymmetrical selenoxides, which should
give rise to symmetrical dihydroxides) was mentioned in this paper. However, it was rejected by the
authors because specific rotation of a dry sample of diastereoisomeric salts of the selenoxide 8 with
enantiomerically pure α-phenylethylamine was observed by recrystallizing it from dry ethyl acetate
was not changed. An open suggestion that the inability to isolate selenoxide enantiomers is due to the
rapid formation of hydrates in the presence of water was formulated only in 1952 in a review paper [17].
This reaction is illustrated for the selenoxide 1a and the formed dihydroxyselenuranes 10 in Scheme 2.
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This proposal was later supported by NMR experiments using benzyl phenyl selenoxide 11 as 

the model compound according to which the chemical shift between the nonequivalent methylene 

protons HA and HB disappeared in an aqueous solution, which indicates the apparent loss of 

stereogenity of the selenium atom in this medium due to the formation of the corresponding 

dihydroxyselenurane [18].The configurational instability in aqueous media was also observed for 

selenoxides 12 [19] and 13 (Figure 3) [20]. It is interesting to note that racemic and meso forms of 

selenoxide 13 were separated. 

 

Figure 3. Selenoxides 12 and 13 configurationaly instable in aqueous media 

According to a current terminology, dihydroxyselenuranes such as 10 can be considered as 

hypervalent molecules [21–23] Due to the presence of two apical hydroxyl groups in the trigonal 

bipyramid formed as an intermediate, they are achiral [24]. It can be expected, that the isolation of 

selenoxides in enantiomerically pure, or at least enriched form, could be possible when the 

formation of hydrated form is slowed down. This can be realized most easily by introduction at least 

a single, sterically demanding substituent. Successful experiments on the isolation of optically active 

selenoxides, described after 1970, fully confirmed this assumption. It is the intent of this mini review 

to present the available information on the preparation and optical stability of selenoxides, in order 

to stimulate the additional research on this topic. It should be noted here that in the years 1987–1995 

short reviews were published in Japanese by Japanese authors conducting research on this topic. 

[25–27]. There are also two brief accounts in English that describe experiments on the synthesis, 

stereochemical aspects and the application in asymmetric synthesis of chiral chalcogen oxides 

carried out in the laboratories of authors, in which optically active selenoxides are also mentioned 

[28,29]. A few year later, a brief discussion devoted to optically active selenoxides was included into 

the Chapter 16 of “The Chemistry of Organic Selenium and Tellurium Compounds” from Patai’s 

“Chemistry of Functional Groups” [30]. 

Below, we are going to discuss the synthesis of optically active selenoxides, which have been 

obtained in the form of diastereomeric mixtures or in enantiomeric form since 1970 using the 

following procedures: 

a) reaction of diastereoisomerically pure precursors; 

b) asymmetric oxidation of prochiral selenides; 

c) chromatographic and nonclassical resolution of racemates by forming complexes with an 

optically active hydrogen bond donor; 

Scheme 2. Rapid hydrate formation by selenoxides in the presence of water.

This proposal was later supported by NMR experiments using benzyl phenyl selenoxide 11 as the
model compound according to which the chemical shift between the nonequivalent methylene protons
HA and HB disappeared in an aqueous solution, which indicates the apparent loss of stereogenity of
the selenium atom in this medium due to the formation of the corresponding dihydroxyselenurane [18].
The configurational instability in aqueous media was also observed for selenoxides 12 [19] and 13
(Figure 3) [20]. It is interesting to note that racemic and meso forms of selenoxide 13 were separated.
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Figure 3. Selenoxides 12 and 13 configurationaly instable in aqueous media.

According to a current terminology, dihydroxyselenuranes such as 10 can be considered as
hypervalent molecules [21–23] Due to the presence of two apical hydroxyl groups in the trigonal
bipyramid formed as an intermediate, they are achiral [24]. It can be expected, that the isolation of
selenoxides in enantiomerically pure, or at least enriched form, could be possible when the formation
of hydrated form is slowed down. This can be realized most easily by introduction at least a single,
sterically demanding substituent. Successful experiments on the isolation of optically active selenoxides,
described after 1970, fully confirmed this assumption. It is the intent of this mini review to present the
available information on the preparation and optical stability of selenoxides, in order to stimulate the
additional research on this topic. It should be noted here that in the years 1987–1995 short reviews
were published in Japanese by Japanese authors conducting research on this topic. [25–27]. There are
also two brief accounts in English that describe experiments on the synthesis, stereochemical aspects
and the application in asymmetric synthesis of chiral chalcogen oxides carried out in the laboratories
of authors, in which optically active selenoxides are also mentioned [28,29]. A few year later, a brief
discussion devoted to optically active selenoxides was included into the Chapter 16 of “The Chemistry
of Organic Selenium and Tellurium Compounds” from Patai’s “Chemistry of Functional Groups” [30].

Below, we are going to discuss the synthesis of optically active selenoxides, which have been
obtained in the form of diastereomeric mixtures or in enantiomeric form since 1970 using the following
procedures:

a) reaction of diastereoisomerically pure precursors;
b) asymmetric oxidation of prochiral selenides;
c) chromatographic and nonclassical resolution of racemates by forming complexes with an optically

active hydrogen bond donor;
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d) kinetic resolution of racemates;
e) reaction of enantiopure, cyclic seleninic esters with organometallic reagents.

2. Synthesis of Optically Active Selenoxides

2.1. Diastereoisomeric Selenoxides

The first selenoxides whose optical activity results from the presence of a stereogenic selenium
atom constitute diastereoisomeric, steroidal selenoxides 14 and 15, which were described in 1970 [31].
Their synthesis was based on the oxidation of 6β-phenylseleno-5α-cholestane 17 which contains a
prochiral divalent selenium atom (prepared by the reaction of 6α-methanesulphonyloxy-5α-cholestane
16 with sodium benzeneselenolate) with ozone [32]. It was found that this asymmetric oxidation,
carried out in dichloromethane at −78 ◦C, gave a mixture of the selenoxides (R)-6β-14 and (S)-6β-15
in the ratio 2:1. Separated p by chromatography at −50 ◦C did not interconvert at temperatures
between −78 ◦C and 25 ◦C in organic solvent in the presence of water. This indicates that their
racemization via reversible hydrate formation (or pyramidal inversion) is not observed under these
conditions. However, both diastereoisomerically pure selenoxides 14 and 15 were found to decompose
at room temperature, affording only 5-α-cholest-6-ene 18 and benzeneseleninic acid 19 (Scheme 3).
It is interesting to note that the (S)-6β-15 gave the olefin 18 after 4 h at 0 ◦C, while the other one
remains unchanged. These difference i in the decomposition rate was proposed to be related with
the cyclic intramolecular mechanism common to syn-eliminations [33]. In line with this mechanism,
the transition state 20a which leads from the (S)-6-β-phenylselenoxide 15 to 5a-cholest-6-ene 18 is
appreciably less sterically compressed than that of the transition state 20b responsible for the formation
of the unsaturated steroid 18 from the (R)-isomer 14 (Scheme 3).
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Generation of diastereoisomeric steroidal selenoxides 21 and 22, which were too labile to be
isolated was observed during the oxidation of 7β-phenylselenocholesteryl benzoate 23, (prepared
by the reaction of 7α-bromocholesteryl benzoate 24 with sodium benzeneselenolate), with ozone at
−70 ◦C in a methylene chloride solution. Their configurational stability and the absolute configuration
at the newly generated stereogenic center on a selenium atom was suggested, taking into account
an observation that the 3-benzoate of coprost-6-en-3b,5-diol 26 and 7-dehydrocholesteryl benzoate
25 were formed in approximately equal yields of 45%. Interestingly, when temperature was slowly
raised, the presence of 26 was detected by thin layer chromatography (TLC) at about −25 ◦C whilst
25 appeared only at about −5 to 0 ◦C (Scheme 4). If the selenoxides 21 and 22 were configurationally
unstable it the interconversion of 22 to 21 should lead predominantly to the product 26, which was
not detected [34]. The sequential treatment of 4-aza-5-pregnene-3,20-dione 27 with benzeneselenenyl
chloride 28 and 1 equivalent of m-chloroperbenzoic acid (MCPBA) was found to afford a 2:1 mixture
of selenoxide diastereomers (R)-30 and (S)-31 (Scheme 5). This mixture of selenoxide stereoisomers



Symmetry 2020, 12, 349 5 of 24

remained unchanged after one week. Whereas, the pure, major diastereoisomer (R)-30 similarly treated
epimerized to the same 2:1 mixture within 3 h.
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Scheme 5. Diastereoselective oxidation of azasteroidal selenide 29.

It was suggested that the 2:1 ratio reflects the relative thermodynamic stabilities of the two
diastereoisomers [35]. The abnormally low field of the NMR signals of the enamidic hydrogen
atoms in the stereoisomers 30 and 31 was related to the presence of strong intramolecular hydrogen
bonds between the selenoxide oxygens and these hydrogen atoms. A series of diasteroisomeric
hydroxyselenoxides 40–43 containing the bornyl moiety was prepared by hydrolysis at 0 ◦C of
diasteroisomeric chloroselenuranes 36–39 (X = Cl) which were formed rapidly (10 min at 0 ◦C) as
single stereoisomers (89–100% yield) upon the reaction of bicyclic hydroxyselenides 32–35 with t-butyl
hypochlorite (Scheme 6). It was found that the treatment of selenoxide 40a with a base afforded an
equilibrium mixture of 40a and 40b (2:1) whereas the treatment with an acid (HCIO4) of selenoxide
40a or a mixture of the selenoxides 40a and 40b predominantly gave 40a, and that selenurane 36 was
formed both from 40a and a mixture of 40a and 40b. The starting chloroselenurane 36 was recovered
as a single diastereomer (100% yield) upon treatment of the selenoxide 40 with HCl, A similar reaction
of 40 with HBr gave bromoselenurane 44 (96% yield). The reaction of the hydroxyselenoxide 40 with
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strong organic acids (3,5-dinitrobenzoic, p-toluenesulfonic or trifluoromethanesulfonic )in the presence
of MgSO4 gave the corresponding selenuranes 44–47, respectively (Scheme 6) [36,37].
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Scheme 6. Hydrolysis of diasteroisomeric selenuranes 36–47.

It is well known that allyl selenoxides undergo very fast [2,3]sigmatropic rearrangement, producing
allylic alcohols (Scheme 7), while vinyl selenoxides are able to eliminate selenic acid, which leads to
the cumulene system (Scheme 8). The asymmetric version of both methods can be used to synthesize
optically active alcohols or allenes, respectively [38–41].
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The first example of this methodology, which was used in the preparation of optically active
allylic alcohol, was reported in 1991 [42] and was based on the in situ generation of the optically
active, diastereoisomerically enriched, geranyl [2.2]paracyclophanyl selenideoxide 49 by treatment
of the corresponding optically active geranyl selenide 48 with meta-chloroperbenzoic acid (MCPBA).
This protocol gave linalool 51 with 67% enantiomeric excess (ee) via selenenic ester 50 which was
formed as a result of the [2,3]sigmatropic rearrangement of selenoxide 49 (Scheme 9).
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Scheme 9. Oxidative conversion of geranyl [2.2]paracyclophanyl selenide 49 into optically active
linalool 51.

A similar oxidation of geranyl selenide 52 bearing a chiral ferrocenyl group afforded the
corresponding diasteromeric selenoxides 53, which upon the [2,3]sigmatropic rearrangement gave
optically active linalool 51 in moderate yields and an improved ee (83%) (Scheme 10) [43].
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Scheme 10. Oxidative conversion of ferrocenyl selenide 52 into optically active linalool 51.

This approach was also applied in the synthesis of a series of cinnamyl selenides 55–57 bearing
other chiral groups. The diasteroisomeric selenoxides 58–60 upon [2,3]sigmatropic rearrangement
gave, via diastereoisomeric esters 61–63, enantiomerically enriched 1-phenyl-2-propen-1-ol 64 in with
ee in the range of 63–89% (Scheme 11) [44]. The chiral, diasteroisomeric selenoxides 68–70 generated
similarly from the corresponding optically active ferrocenyl vinylic selenides having (Z)-configuration
65–67 underwent the in situ seleninic acid elimination to afford axially chiral allenecarboxylic esters
71–73 in moderate chemical yields (21–59%) with ee from 16 up to 89% (Scheme 12) [43].
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Scheme 12. Oxidative conversion of vinyl selenides 65–67 into allenes 71–73.

Two optically stable, diastereoisomeric selenoxides 76a–b-77a–b were prepared by oxidation of the
4-[(-)-menthyloxycarbonyl] phenyl aryl selenides 74–75 with t-butyl hypochlorite-pyridine-methanol
(Scheme 13). The selenoxide 76a after five recrystallizations from methanol, was diastereoisomericaly
pure (HPLC analysis using an achiral column). Dextrorotatry diastereoisomer 76b was also obtained
from the mother liquid with 75% diastereoisomeric excess. A similar oxidation of the selenide 75 gave,
with slight asymmetric induction (de = 7.6%), diastereoisomeric 4-[(-)-menthyloxycarbonyl] phenyl
2,4,6-tri-t-butyphenyl selenoxides 77a–b. Fractional crystallization of this diastereoisomeric mixture
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gave a sample of the levorotatory diastereoisomer 77a having de = 31.1% (estimated by measurement
of the 77Se NMR spectrum) [45].
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Scheme 13. Asymmetric synthesis of optically active diaryl selenoxides 76–77.

The levorotatory enantiomer of 4-[(-)-methoxycarbonyl] phenyl 2,4,6-tri-iso propyl
phenyl selenoxide 78 was obtained by transesterification of diastereoisomerically
pure 4-[(-)-menthyloxycarbonyl] phenyl 2,4,6-tri-isopropylphenyl selenoxide 76a in N,
N-dimethylformamide DMF) at room temperature (Scheme 14). On the other hand, transesterification
of the levorotatory diastereoisomer 77a (de = 31.1%) with sodium methoxide in methanol
gave a sample of the selenoxide 79 with 29% ee. s Its washing with hexane left a solid that
showed only 13% ee, while a sample of the selenoxide 79 isolated from the hexane solution
exhibited a much higher enantiomeric excess (80%) [45]. The dehydration conversion of
enantiomerically pure selenoxide (-)-78 (p-toluenesulfonamide (TsNH2) / dicyclohexylcarbodiimide
(DCC)/ 4-(dimethylamino)pyridine (DMAP)//80 ◦C) in 1,1,2-trichloroethane gave optically active
4-(methoxycarbonyl) phenyl(2,4,6-triisopropylphenyl)selenonium (N-toluene-4-sulfon)imide (-)- 80 in
29% chemical yield. Its enantiomeric excess was determined to be 80% by 1H-NMR measurement
using an optically active shift reagent {Eu(hfc)3} (Scheme 15) [46].
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Scheme 15. Conversion of enantiomerically pure selenoxide (-)-78 into optically active selenoniumimide
(-)-80.

2.2. Enantiomeric Selenoxides

2.2.1. Asymmetric Oxidation

Among the different approaches to the synthesis of enantiomeric selenoxides, asymmetric
oxidation of the prochiral, unsymmetrical selenides with optically active oxidizing agents can be
considered the method of choice. The first asymmetric oxidations of methyl phenyl selenide 81 by
chiral 2-sulfonyloxaziridines 89a or 89b, carried out in the Davis laboratory, was found to give the
corresponding methyl phenyl selenoxide 85 with ee only around 9% ee under anhydrous conditions [47].
Later, N-(phenylsulfonyl) (3,3-dichlorocamphoryloxaziridine) 89c was found to be more efficient reagent
for the enantioselective oxidation of prochiral selenides 81–84 Using this reagent, the corresponding
alkyl aryl selenoxides 85–88 were isolated for the first time with ee hagher than 90%..(Scheme 16) [48,49].
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Scheme 16. Asymmetric synthesis of optically active selenoxides 85–88.

The above-mentioned oxaziridines (+)-89a and (-)-89c were used also for the in situ generation
of (E)- and (Z)-aryl cinnamyl selenoxides 92 and 93 by oxidation of the corresponding cinnamyl
selenides 90 and 91. Their instant [2,3]sigmatropic rearrangement to allylic selenenates 94–95 afforded
1-phenylallyl alcohol 64 as the final product (Scheme 17) [49].
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Scheme 17. Oxidative conversion of allylic selenides 90–91 into optically active.allyl alcohols 64.

Diastereoisomeric (+) and (-)-(camphorylsulfonyl)oxaziridines 89d [50] were used for
the enantioselective oxidation of 1-phenylselenyl-8-methylselenylnaphthalene 96. It was
found that this reaction afforded regioselectively enantiomerically enriched 1-phenylselenyl-8-
methylseleninylnaphthalene 97, which maintains, in a standard laboratory environment, stereochemical
integrity at a stereogenic seleninyl selenium atom at room temperature for several days (Scheme 18) [51].
A relatively high optical stability of the selenoxide 97 results from stabilization to racemization by
intramolecular coordination between the dicoordinated, divalent selenium atom of the phenylselenenyl
group at position 1 and a stereogenic seleninyl selenium atom at position 8 of the naphthalene ring.
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Scheme 18. Enantioselective oxidation of 1-phenylselenyl-8-methylseleninylnaphthalene 96.

A few enantiomerically enriched alkyl aryl selenoxide 86 and 102–105 were synthesized by the
asymmetric oxidation of the corresponding alkyl aryl selenides 82 and 98–101 using a mixture of
t-butylhydroperoxide with optically active dialkyl tartrates and titanium or aluminium tetraalkoxides
such as the Lewis acids (Sharpless reagent) (Scheme 19) [52]. It was found that the most effective
combination was that of diethyl tartrate (DET) and titanium tetraisopropoxide (TTIP). It gave the
highest ee value (32.7%) for methyl 2,4,6-tri-t-butylphenyl selenoxide 98 when the oxidation was
carried out in methylene chloride at −15 ◦C.
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Scheme 19. Asymmetric oxidation of selenides 82 and 98–101.

Almost simultaneously, asymmetric oxidation of 2-methoxy -2,2-diphenylethyl aryl selenides
106–107 to the corresponding selenoxides 108–109 showing ee values in the range of 18–40% was
reported by Tiecco at al.. They used as a reagent, Ti(OC3H7-i)4, L-(+)- or D-(-)- diisopropyltartrate
(DIPT), and t-BuOOH in molar ratio 1:2:1 (Scheme 20) [53].
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Scheme 20. Asymmetric oxidation of selenides 106–107.

In an efficient synthesis of axially chiral alkyl and aryl cyclohexylidenemethyl ketones 122–126,
isolated in excellent chemical yields and with high enantiomeric excess (up to 83% ee), based on
seleninic acid elimination optically active, non-isolable cyclohexyl selenideoxides 116–121 constitute
key, chiral precursors. They were prepared in situ by oxidation of cyclohexyl selenides 110–115, having
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the Z configuration, with either Davis camphoryloxaziridines or under Sharpless oxidation conditions
(Scheme 21) [54]. The instant decomposition of non-isolable, selenoxides 133–138 (derived from some
aryl vinyl selenides 127–132 using Sharpless or Davis oxidants) with elimination of an appropriate
seleninic acid resulted in the formation of chiral allenyl sulfones 139–141 with up to 42% enantiomeric
excess (ee) (Scheme 22)[55].
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T The treatment of phenyl tri-t-butylphenyl selenide 142 with t-butyl hypochlorite in the presence
of (-)-2-octanol and pyridine followed by basic hydrolysis gave optically active phenyl tri-t-butylphenyl
selenoxide 143 with a germinal enantiomeric excess (ee = 1%) (Scheme 23) [56].
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Scheme 23. Asymmetric oxidation of phenyl tri-t-butylphenyl selenide 142.

2.2.2. Chromatographic and Non-Classical Resolution of Racemates by Forming Complexes with an
Optically Active Hydrogen Bond Donor

The first optical resolution by column chromatography using a chiral column was applied
for diaryl selenoxides that possess no functional groups. I By this approach the racemic diaryl
selenoxides 143–149 (Figure 4) were partially resolved on a medium pressure column chromatography
system [(R)-iV-(3,5-dinitrobenzoyl) phenylglycine/aminopropylsilica (particle size 40 µ) columne].
Enantiomeric excess for fast eluting enantiomers ranged from 12 to 66%, and for slowly eluting
enantiomers from 4 to 41% [47,48].
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Figure 4. diaryl selenoxides 143–149 that possess no functional groups.

Later on, column chromatography on a chiral column was applied to separate enantiomers
selenoxides configurationally stabilized by intramolecular coordination to the stereogenic selenium
atom. Thus, racemic 2-((dimethylamino)methyl)phenyl alkyl (or aryl) selenoxides 150–152 (Figure 5),
containing an amino group able to coordinate with the selenium atom, were resolved into enantiomers
by means of HPLC chromatography using an chiral column It is interesting to note that the. vthe
stabilization energy (ca. 3 kcal mol−1) for this interaction was determined by variable temperature
1H-NNMR experiments [59].
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Figure 5. 2-(Dimethylamino)methyl)phenyl alkyl (aryl) selenoxides 150–152.

A similar optical resolution (Figure 6) was applied to racemic 2-(methylchalcogenomethyl)diphenyl
selenoxides 153–154 and 2-{2_-(N, N-dimethylamino)ethyl}-phenyl alkyl (or aryl) selenoxides 156–158.
However, selenoxide 155 could not be resolved by this procedure [60].

Symmetry 2020, 12, x FOR PEER REVIEW 16 of 24 

 

 

Figure 5. 2-(Dimethylamino)methyl)phenyl alkyl (aryl) selenoxides 150–152 

A similar optical resolution(figure 6) was applied to racemic 

2-(methylchalcogenomethyl)diphenyl selenoxides 153–154 and 2-{2_-(N, 

N-dimethylamino)ethyl}-phenyl alkyl (or aryl) selenoxides 156–158 . However, selenoxide 155 could 

not be resolved by this procedure. [60]. 

 

Figure 6.  2-2-(Methylchalcogenomethyl)diphenyl selenoxides 153–154 and 

2-{2_-(N,N-dimethylamino)ethyl}-phenyl alkyl (or aryl) selenoxides 156–158 

 

Three enantiomerically pure 8-(dimethylamino)-1-aryl(alkyl)-naphthyl selenoxides 159–

161(figure7) were isolated by chromatographic resolution using a chiral column ((Daicel Chiralpak 

AS; 10 × 250 mm). It is interesting to note that the first eluted enantiomer of selenoxide 159 had a 

positive specific rotation, whereas the first eluted enantiomer of selenoxides 160–161 had a negative 

specific rotation [61,62]. 

 

Figure 7. 8-(Dimethylamino)-1-aryl(alkyl)-naphthyl selenoxides 159–161 

In addition to chromatographic resolutions mentioned above, several simple aryl alkyl 85 and 

162–167 and dialkyl selenoxides 168–170 (Figure 8) were resolved into pure enantiomers via 

complexation with enantiomerically pure 2,2’-dihydroxy-1,1’-binaphthol 171 or 

1,6-di(o-chlorophenyl)-1,6-diphenylhexa-2,4-diyne-1,6-diol 172. Enantiomeric excess of sulfoxides 

Figure 6. 2-2-(Methylchalcogenomethyl)diphenyl selenoxides 153–154 and 2-{2_-(N,N-dimethylamino)
ethyl}-phenyl alkyl (or aryl) selenoxides 156–158.

Three enantiomerically pure 8-(dimethylamino)-1-aryl(alkyl)-naphthyl selenoxides 159–161
(Figure 7) were isolated by chromatographic resolution using a chiral column ((Daicel Chiralpak AS;
10 × 250 mm). It is interesting to note that the first eluted enantiomer of selenoxide 159 had a positive
specific rotation, whereas the first eluted enantiomer of selenoxides 160–161 had a negative specific
rotation [61,62].
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Figure 7. 8-(Dimethylamino)-1-aryl(alkyl)-naphthyl selenoxides 159–161.

In addition to chromatographic resolutions mentioned above, several simple aryl alkyl
85 and 162–167 and dialkyl selenoxides 168–170 (Figure 8) were resolved into pure
enantiomers via complexation with enantiomerically pure 2,2’-dihydroxy-1,1’-binaphthol 171 or
1,6-di(o-chlorophenyl)-1,6-diphenylhexa-2,4-diyne-1,6-diol 172. Enantiomeric excess of sulfoxides
selenoxides 85 and 162–167 in the complex with 171 was found to be almost 100%. Moreover, dynamic
kinetic resolution (DKR) of selenoxides via hydrate formation gave in some cases enantiomerically
pure selenoxides in yields above 100% [63].
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2.2.3. Kinetic Resolution of Racemates

In fact, the first optically active, enantiomerically enriched selenoxides were isolated in a kinetic
resolution reaction when racemic methyl phenyl selenoxide 85 or methyl tri-isopropylphenyl selenoxide
86 were subjected to the reaction with a half molar equivalent of (-)- or (+)-camphorsulfonamide 173
(Scheme 24) [64].
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2.2.4. Reaction of Enantiopure, Cyclic Seleninic Ester with an Organometallic Reagent

There is a single literature report on a conversion of optically active, cyclic seleninate ester into
optically active selenoxide. Thus, the reaction of optically active seleninate ester (+)-(R)-176 with
ee equal to 98%, (obtained by HPLC chromatography on a chiral column) and methylmagnesium
bromide was found to afford with retention of configuration at the stereogenic selenium atom,
2-(hydroxymethyl)-4,6-di-t-butylphenyl methyl selenoxide (-)-(R)-177 (ee = 97%) (Scheme 25) [65].
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3. Absolute Configurations and Enantiomeric Excesses of Optically Active Selenoxides

The absolute configuration of the levorotatory enantiomer of selenoxide 78 was established to
be S, taking into accounts the result of X-ray crystallographic analysis of the diastereoisomerically
pure, levorotatory selenoxide 76a and the lack of inversion of configuration around the stereogenic
selenium atom during the transesterification from (-)-(Sse)-76 to methyl esters (-)-78 (Scheme 14) [45].
This determination was also supported by the presence of negative Cotton effects at the same
wavelength region (284 nm) in the circular dichroism CD spectra of (-)-(76) and (-)-(78). The (S)
absolute configurations around the stereogenic selenium atom of the other selenoxides (-)-(77)
and (-)-(79) were deduced from their CD spectra in which also negative Cotton effects in
this region (292 nm) were observed. The enantiomeric excesses of the selenoxides mentioned
above were determined by HPLC using a chiral column. The extent of the asymmetric
induction during the asymmetric oxidation of methyl phenyl selenide 81 to the corresponding
selenoxide 85 (Scheme 16) was determined by adding to their solution successive amounts of
tris[3-(heptafluoropropylhydroxymethylene d-camphorate]-europlum (III), Eu(hfc)3. The absolute
configuration around the stereogenic selenium atom of the selenoxide 85 was determined by the
analysis of 1H-NMR spectra recorded for the reaction mixture or for the isolated sample in the
presence of (+)-2,2,2-trifluoro-l-(9-anthryl)ethanol. The extent of the asymmetric induction during
the enantiselective oxidation of 1-phenylselenyl-8-methylselenylnaphthalene 96 to the corresponding,
enantiomerically enriched 1-phenylselenyl-8-methylseleninylnaphthalene 97 (Scheme 18) was
determined by analyzing 1H-NMR spectra of the isolated selenoxide 97 measured in the presence of
enantiomerically pure BINOL or t-butylphenylphosphinothioic acid as a chiral solvating agent (CSA).
The extent of the asymmetric induction during the asymmetric oxidation of alkyl aryl selenides 82 and
98–101 to the corresponding selenoxides 86 and 102–105 with Sharpless reagent (Scheme 19) [52] was
determined by 1H-NMR using tris[3-(heptafluoropropylhydroxymethylene d-camphorate]-europlum
(III), Eu(hfc)3 as chiral shift reagent (CSR). Their absolute configurations were suggested based upon
comparison with circular dichroism spectra of the appropriate alkyl aryl sulfoxides. The S absolute
configuration of the levorotatory enantiomers of 2-(dimethylamino)methyl)phenyl alkyl (or aryl)
selenoxides 150–152 was suggested by comparison of their specific rotations, circular dichroism spectra,
and behavior on the optically active column with those of the sulfur analogue [44]. The common features
that exist between the CD spectra of selenoxides 143–149 and optically active p-tolyl mesityl sulfoxide
and p-tolyl 2,4,6-triisopropylphenyl sulfoxide were used to assign the absolute configuration of the
dextrarotatory selenoxide enantiomers [57,58]. The relationship between the absolute configurations
around a stereogenic selenium atom of 2-(methylchalcogenomethyl)diphenyl selenoxides 153–154
and 2-{2-(N,N-dimethylamino)ethyl}-phenyl alkyl (or aryl) selenoxides 156–158 and the chiroptical
properties of the enantiomers of was clarified by comparing with those of sulfur analogues [60].
Earlier, the absolute configurations of the optically active chalcogen oxides 159–161 were assigned
by comparison of their specific rotations and CD spectra with those of their sulfur analog [61,62].
Similarly, the absolute configuration of dextrorotatory 2-(hydroxymethyl) phenyl methyl selenoxide
(+)-177 was determined to be R by comparison of its specific rotations and CD spectra with those of that
(R)-2-(hydroxymethyl) phenyl methyl sulfoxide. Enantiomeric excess of selenoxides 85 and 162–167 in
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their complexes with BINOL 171 was determined from the 1H-NMR spectra [48]. The optical excesses
of 2-methoxy-2, 2-diphenylethyl aryl selenoxides 108–109 were determined by HPLC using a chiral
column [53].

4. Configurational Stability of Optically Active Selenoxides

Bearing in mind the very close structural similarity between sulfoxides and selenoxides it can
be expected, simply by analogy, that the same racemization mechanisms will operate for different
selenoxides. Three basic mechanism of thermally induced racemization of sulfoxides, including a
pyramidal inversion, are very well understood, mainly due to the classical studies of the Mislow’s
group [66–68]. At the same time, extensive studies, mainly from the Oae group, explained in detail
various chemically induced racemization of the reach family of sulfoxides [68,69]. In contrast to
sulfoxides, mechanistic studies on thermally and chemically induced racemization of selenoxides
are rather limited. There is only a single paper devoted to thermal racemization of selenoxides by
a pyramidal inversion mechanism. In this publication, the free energies of activation (AG*) for the
epimerization of a few diastereoisomeric, optically active diaryl selenoxides have been reported.
They were calculated on the basis of the coalescence temperature of signals of two nonequivalent 77Se
nuclei observed in the 77 Se- NMR spectra of a series of diasteroisomeric 4-[(-)-menthyloxycarbonyl]
phenyl 2,4,6-tri-alkylphenyl selenoxides 76, 77 and 178–180 (Figure 9). These values, ranging from 61
to 85.8 kJ mol−1, clearly indicate that the rate of epimerization of the selenoxides is strongly dependent
on the bulkiness of the ortho substituents [70]. It should be noted here that the activation barriers for
alkyl aryl and diaryl sulfoxides are considerably higher (150–180 kJ/ mol) [66–68].
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Figure 9. 4-[(-)-Menthyloxycarbonyl] phenyl 2,4,6-tri-alkylphenyl selenoxides 178–180.

The facile formation of achiral hydrates, mentioned for the first time in the paper which reported
the first unsuccessful attempts to resolve 4-carboxydiphenyl selenoxide 8 and 4-carboxyphenyl
methyl selenoxide 9 via diastereoisomeric salts with brucine, L-menthylamine, and enantiomerically
pure α-phenylethylamine [18], can be considered as an oldest example of the chemically induced
racemization of selenoxides. Later, racemization of selenoxides 143–144, 147–148 and 150–152 was
studied in detail by CD measurements [57,58] In a chloroform solution, the CD spectra of selenoxides
150–152 were unchanged even after five days. However, racemization was observed in methanol and
addition of water to the methanol solution accelerated this racemization. These results indicate that the
racemization in methanol was caused by a trace amount of water. The half-lives of racemization for
selenoxide (S)-(-)-152 corresponded well with those for selenoxide (R)-(+)-148. Moreover, racemization
of (S)-(-)-150-152, was accelerated by the addition of p-toluenesulfonic acid or sodium hydroxide,
especially in the case of (S)-(-)-150, whereas the racemization of selenoxide (R)-(+)-148 was not
accelerated by the addition of sodium hydroxide. This results can be explained if one assumes
operation of the mechanism shown for selenoxide 1a on Scheme 26. According to this mechanism the
formation of hydroxyselenonium salt 181 is the rate determining step (RDS) in acidic media, whereas
racemization in basic media is caused by the addition of hydroxide ion to a selenium atom in 1a
followed by protonation of the oxygen atom in 182 to give an achiral hydrate 10.
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Scheme 26. The mechanism of racemization of selenoxides by the formation of hydrates in the presence
of water.

The half-lives of racemization for selenoxides 162–166 complexed with BINOL 171, determined
by polarymetric measurements at 19 ◦C, was found to be in the range of minutes (from 6.5 to 19.5) in
methanol, while for the complex of the selenoxide 164 dissolved in chloroform was equal to 3.7 h [63].

5. Conclusions

In the present review, synthetic approaches to the preparation of non-racemic selenoxides and
the problem of their optical stability are described. The purpose of this mini review is to provide
available information on both topics in order to stimulate additional research in this field. The rationale
for this research topic is the structural similarity between selenoxides and sulfoxides, which play a
very important role as new synthetic reagents, biologically active compounds and new functional
materials [71]. Therefore, it is reasonable to expect that optically active selenoxides should be just as
useful as sulfoxides when they have sufficiently high optical stability. The literature data discussed
in this review show how this goal can be achieved, and this is the main reason for publishing it in
its current form. It is reasonable to expect that further research will allow the preparation of model
compounds containing sterically demanding substituents, which in turn enable the preparation of
optically active selenoxides with optical stability comparable to sulfoxides. Experimental works
currently carried in our laboratories, focused on methodological and stereochemical aspects of flow
processes [72] and mechanochemical procedures, allow us to have legitimate hope for reaching this goal.
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