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Abstract: Active noseleaf deformations during pulse emission observed in hipposiderid and
rhinolophid bats have been shown to add a time dimension to the bats’ acoustic emission
characteristics beyond the established dependencies on frequency and direction. In this study,
a dense three-dimensional acoustic characteristics were obtained by the time series of smoothed
signal amplitudes at different directions and frequencies collected by a biomimetic dynamic sonar
emitter. These data have been analyzed using differential entropy which was used as a measure
to compare the encoding capacity for sensory information between the three different dimensions.
The capacity for sensory information encoding measured in this way along time dimension was found
to be similar to that along the frequency dimension. But both of them provided less information than
provided by the direction dimension.
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1. Introduction

Bats use biosonar to navigate and find food, i.e., they emit ultrasonic pulses and listen to the
returning echoes from which they extract a large portion of the sensory information they need about
their surroundings [1,2]. Some bat species, such as horseshoe bats (Rhinolophidae) and the related Old
World leaf-nosed bats (Hipposideridae), emit their biosonar pulses through the nostrils. In these cases,
the nostrils are surrounded by elaborate baffles called “noseleaves” that act as interfaces between
the biosonar’s ultrasonic source and the free field [3]. Through diffracting the outgoing waves,
the noseleaves determine the shape of the bats’ emission beam pattern, i.e., how the emitted energy is
distributed as a function of direction and frequency [4,5]. This control over the emission characteristics
of the biosonar may help the bats obtain and encode additional sensory information above that
provided by static noseleaf positions during a biosonar pulse.

Besides relying on the static geometry of their noseleaves, both rhinolophid and hipposiderid
bats also have the ability to alter their noseleaf shapes during pulse emission through muscular
actuation [6]. Numerical and biomimetic robotic studies have suggested that these dynamic noseleaf
deformations can alter the shape of the emission beam and hence, add a time-dependence to the
emission characteristics which hence becomes a function of direction, frequency, and time [5,7,8].
Information-theoretic analysis has shown that the time dimension could support the encoding of
additional, useful sensory information [9–11]. These findings lead to the hypothesis that the sensory
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coding capacity differs among the three dimensions. If the noseleaf motion has a function for sensory
information encoding, the variability along the time dimension should not be negligible compared to
the other dimensions that are known to be used by the bats.

Previous work has compared the sensory encoding capacity along the time and frequency
dimensions using joint differential entropy and relative entropy but have not included the direction
dimension [10,11]. Here, the goal has been to compare the information-coding capacity along all three
dimensions. If the time and frequency dimension are of similar importance to the biosonar sense,
we would expect them to be similar in terms of their information coding capacity. Since representing a
function of three independent variables requires more data than could be obtained from a behaving
animal under controlled conditions, we have used a biomimetic reproduction of a hipposiderid
noseleaf (Figure 1a–c, [7]) to collect the experimental data. Based on this data, we have assessed the
information coding capacity using differential entropy because it is a good match for our continuous
data and does not require an arbitrary discretization [12].
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Figure 1. Experimental design and methods for establishing 3-dimensional acoustic emission
characteristics. A flexible biomimetic noseleaf model (a) was simplified with five main shape features
from the noseleaf of Pratt’s roundleaf bats (b). A biomimetic dynamic sonar emitter (c) assembled with
actuation and ultrasound generation systems was mounted on a pain-tilt to scan over 1040 direction
samples (d). Anterior and posterior portions of the noseleaf baffle were actuated by stepper motors
according to the input motion control signal (dark gray dashed line in (e)). The displacement of the
posterior leaf (dark gray solid line in (e)) was reconstructed by a pair of high-speed video cameras.
An example of time-domain signal (light gray shadow in (e)) at 55 kHz was extracted from the raw
received signal by a bandpass filter. The 3D acoustic characteristics were established by combining
the time series of envelope amplitudes (black solid line in (e)) at each fixed direction and frequency.
(f) Examples of beampatterns as a function of time and frequency.

2. Results

Differential entropy measured over each of the three studied dimensions (direction, frequency,
time) depended on the fixed values along the other two dimensions (Figure 2). For the time dimension,
the values of differential entropy changed with direction as well as with frequency. Looking at the
entropy as a function of direction (Figure 2a) did not reveal any deterministic patterns, i.e., there were
no trends or spatial clusters in the variations that accounted for 22 ± 3% of the mean value (mean:
2.55 ± 0.14 bits, standard deviation, std: 0.55 ± 0.05 bits). Averaging the patterns over frequency failed
to bring forth any discernible patterns, and the variations only decreased slightly to approximately
21 ± 5% of the mean (std: 0.52 ± 0.1 bits, mean: 2.55 ± 0.22 bits).



Symmetry 2020, 12, 391 3 of 7

0

o
v
er

 d
ir

ec
ti

o
n
 [

b
it

s]

D
if

fe
re

n
ti

al
 e

n
tr

o
p
y

o
v
er

 t
im

e 
[b

it
s]

70

(c)

F
re

q
u
en

cy
 [

k
H

z]

(b)

Frequency [kHz]

50 60 70 80

(a)

4030

0 20 40 60

Time [ms]

D
if

fe
re

n
ti

al
 e

n
tr

o
p
y

o
v
er

 f
re

q
u
en

cy
 [

b
it

s]

0

4.5

5.1

3.2

D
if

fe
re

n
ti

al
 e

n
tr

o
p
y

20 40 60
Time [ms]

30

50

5

3.65

Figure 2. Examples of differential entropy estimates taken over the dimensions of time (a), frequency
(b), and direction (c), respectively, for a set of fixed values along the remaining two dimensions.

A similar behavior was observed for differential entropy taken over the frequency dimension as a
function of direction at different points in time (Figure 2b). For each time step, the patterns appeared
to be random with variations that were much smaller than the variations of differential entropy over
time (mean: 4.24 ± 0.05 bits, std: 0.22 ± 0.02 bits, i.e., ≈5.2 ± 0.4% of the mean). Once again, averaging
the patterns over time did not reveal any discernible patterns, and the variation decreased slightly to
approximately 3.7 ± 1.2% (std: 0.15 ± 0.05 bits, mean: 4.24 ± 0.16 bits).

Unlike the distribution over time and frequency, differential entropy computed over the direction
as a function of time and frequency showed an overall trend with a decrease starting around t =
45 ms for most frequencies, which coincided with the motion slowing down as it approached its
maximum (Figure 2c). As previously observed along the other dimensions, the variation—over time
and frequency in this case—was again fairly small compared to the value of differential entropy (mean:
4.5 bits, std: 0.2 bits, i.e., ≈4.4% of the mean). In summary, it was found that the differential entropy
over all three dimensions (time, frequency, direction) distributed was almost uniform over the other
two fixed dimensions.

The amplitudes, i.e., the root-mean-square values, of the emission gains occupied a similar range
of values across the three dimensions (mean: −27 dB, std: 5.1 dB, over all the values across the three
dimensions, Figure 3a). But while the shape of the distribution over direction was skewed heavily to
the right, it was almost symmetrically bell-shaped for the time dimension. The shape of the distribution
over frequency was somewhat intermediate between the distribution shapes obtained along the time
and direction dimensions. Unlike the amplitude distributions, the distributions of the differential
entropy values showed a pronounced difference between the three dimensions in terms of location
and spread (Figure 3b). While all three distributions were approximately symmetric and bell-shaped,
the distributions for the direction and frequency dimensions had higher mode values and were also
more concentrated than the distribution over time. However, the ranges of entropy values covered by
the three different distributions still overlapped with the high-value tail of the distribution over time
covering the value ranges of differential entropy of the distributions for frequency and direction.
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Figure 3. Probability density function estimates for root-mean-square values of the amplitudes (a) and
differential entropy (b) over time (black lines), frequency (dark gray lines), and direction (light gray
lines) dimension, respectively. (c) Correlation between differential entropy and standard deviation
over the dimensions of time (light gray symbols, r = 0.78, n = 1040 × 1101), frequency (medium gray
symbols, r = 0.86, n = 1040 × 1084), and direction (black symbols, r = 0.96, n = 1084 × 1101).

The standard deviations of the data predicted the differential entropy over direction and frequency
with correlation coefficients r = 0.96 and 0.86 respectively (Figure 3c). However, the slope of the
regression line was shallow for both dimensions (direction and frequency). In contrast to this,
the relation between differential entropy and standard deviation scattered over a large range for
the time dimension.

3. Discussion

The differential entropy estimates here indicate that the capacity for the encoding of sensory
information is uniform over direction within the angular range studied (180◦ in azimuth, 90◦ in
elevation). This could be taken as an indication that the sensory information encoding on the
emission-side of bat biosonar is designed to operate equally well over this range. This would be similar
to human hearing, which serves to sense the entire surroundings of a person [13], whereas highly
accurate vision is limited to a narrow foveal region [14]. The results presented here show no indication
the information-encoding capacity of dynamic biosonar emission has fovea—no matter whether over
frequency or time. This analysis does not include, however, any likely dependence of the signal-to-noise
ratio on direction, i.e., the directional nature of the emission will result in a reduced signal-to-noise
ratio for off-center directions.

The capacity for the encoding of sensory information through variability along the time dimension
was found to be clearly less than the capacity associated with frequency and direction. However, their
differences seemed not substantial, e.g., the mode of sensory information encoded in time (2.64 bits)
was about 1.62 bits less than in frequency (4.26 bits), i.e., the encoding capacity along the time and
frequency dimension were similar. While differential entropy is not an absolute measure of uncertainty
in continuous variables, unlike discrete entropy, but a measure to compare the difference between
probability densities under common conditions [12]. Therefore, whether the amount of sensory
information encoded in time is sufficient for the sensory tasks remains unknown. The results presented
here do confirm [10] that both the frequency and time dimensions have an amount of variability
(as quantified by differential entropy) that would make them suitable substrates for the encoding of
sensory information. Hence, hipposiderid bats could rely on the temporal dimension in addition to
the frequency dimension to encode the biosonar information they need. Future work will be needed
to assess the utility of the different dimensions of the emission characteristics with respect to specific
sensing tasks, and estimate how the use of movable noseleaves might reduce the weight needed for
implementation of biosonar by drones.
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4. Materials and Methods

4.1. Experimental Setup

To obtain a densely sampled representation of three-dimensional acoustic emission characteristics
similar to a bat’s, we have created a biomimetic noseleaf baffle modeled after Pratt’s roundleaf bat
(Hipposideros pratti) (Figure 1a–c, [7]). For this shape, we have retained five main features seen in
hipposiderid bats (anterior leaf, posterior leaf, coronet, and two nostril flaps, Figure 1a) and removed
small irregularities. We have cast the result from a flexible material (Ecoflex 00-30, Smooth-On, Inc.,
Macungie, PA, USA) and actuated it with two stepper motors (PKP213D05A, Oriental Motor Co.,
Ltd., Japan, Figure 1c) to reproduce the closing and opening motion of the anterior leaf, posterior leaf,
and coronet observed in bats. An electrostatic transducer (600 Series, SensComp Inc., Livonia, MI,
USA) served as an acoustic source for each nostril. We matched its diameter (38 mm) to that of the
nostrils through a conical funnel (length: 100 mm). We recorded the emitted ultrasonic pulse (duration:
170 ms, sampling rate: 500 kHz, 10 or 6 constant frequency components contained) from different
directions with a capacitive pressure measurement microphone ( 1

8 inch, type 4138, Büel and Kæjr,
Nærum, Denmark) at a distance of 1 m from the noseleaf. The direction dimension was sampled at
1,040 points spaced over 180◦ in azimuth and 90◦ in elevation using an equal-area pixel discretization
of a sphere (HEALPix, resolution level 4, Figure 1d, [15]). We recorded the acoustic characteristics for
the entire closing motion (duration: 65 ms, sampling rate: 500 kHz, Figure 1e) and omitted the opening
motion because of temporal mirror symmetry. We scaled the biomimetic noseleaf by a factor of 2.5×
relative to the bat and investigated a frequency band between 25 to 80 kHz (sampled at 56 equidistant
frequencies), i.e., equivalent to a biosonar frequency band from the constant frequency component of
the second (strongest) harmonic up to a potential fifth harmonic (about 60 to 150 kHz).

4.2. Signal Preprocessing

The signals for the entire closing motion (65 ms) were cut out from the recorded signals (190 ms)
for each direction sample (Figure 1e), according to the pulse-width modulation (PWM) control signal
for stepper motors and the trajectories of the main shape features reconstructed by a pair of high-speed
video cameras (frame rate: 1057.36 Hz, image resolution: 1280 × 1024 pixels, Chronos 1.4, Kron
Technologies, New Westminster, BC, Canada, [11]). We then filtered the cut signals to extract the
time-domain signals for each frequency component using an FIR bandpass filter (an equiripple filter
with a −6 dB-bandwidth of 3.3 kHz, a passband ripple of 1 dB, and a stopband attenuation of 60 dB).
The envelopes of the time-domain signals were extracted as the magnitudes of the analytic signal
constructed using the Hilbert transform. Hence, the three-dimensional acoustic characteristics created
by the biomimetic noseleaf emitter were obtained by the envelope amplitudes for each sampled
direction and frequency (Figure 1f).

4.3. Differential Entropy Estimation

Differential entropy was used to compare the sensory coding capacity between the different
dimensions of the acoustic characteristics. To avoid the introduction of a bias into the differential
entropy estimates due to large differences in the number of samples along each dimension,
we resampled the time and frequency dimensions to approximate the number of samples along
the direction dimension (1040): along the time dimension, we reduced the number of samples from
32,500 (65 ms duration sampled at 500 kHz) to 1084 (sampling period of 0.06 ms). Along the frequency
dimension, we interpolated from 56 samples to 1101 samples (from 25 to 80 kHz in steps of 50 Hz)
using a Gaussian kernel smoothing regression (bandwidth of 600 Hz, i.e., > 1

2 the distance between
the original samples and hence resulted in a smooth interpolation that did not introduce any artificial
high-frequency features into the results).



Symmetry 2020, 12, 391 6 of 7

The differential entropy over each dimension was estimated using a non-parametric estimator
based on k-th-nearest neighbor (k-NN) distances [16]:

Ĥ(X) = −ψ(k) + ψ(N) +
d
N

N

∑
i=1

logε(i), (1)

where X is a vector of normalized amplitudes of the acoustic characteristics along one dimension
for fixed values of the other two dimensions. The amplitudes were normalized by the respective
root-mean-square value; ψ is the digamma function (i.e., the derivative for the logarithm of gamma
function); k is the neighborhood size (here, k = 4 was used as suggested in [16]); N is the number of
samples in X with N = 1084, 1040, and 1101 for time, direction, and frequency dimension, respectively;
d = 1 is the dimension of X; ε(i)/2 is the distance of the ith sample in X to its kth nearest neighbor.
Calculations for differential entropy based on this estimator were performed numerically (TIM 1.2.0,
Kalle Rutanen, Tampere University of Technology).
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