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Abstract: This study is carried out to scrutinize the gyrotactic bioconvection effects on modified
second-grade nanofluid with motile microorganisms and Wu’s slip (second-order slip) features.
The activation energy and thermal radiation are also incorporated. The suspended nanoparticles in a
host fluid are practically utilized in numerous technological and industrial products such as metallic
strips, energy enhancement, production processes, automobile engines, laptops, and accessories.
Nanoparticles with high thermal characteristics and low volume fraction may improve the
thermal performance of the base fluid. By employing the appropriate self-similar transformations,
the governing set of partial differential equations (PDEs) are reduced into the ordinary differential
equations (ODEs). A zero mass flux boundary condition is proposed for nanoparticle diffusion. Then,
the transmuted set of ODEs is solved numerically with the help of the well-known shooting technique.
The numerical and graphical illustrations are developed by using a collocation finite difference scheme
and three-stage Lobatto III as the built-in function of the bvp4c solver via MATLAB. Behaviors of the
different proficient physical parameters on the velocity field, temperature distribution, volumetric
nanoparticles concentration profile, and the density of motile microorganism field are deliberated
numerically as well as graphically.

Keywords: modified second-grade nanofluid; bioconvection; thermal radiation; activation energy;
motile microorganisms; shooting technique

1. Introduction

In recent years, the tremendous progress in research and wide-ranging solicitations of functional
nanoparticles have been noticed. Nanoparticles have numerous potential applications in the many
fields such as the biomedical field, microbiology, supramolecular and colloid chemistry, material
sciences, petroleum sciences, social sciences, etc. Nanoparticles have further physical features that
must be determined for an undivided depiction, for example surface characteristics, sizes, and shapes.
Nanoparticles belong to a broad interdisciplinary field in pharmaceutical medicines, thermal systems,
electronics, nuclear reactors, the chemical industry, etc. Nanoparticles are also expressed in ink,
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polymer, and natural fluids such as blood. In general, nanoparticles-based technologies are focused
on opportunities for improving the efficiency, sustainability, and speed of already existing processes.
A nanofluid is an advanced type of fluid that contains nanometer-sized particles. As a result of their
sub-nanoscopic size, they have unique material features and manufactured nanomaterials that may find
practical applications in a mixture of areas, including catalysis, environmental remediation, medicine,
and engineering. Beneath that classification, nanosubstances needs simply one of their quality scopes
to be in the range of 1–100 nm to be classified as nanoparticles, even if its other dimensions are exterior
to that range. Choi [1] proposed the idea of nanofluids. Numerous researchers have gained interest in
the study of nanofluids due to their significant technical processes and applications. The coefficient
of heat transfer between the medium and the soil is considered to be important. Nanofluids are
commonly used in automotive and industrial cooling, tumor care, tracking, cooling towers, new
fuel types, micro electron cooling, imaging, the heating/cooling of home appliances, and many more.
Buongiorno [2] presented a two-phase model depicting the salient features of Brownian diffusion
and thermophoresis. He determined that the properties of thermophoretic and Brownian motion are
enough to establish a viable model. Khan et al. [3] discussed the characteristics of Brownian motion and
thermophoresis in Jeffery nanofluid flow by a stretched surface. The article reveals the impacts of drag
force and heat transfer rate for numerous physical variables. Nanofluid heat transfer in a porous duct
in the presence of Lorentz forces by using the lattice Boltzmann method was examined by Li et al. [4].
Several researchers made serious attempts on nanofluids subjected to different configurations [5–12].
Alamri et al. [13] described the impacts of a second-order slip on plane Poiseuille nanofluid flow
under the influence of Stefan blowing in a channel. Kumar [14] explored the behavior of heat transmit
flow of non-Newtonian nanofluid through a stretching sheet. Farahangmehr et al. [15] scrutinized
numerically the continuous boundary layer of an incompressible viscous nanofluid with heat and
mass transfer over the horizontal surface. Tlili et al. [16] discussed boundary layer flow in the presence
of convection and mass transfer features of the Buongiorno nanofluid model over a wedge with
Navier slip and Biot number. Khan et al. [17] inspected the mass and heat transfer mechanism in
Carreau nanofluid flow across a wedge. The unsteady slip flow of Carreau nanofluid over a moving/

static wedge was numerically investigated by Masood et al. [18]. Khan et al. [19] examined the
significance of activation energy and nonlinear thermal radiation on modified second grade fluid
flow in the presence of nanoparticles. Rehman et al. [20] scrutinized the impacts of heat transfer and
heterogeneous–homogeneous reactions in modified second-grade nanofluid over a stretching sheet.
Khan et al. [21] investigated the multi-dimensional axisymmetric flow and convection of the modified
second-grade fluid through the nonlinear radially expanding oscillatory surface. Hassan et al. [22]
investigated the mass and heat transport aspects in viscoelastic nanofluid flows under the presence of
velocity slip conditions. Afterwards, the methods of combining second-grade fluid and a power law
model resulted in the generalized second-grade fluid as described by Man and Sun [23].

Bioconvection caused by the density differences of motile microorganisms is effectively assorted
in the field of environmental systems, biofuels, and industry. The presence of these microorganisms
increases the primary density of the fluid and creates a density gradient by swimming, which leads
to bioconvection. This interesting observation inevitably leads to an unstable, lower density surface.
Microorganisms are typically classified according to the impellent force of various types due to
gyrotactic, oxytactic, and gravitactic microorganisms. There are some distinct and similar characteristics
of nanoparticles and motile microorganisms. Immunology microsystems (i.e., biomaterials, tissue
engineering, protein engineering, synthetic biology, and drug delivery systems) such as enzyme
biosensors are typically involved in bioconvection applications. Kuznetsov [24] therefore suggested
that the growth of microorganisms in the biomicrosystems plays a major role in the processing and
aggregation of mass transport. Khan et al. [25] analyzed the influence of bio-convection in a rheology
of magnetized nanofluid. Waqas et al. [26] investigated the heat and mass transfer phenomenon of
Williamson’s nanofluid flow in the existence of gyrotactic motile microorganisms. Waqas et al. [27]
considered viscous nanofluid flow across a flexible stretching disk with a mixture of microorganisms.
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Waqas et al. [28] also visualized the flow of modified second-grade nanofluid in the presence of motile
microorganisms with heat and mass transfer rates across the stretching boundary. Waqas et al. [29]
examined the magnetohydrodynamics (MHD) flow of rate-type nanofluid in the presence of gyrotactic
microorganisms with activation energy. Recently, Waqas et al. [30] securitized the novel biofuel
significance in viscoelastic nanofluid under the bioconvection process.

This research paper provides a more compelling approach to the nanoliquid heat and mass
transfer phenomena through the bioconvection of self-motile microorganisms, which helps to avoid the
agglomeration of nanoparticles. New results are established with inclusion of Wu’s slip (second-order
velocity slip), activation energy, and the thermal radiation. The manuscript is organized as follows.
Section 1 describes the introduction, Section 2 contains a mathematical model, Section 3 yields the
numerical solution, Section 4 present the graphical analysis, and the conclusions of the graphical
and tabular results are exhibited in Section 5. Observation of the results shows that the buoyancy
ratio parameter Rb, bioconvection Rayleigh number Nr, and Wu’s slip parameter inhibit the fluid
flow and cause a reduction in the velocity. However, the parameters Rb and Nr augmented the
thermal distribution.

2. Mathematical Model

Let us consider the two-dimensional, steady-state modified second-grade nanofluid with activation
energy and gyrotactic motile microorganisms. Moreover, the flow is incompressible across a stretching
surface. Additionally, non-linear thermal radiation and Wu’s slip (second-order velocity slip) are taken
into consideration. Let us assume that the surface stretches as U = cx̃α, where α > 0 is the power law
exponent parameter, and c > 0 is symbolized for stretching strength. Furthermore, V = V(u, v) is
the flow velocity, the temperature of the fluid is T̃, and the volume fraction for nanoparticles and the

motility of the microorganisms are symbolized as C̃, Ñ, respectively. The Cauchy stress tensor
.
τ̃ for

modified second-grade fluid is taken as [31]

.
τ̃ = −PI + u

∏m/2
Ã
∗

1 + β1Ã
∗

2 + β2Ã
∗

1. (1)

Here, I is the identity tensor, P is the pressure, µ is viscosity coefficient, β1&β2 are the conventional

stress coefficients, m is the material parameter,
∏

=
∣∣∣∣ 1
2 trÃ

∗2
1

∣∣∣∣ is the velocity gradient for the symmetric

part of second invariant, and Ã
∗

1&Ã
∗

2 are termed as kinematical tensors and defined as

Ã
∗

1 = L + LT, Ã
∗

2 =
dÃ
∗

1

dt
+ Ã

∗

1L + LTÃ
∗

1 (2)

where L = gradV.
Man and Sun [23] studied the Cauchy stress tensor and described two models as terminated in

modified forms of second-grade fluid and power law fluid model, which are:
Model (a):

ϕ1 = −PI + µ f

∏m/2
Ã
∗

1 + β1Ã
∗

2 + β2Ã
∗2
1 (3)

Model (b):

ϕ1 = −PI +
∏m/2

[µ f Ã
∗

1 + β1Ã
∗

2 + β2Ã
∗2
1 ]. (4)

Model (a) is about second-grade fluid.
Model (b) is representing the power-law index model.
The boundary layer formulation for mass conservation, momentum, energy, concentrations of

nanoparticles, and motile microorganisms’ distributions are [32–34]:

∂ũ
∂x̃

+
∂ṽ
∂ỹ

= 0, (5)
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ũ∂ũ
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ũ
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+ ṽ
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=

α f +
16σsT̃3

∞

3k∗(ρc) f
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∂ỹ
∂T̃
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∂T̃
∂ỹ

2, (7)

ũ
∂C̃
∂x̃

+ ṽ
∂C̃
∂ỹ

= DB
∂2C̃
∂ỹ2 +

DT

T∞
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(
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) T̃
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n

exp
(
−Ea

κT̃

)
, (8)

ũ
∂Ñ
∂x̃

+ ṽ
∂Ñ
∂ỹ

+
b1Wc(

C̃w − C̃∞
)  ∂∂ỹ

Ñ
∂C̃
∂ỹ

 = Dm

∂2Ñ
∂ỹ2

. (9)

The boundary conditions entertained the following relations:

u = uw + Uslip, v = 0, −k
∂T̃
∂y

= h f
(
T̃ f − T̃

)
, DB

∂C̃
∂y

+
DT

T̃∞

∂T̃
∂y

= 0, Ñ→ Ñw y = 0, (10)

u→ Ũ∞ = 0,
∂u
∂y
→ 0, T̃→ T̃∞, C̃→ C̃∞, Ñ→ Ñ∞ at y→∞. (11)

The temperature of the surface is assumed as T̃w, while the volume fraction for nanoparticles and
the density of the microorganisms at the surface are denoted as C̃w, Ñw respectively. T̃∞, C̃∞, Ñ∞ are
the free-stream temperature, concentration of nanoparticles, and the density of the microorganisms.
Some researcher used the Ũslip as [35,36]:

Ũslip =
2
3

(
3−$l2

$
−

3
2

1− p2

Kn

)
σ∗ ∂yu−

1
4

[
p4 +

2
K2

n

(
1− p2

)]
σ2∂yyu, (12)

Ũslip = σ ∂yu + ε1 ∂yyu, (13)

where Kn notifies the Knudsen number, σ and ε1 stand for constant numbers, and β expresses the free
path associated with the molecular mean motion. In the above equations, α1 is the material-related
parameter, m represents the power law index, ρm represents the motile microorganism particles density,
ρp represents the nanoparticles density, γ1

∗ represents the average volume of the microorganism,
g1
∗ represents the gravity, T̃ notifies the temperature of the nanofluid, C̃ reflects the nanoparticles’

volume resistance, α f stands for the friction coefficient, (ρc) f represents the heat capability of fluids,
(ρc)p represents the impressive heat capacity of the nanomaterial, DB symbolizes the Brownian
diffusivity, σ∗ represents the Stefan Boltzmann constant, k∗ represents the mean absorption coefficient,
DT stands for the thermophoresis diffusion coefficient, Ea reflects the activation energy coefficient,
K2

r reflects the reaction rate constant, b1 represents the chemotaxis constant, Wc describes the superlative
cell swimming rapidity, and Dm is the microorganism’s diffusion coefficient. Equations (5)–(9) are
non-dimensionalized by the following variables [22]:

ψ = x̃URe−
1

2+m f (ζ), ζ =
ỹ
x̃

Re
1

2+m , θ(ζ) =
T̃ − T̃∞

T̃w − T̃∞
, φ(ζ) =

C̃− C̃∞
C̃w − C̃∞

, χ(ζ) =
Ñ − Ñ∞

Ñw − Ñ∞
(14)

Equation (5) is satisfied. The re-established dimensionless form of Equations (6)–(9)
respectively yield:

(1 + α+ 2mα) f f ′′ + (m + 2)
[
(m + 1) f ′′′(− f ′′)m

− ( f ′)2
]
− α∗

 (3α− 1)
(

f ′′2 − 2 f ′′′ f ′
)

+(1 + α+ 2mα) f iv f


+Λ1(θ−Nrφ−Rbχ) = 0,

(15)
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(1 + εθ)θ′′ +
[

4
3 Rd(1 + (θw − 1)θ)3

]
θ′′ +

[
ε+ (1 + (θw − 1)θ)2(4Rd(θw − 1))θ′2

]
+Pr

(
1+α+2mα

m+2

)
fθ′ + Pr

(
Nbθ′φ′ + Ntθ′2

)
= 0,

(16)

φ′′ + PrLe
(1 + α+ 2mα

m + 2

)
fφ′ +

( Nt
Nb

)
θ′′ − PrLeσ(1 + δθ)n exp

(
−E

1 + δθ

)
φ = 0, (17)

χ′′ + Lb
(1 + α+ 2mα

m + 2

)
fχ′ − Pe(φ′′(χ+ δ1) + χ′φ′) = 0. (18)

Similarly, the boundary conditions (10) and (11) are transformed as follows:

f (ζ) = 0, f ′(ζ) = 1 + Γ f ′′(ζ) + β f ′′′(η), θ′(0) = Bi(θ(ζ) − 1),
Nbθ′(ζ) + Ntφ′(ζ) = 0, χ(ζ) = 1 at ζ = 0,

}
(19)

f ′ → 0, θ→ 0, φ→ 0, χ→ 0, as ζ→∞, (20)

where α∗ =
[
α1Re

2
2+m

ρ f x̃2

]
, is the generalized second-grade fluid parameter, Λ1 =

[
gβ∗(1−C̃∞)(T̃ f−T̃∞)x̃3

c2r2α−1

]
is the mixed convection parameter, Nr =

[
(ρp−ρ f )(C̃w−C̃∞)x̃3

(T̃w−T̃∞)β∗cr2α−1(1−C̃∞)ρ f

]
is the buoyancy ratio parameter,

Rb =

[
γ(ρm−ρ f )(Ñw−Ñ∞)x̃3

ρ f (1−C̃∞)cr2α−1β∗(T̃w−T̃∞)

]
is the bioconvection Rayleigh number, Pr =

[
Ux̃Re−

2
2+m

(k1/ρcp)

]
is the Prandtl

number, Rd =
(

16σ∗T3
∞

3k∗K

)
is the radiation parameter, Nb =

[
(ρc)p(C̃wDB−C̃∞DB)

(ρc) f ν

]
is the Brownian motion

constraint, Nt =
[
(ρc)p(DTT̃ f−DTT̃∞)

(ρc) f T̃∞ν

]
is the thermophoresis parameter, the temperature ratio parameter is

θw = Tw
T∞ , Le =

[
ν

DB

]
is the Lewis number, δ1 = N∞

Nw−N∞ is the motile microorganism difference parameter,

E =
[

Ea
κT∞

]
is the activation energy, Lb

[
= ν

Dm

]
is the bioconvection Lewis number, Pe =

[ b1Wc
Dm

]
is the

Peclet number, Γ = C1Re
1

2+m

x̃ is the first-order velocity slip, the second-order velocity slip is represented

as β = C2Re
2

2+m

x̃2 , and the Biot number is symbolized as Bi =
h f
k1

x̃Re−
1

2+m .
In order to express the consequences of wall shear stress, we have following mathematical relations:

C f =
τw

0.5ρU2 , τw =

µ∣∣∣∣∣∣∂ũ
∂ỹ

∣∣∣∣∣∣n ∂ũ
∂ỹ

+ α1

{
ũ
∂2ũ
∂x̃∂ỹ

+ ṽ
∂2ũ
∂ỹ2 + 2

∂ũ
∂x̃
∂ũ
∂ỹ

}
ỹ=0

, (21)

where τw is the wall shear stress. By using the following dimensionless variable, Equation (21) yields:

−
1
2

C fxRe1/m+2
x =

1
m + 2

[
{
1− (7 + 2m)α

}
α1] f ′′(0) + [− f ′′(0)]m+1, . (22)

Moreover, the local Sherwood number, motile density number, and local Nusselt number are
stated as follows:

Nux = − x̃
(T̃w−T̃∞)

(
k + 16σ∗T̃3

∞

3k∗

)
∂T̃
∂ỹ

∣∣∣∣∣
ỹ=0

, Sh =
xjw

DB(Cw−C∞)
, jw = −DB

(
∂C
∂y

)
y=0

,

Nh =
x̃ jn

DB(Nw−N∞)
, jn = −DB

(
∂N
∂y

)
y=0

, .
(23)

The above quantities in dimensionless forms are:
Re−

1
m+2 Nux = −

(
1 + 4

3 Rd
)
θ′(0),

Re−
1

m+2 Shx = φ′(0),

Re−
1

m+2 Nnx = −χ′(0).

(24)
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3. Numerical Procedure

The system of the non-linear coupled ordinary differential Equations (15)–(18) with the boundary
conditions (19) and (20) has been computed by bvp4c [37,38] in MATLAB with a tolerance level of
10−5. In the bvp4c routine, a three-stage Lobatto-IIIA method is employed in the development of
this collocation technique. The bvp4c function of computational software MATLAB only resolves the
first-order ordinary differential equations. To approximate the solution of the distorted non-linear
ODEs (ordinary differential equations), appropriate initial guesses satisfying the pertinent boundary
conditions are required. For further approximation, the initial guess is modified with the help of
shooting technique. Let us consider

f = l1, d f
dζ = l2, d2 f

dζ2 = l3, d3 f
dζ3 = l4, d4 f

dζ4 = l′4, θ = l5, dθ
dζ = l6,

d2θ
dζ2 = l′6, φ = l7, dφ

dζ = l8, d2φ
dζ2 = l′8, χ = l9, dχ

dζ = l10, d2χ
dζ2 = l′10

. (25)

Equations (15)–(18) respectively are presented below:

l′3 =

 α∗(3α− 1)(l3 − 2l4l2) − (1 + α+ 2mα)l1l3 − (m + 2)
[
(m + 1)l4
−(l3)

m
− ll22

]
−Λ1(l5 −Nrl7 −Rbl9)


α∗l1(1 + α+ 2mα)

(26)

l′6 = −
1

(1 + εl5) +
(

4
3 Rd(1 + (θw − 1)l5)

3
)  Pr

(
1+α+2mα

m+2

)
l1l6 + Pr

(
Nbl6l8 + Ntl26

)
+ε+

(
(1 + (θw − 1)l5)

2(4Rd(θw − 1))l26
)  (27)

l′8 = −
( Nt

Nb

)
l′6 − PrLe

(1 + α+ 2mα
m + 2

)
l1l8 + LePr

 σ(1 + δl5)
n

exp
(
−E

1+δl5

) l7 (28)

l′10 = Pe
[
l′8(l11 + δ1) + l8l10

]
− Lb

(1 + α+ 2mα
m + 2

)
l1l10. (29)

The associated boundary conditions are:

l1(ζ) = 0, l2(ζ) = 1 + Γl3(ζ) + βl4, l6(ζ) = Bi(l5(ζ) − 1),
Nbl6(ζ) + Ntl8(ζ) = 0, l9(ζ) = 1, as ζ = 0,

}
(30)

l2(ζ)→ 0, l5(ζ)→ 0, l7(ζ)→ 0, l9(ζ)→ 0, as ζ→∞. (31)

4. Graphical Analysis

This section is set to explain the emerging consequences of the involved parameters on the
physical quantities of interest. Similar to the traditional way, the involved parameters have been
assigned some fixed values such as α = 0.2, Λ1 = 0.3, Nr = 0.2, Rb = 0.2, Rd = 0.4, Pr = 0.7, Nt = 0.3,
Nb = 0.2, δ = 0.1, Pe = 0.2, and Lb = 2.0, Γ = 1.0 and β = −1.0. Furthermore, the complete analysis
has been performed in view of the shear thinning case (m = −0.5), second-grade fluid (m = 0.0),
and shear thickening case (m = 0.5). The variation in the impact of the buoyancy ratio parameter
over velocity distribution is drawn in Figure 1a. It illustrates that the velocity component f ′(ζ)
decreases on the rising variation of the buoyancy ratio parameter Rb with the power law index
m = −0.5, 0 & 0.5. The physically buoyancy ratio parameter Rb is the phenomenon of upthrust of
fluid to objects, which exerts pressure on it. The discussion of the buoyancy ratio parameter rose to
another next level when it was considered for the temperature profile. The behavior of temperature
distribution θ(ζ) in relation to the variation of the buoyancy ratio parameter can be traced from
Figure 1b. It can be noticed that the curve of temperature profile θ(ζ) rises when the buoyancy ratio
parameter is increased. Regarding the concentration profile, the buoyancy ratio parameter has a
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unique trend, as graphed by Figure 1c. It can be viewed that the concentration profile gets an uplifting
effect with the buoyancy ratio parameter. When the buoyancy ratio parameter Rb is varied by higher
values, the concentration distribution φ(ζ) shows a rising inclination in the graph, which depicts that
the fluid is concentrating more and more in the boundary layer region. The motility profile is the
characteristic of moving microorganisms mixed in the fluid. Figure 1d is the description of this whole
effect. It can be noticed that when the buoyancy ratio parameter is enhanced, then the motility of the
microorganism also increases; i.e., the motile particles become more active. The bioconvection Rayleigh
number Nr is a dimensionless parameter that is used to measure the fluid instability due to the density
differences as described in study [39]. The effect of Nr on velocity distribution is considered to be
very interesting, as it is the effect of instability that is caused by the dense layer of microorganisms
at the top of the fluid. This top dense layer breaks, and ultimately, the microorganisms fell down.
Then, they move up to attain their motive (gravitative, phototactic, chemotactic, etc.). Figure 2a is
the exhibition of the result between the Rayleigh number and velocity distribution. It displays that
when the bioconvection Rayleigh number is uplifted, it causes a reduction in the velocity distribution.
The investigation of Nr on the temperature profile for the power law index m = −0.5, 0 & 0.5 is
illustrated by Figure 2b. The conduct of Nr on thermal distribution disclosed that the temperature
profile rises when we give a higher value to the Rayleigh number. The concentration profile is one
of the main characteristics of the Rayleigh number, as it causes the instability of the fluid. Figure 2c
depicts that Nr tends to grow the concentration of nanoparticles in fluids. Actually, this is one of the
main interests of our work to control the sedimentation of added/mixed nanoparticles. Figure 2d
illustrates the behavior of a motile microorganism versus the bioconvection Rayleigh number. It can
be noticed that the density function of the motile microorganism is increased with higher Rayleigh
number values. Generally, the motile microorganism characteristics of the mobile particles in a fluid
are used for an increased heat transfer phenomenon. The behavior of stretching parameter α has
been examined in Figure 3a. Regarding increments in the stretching parameter α, the velocity f ′ of
the fluid particles diminishes. Here, the power law index is applied on discussed m = −0.5, 0, 0.5
respectively. We can say that physically, the stretching parameter α provides more strength to velocity
distribution f ′. The impact of the stretching parameter α on the concentration function φ with the
same fixed values of the power law index parameter m is plotted in Figure 3b. The plot depicts that
when m is taken to be −0.5, the concentration profile φ increases as we raise the stretching parameter
α, but a contrasting effect is observed when we take m = 0, 0.5, so that the volumetric nanoparticle
concentration distribution φ shows a retarding effect for increasing the value of stretching parameter α.
The phenomenon of the motile microorganism of the fluid for the flow of a modified second-grade
nanofluid is measured on assorted values of stretching parameter α for three individual values of the
power law index m = −0.5, 0, 0.5. The complete sketch is figured out in Figure 3c. When the power law
index is taken to be m = −0.5, then the motility of the liquid intensifies for rising values of stretching
parameter α, but when m = 0, 0.5, the trend for the concentration of motile microorganisms χ goes
down as we uplift the stretching parameter α. Hence, we conclude that the profile of χ increases for
shear thickening and decreases for modified second-grade and shear thinning fluids, as described in
Figure 3d. The effect of the first-order velocity slip parameter with the power law index on velocity is
sketched via Figure 4a. The first-order velocity slip parameter is also a medium characteristic affecting
the fluid of the velocity distribution. The sketched graph shows that for all the three chosen cases of
power law index m = −0.5, 0, 0.5, when we uplift the first-order velocity slip, it causes a reduction
in the velocity distribution. Figure 4b illustrates the behavior of the second-order velocity slip β
parameter on velocity distribution for an addition with power law index m = −0.5, 0, 0.5. Actually,
this slip parameter is a medium characteristic that affects fluid flow. The velocity distribution retards
when we vary β with higher values. Generally, β gives a slope of second order for the fluid flow with
different characteristics, which reduces the velocity distribution. Hence, enhancement in the value of β
causes decay in the velocity contour. The mixed convection parameter Λ1 is the phenomenon of the
combined interaction of the pressure forces and buoyant forces altogether. For power law index m,
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the effect of Λ1 becomes more influential for velocity distribution. The impact of Λ1 on the velocity
profile in the presence of three different priorities for the power law index, i.e., (m = −0.5, 0, 0.5),
is depicted via Figure 4c. It can be visualized that when the mixed convection is intensified, it boosts
up the velocity profile of the fluid in the presence of all the values of m. Figure 4d elucidates the
behavior of Lewis number Le on the non-dimensional temperature function θ. It is inspected that
the curve of the temperature distribution rises with the growing Lewis number Le values for three
cases of the power law index m = −0.5, 0, 0.5. The impact of the Lewis number Le on the concentration
profile φ(ζ) is exhibited in Figure 5b. It is found that the concentration profile φ shows retardation
with the rise of Lewis number Le for various power law index values: m = −0.5, 0, 0.5. The variation
of dimensionless temperature distribution versus Prandtl number is delineated in Figure 6a. It is
observed that the θ(ζ) shows a diminishing pattern for larger Prandtl numbers, Pr. The thermal
boundry layer thickness is contracted as the fluid charactaricstics change from shear thinning to
shear thickninng. This is explained by the fact that the thermal diffusivity decreases, and therefore,
the thermal distribution declines. The effect of temperature ratio parameter θw on the temperature
profile in the presence of the power law index is drawn graphically through Figure 6b. It is depicted
that the strengthening of the temperature ratio parameter tends to improve the temperature of the
flowing fluid. When it is gradually rises, the fluid also become hot. The radiation parameter is the
phenomenon of the emission of heat waves. The effect of radiation parameter Rd on the temperature in
the presence of three different values of power law index (m = −0.5, 0, 0.5) is sketched by Figure 6c.
The sketched information reveals that the power law index varied from −0.5 to 0.5 and the larger value
of the radiation parameter causes an enhancement of the temperature function. Generally, it can be
said that when the radiation parameter increases, it directly increases the temperature of the fluid.
The effect of Biot number on the temperature field can be predicted in the presence of the power law
index. The predicted result between the Biot number and temperature profile is sketched by Figure 7a.
The figure represents that when the Biot number is raised, it causes the temperature profile of the
liquid to rise as well. Generally, we can say that the increment in the value of the Biot number enhances
the temperature of the fluid. The Biot number is also marked as a key influence on the variation of the
concentration profile. Figure 7b illustrates the effect of the Biot number on the concentration profile in
the presence of the power law index. The value of the power law index is varied from m = −0.5 to 0.5,
and the effect is noticed when the Biot number is uplifted; thus, it increases the concentration profile.
Figure 8a visualizes the perception of the Prandtl number on the concentration of nanoparticles. As we
vary the Prandtl number, the concentration field reduces from shear thinning to shear thickening.
This is caused by the fact that the rise in Prandtl number stands for a reduction in thermal diffusivity,
which creates a decline in the concentration region. Figure 8b illustrates the impact of activation
energy on concentration distribution in the presence of the power law index. The sketched information
indicates that the activation energy has a unique effect on the concentration field. It is seen that when
the amount of activation energy is increased, it directly enhances the concentration of nanoparticles in
the fluid flow. Figure 9a depicts the influence of Peclet number Pe against the density of the motile
microorganism profile. It is observed that an increment in the value of the Peclet number Pe causes
decay in motility distribution. In addition, the motile microorganism profile declines as we enhance the
value of the bioconvection Lewis number Lb as interpreted through Figure 9b. In Table 1, the present
numerical results are verified by comparing the exact and numerical solutions as available in the
existing literature for special cases by Masood et al. [33]. The numerical values of the local skin friction
and local Nusselt number are tabulated in the absence of nanoparticles. Both solutions are noticed
to be in strong agreement, and this verifies our numerical technique. Table 2 describes the effects
of the local skin friction coefficient − f ′′(0) for the shear thinning and shear thickening fluid against
the different prominent parameters such as stretching parameter α, mixed convection parameter Λ1,
buoyancy ratio parameter Rb, bioconvection Rayleigh number Nr, and Wu’s slip (second-order velocity
slip) parameters Γ and β, respectively. The increasing behavior of − f ′′(0) is observed for m = 0.5 as
compared to m = −0.5, 0 when it decreases. As the value of the slip parameters enhances, the value for
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the skin friction coefficient declines. Tables 3–5 show the local Nusselt number −θ′(0), local Sherwood
number −φ′(0), and the density of the local motile microorganism −χ′(0) respectively against the
dimensionless parameters such as Rd, Nt, Nb, Pe, Lb, Γ, β. The uplifted behavior of −θ′(0), −φ′(0),
and −χ′(0) is seen for m = 0.5 as compared to m = −0.5, 0.

Figure 1. (a–d): Variations of f ′,θ,φ,χ for various values of Rb when Nr = 0.2, α = 0.2, Γ = 1.0,
β = −1.0, Λ1 = 0.2, Le = 2.0, Pr = 1.0, θw = 1.5, Rd = 0.4, Bi = 2.0, Pr = 0.7, E = 0.2,
Pe = 0.1, Lb = 2.0.
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Figure 2. (a–d): Variations of f ′,θ,φ,χ for various values of Nr when Rb = 0.2, α = 0.2, Γ = 1.0, β =
−1.0, Λ1 = 0.2, Le = 2.0, Pr = 1.0, θw = 1.5, Rd = 0.4, Bi = 2.0, Pr = 0.7, E = 0.2, Pe = 0.1, Lb = 2.0.

Figure 3. (a–d): Variations of f ′,θ,φ,χ for various values of α when Rb = 0.2, Nr = 0.2, Γ = 1.0, β =
−1.0, Λ1 = 0.2, Le = 2.0, Pr = 1.0, θw = 1.5, Rd = 0.4, Bi = 2.0, Pr = 0.7, E = 0.2, Pe = 0.1, Lb = 2.0.
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Figure 4. (a–c): Variations of f ′ for various parameters Γ, β, Λ1 when Rb = 0.2, Nr = 0.2, α = 0.2, Le =
2.0, Pr = 1.0, θw = 1.5, Rd = 0.4, Bi = 2.0, Pr = 0.7, E = 0.2, Pe = 0.1, Lb = 2.0.

Figure 5. (a,b): Variations of θ,φ for various values of Le when Rb = 0.2, Nr = 0.2, α = 0.2, Γ =

1.0, β = −1.0, Λ1 = 0.2, Pr = 1.0, θw = 1.5, Rd = 0.4, Bi = 2.0, Pr = 0.7, E = 0.2, Pe = 0.1, Lb = 2.0.
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Figure 6. (a–c): Variations of θ, for various parametrs Pr,θw, Rd, when Rb = 0.2, Nr = 0.2, α =

0.2, Γ = 1.0, β = −1.0, Λ1 = 0.2, Le = 2.0, Bi = 2.0, Pr = 0.7, E = 0.2, Pe = 0.1, Lb = 2.0.

Figure 7. (a,b): Variations of θ,φ, for various values of Bi when Rb = 0.2, Nr = 0.2, α = 0.2, Γ = 1.0,
β = −1.0, Λ1 = 0.2, Le = 2.0, Pr = 1.0, θw = 1.5, Rd = 0.4, Pr = 0.7, E = 0.2, Pe = 0.1, Lb = 2.0.
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Figure 8. (a,b): Variations of φ for various values of parameters Pr, E when Rb = 0.2, Nr = 0.2, α =

0.2, Γ = 1.0, β = −1.0, Λ1 = 0.2, Le = 2.0, Pr = 1.0, θw = 1.5, Rd = 0.4, Bi = 2, 0, Pe = 0.1, Lb = 2.0.

Figure 9. (a,b): Variations of χ for various values of parameters Pe, Lb when Rb = 0.2, Nr = 0.2, α =

0.2, Γ = 1.0, β = −1.0, Λ1 = 0.2, Le = 2.0, Pr = 1.0, θw = 1.5, Rd = 0.4, Bi = 2, 0, Pr = 0.7, E = 0.2.

Table 1. Comparison for the results of− f ′′(0) and−θ′(0) in the case of second-grade fluid m = 0,α = 1,
λ = Nr = Nc =,θw = Rd = E = Pe = Lb = 0.

α∗ Pr

Masood et al. [39] Present Results

Exact Solution Numerical Solution Exact Solution Numerical Solution

− f ′′(0) −θ′(0) − f ′′(0) −θ′(0) − f ′′(0) −θ′(0) − f ′′(0) −θ′(0)

0.5 10 0.81649658 2.3478745 0.816451160 2.3478704 0.816451161 2.3478701 0.81649645 2.3478744

1.0 0.70710678 2.3715683 0.70716177 2.3715544 0.70716170 2.3715542 0.70710696 2.3715684

1.5 0.63245553 2.3877034 0.63257670 2.3876736 0.63257672 2.3876730 0.6324557 2.3877036

2.0 0.57735027 2.399595 0.57755726 2.3995450 0.5775572 2.3995452 0.5773501 2.3995950

2.0 0.95141934 0.9514135 0.9514137 0.9514193

5.0 1.6081636 1.6081591 1.6081599 1.6081636

7.0 1.9354025 1.9353982 1.9353985 1.9354025
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Table 2. Variations in − f ′′(0) against α, Λ1, Rb, Nr, Γ, and β.

α Λ1 Rb Nr Γ β
− f ′′(0)

m=−0.5 m = 0 m = 0.5

0.1
0.2 0.2 0.2 1.0 −1.0

0.3415 0.3559 0.3691
0.4 0.3277 0.3424 0.3546
0.8 0.3158 0.3300 0.3407

0.5
0.2

0.2 0.2 1.0 −1.0
0.3388 0.3547 0.3684

0.4 0.3354 0.3542 0.3680
0.6 0.3339 0.3559 0.3674

0.5 0.2
0.1

0.2 1.0 −1.0
0.3442 0.3571 0.3699

0.5 0.3440 0.3569 0.3697
1.0 0.3438 0.3567 0.3695

0.5 0.2 0.2
0.1

1.0 −1.0
0.3417 0.3560 0.3692

0.5 0.3415 0.3558 0.3690
1.0 0.3413 0.3556 0.3688

0.5 0.2 0.2 0.2
2.0

−1.0
0.2487 0.2577 0.2643

3.0 0.1965 0.2026 0.2067
4.0 0.1624 0.1670 0.1699

0.5 0.2 0.2 0.2 1.0
−2.0 0.2732 0.2829 0.2941
−3.0 0.2337 0.2392 0.2474
−4.0 0.2071 0.2098 0.2155

Table 3. Variations in −θ′(0) against Pr, ε,θw, Nt, Nb, Le, Λ1, Rb, and Nr.

Pr ε θw Nt Nb Le Λ1 Rd Rb Nr
−θ′(0)

m=−0.5 m = 0 m = 0.5

1
1 0.5 0.3 0.2 2 0.1 0.5 0.2 0.2

0.2787 0.2926 0.3024
2 0.3683 0.3919 0.4077
3 0.4336 0.4636 0.4824

10
0.1

0.5 0.3 0.2 2 0.1 0.5 0.2 0.2
0.3833 0.3563 0.3489

0.4 0.3687 0.3424 0.3355
0.8 0.3514 0.3260 0.3193

10 1
0.1

0.3 0.2 2 0.1 0.5 0.2 0.2
0.3533 0.3276 0.3209

0.4 0.3332 0.3083 0.3019
0.8 0.3133 0.2892 0.2832

10 1 0.5
0.1

0.2 2 0.1 0.5 0.2 0.2
0.5577 0.5986 0.6238

0.4 0.4895 0.5196 0.5394
0.5 0.4213 0.4381 0.4506

10 1 0.5 0.3
0.1

2 0.1 0.5 0.2 0.2
0.5228 0.5584 0.5810

0.5 0.5223 0.5580 0.5807
1.0 0.5221 0.5578 0.5805

10 1 0.5 0.3 0.2
1

0.2 0.5 0.2 0.2
0.5532 0.5915 0.6151

1.5 0.5404 0.5773 0.6005
1.8 0.5324 0.5687 0.5916

10 1 0.5 0.3 0.2 2
0.2

0.5 0.2 0.2
0.5236 0.5589 0.5812

0.3 0.5264 0.5607 0.5818
0.4 0.5277 0.5613 0.5816

10 1 0.5 0.3 0.2 2 0.2
0.1

0.2 0.2
0.5668 0.6046 0.6286

0.4 0.5100 0.5450 0.5672
0.5 0.4680 0.5003 0.5211

10 1 0.5 0.3 0.2 2 0.2 0.5
0.1

0.2
0.5166 0.5526 0.5761

0.5 0.5243 0.5599 0.5823
1.0 0.5307 0.5662 0.5879

10 1 0.5 0.3 0.2 2 0.2 0.5 0.2
0.1 0.5221 0.5579 0.5806
0.5 0.5226 0.5582 0.5809
1.0 0.5231 0.5586 0.5811
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Table 4. Variations in φ′(0) against Pr, E, σ, Nt, Nb, Le, Λ1, Rd, Rb, and Nr.

Pr E σ Nt Nb Le Λ1 Rd Rb Nr
φ′(0)

m = −0.5 m= 0 m = 0.5

1
1 0.5 0.3 0.2 2 0.1 0.5 0.2 0.2

0.4181 0.4388 0.4536
2 0.5525 0.5878 0.6115
3 0.6504 0.6948 0.7236

10
0.1

0.5 0.3 0.2 2 0.1 0.5 0.2 0.2
0.5609 0.5207 0.5100

0.5 0.5633 0.5320 0.5110
1.0 0.5650 0.5230 0.5120

10 1
0.1

0.3 0.2 2 0.1 0.5 0.2 0.2
0.5528 0.5158 0.5062

0.5 0.5371 0.5045 0.4968
1.0 0.5305 0.4992 0.4920

10 1 0.5
0.1

0.2 2 0.1 0.5 0.2 0.2
0.2789 0.2993 0.3119

0.4 1.2238 1.2990 1.3485
0.5 2.1065 2.1907 2.2531

10 1 0.5 0.3
0.1

2 0.1 0.5 0.2 0.2
1.5685 1.6752 1.7429

0.5 0.3134 0.3348 0.3484
1.0 0.1567 0.1674 0.1742

10 1 0.5 0.3 0.2
1.0

0.2 0.5 0.2 0.2
0.8997 0.8872 0.9226

1.4 0.8105 0.8660 0.9007
1.7 0.7986 0.8531 0.8875

10 1 0.5 0.3 0.2 2
0.2

0.5 0.2 0.2
0.7854 0.8383 0.8718

0.3 0.7896 0.8410 0.8724
0.4 0.7916 0.8420 0.8727

10 1 0.5 0.3 0.2 2 0.2
0.1

0.2 0.2
0.8501 0.9069 0.9428

0.4 0.7650 0.8174 0.8509
0.5 0.7020 0.7505 0.7817

10 1 0.5 0.3 0.2 2 0.2 0.5
0.1

0.2
0.7749 0.8289 0.8642

0.5 0.7864 0.8398 0.8735
1.0 0.7960 0.8493 0.8818

10 1 0.5 0.3 0.2 2 0.2 0.5 0.2
0.1 0.7832 0.8368 0.8710
0.5 0.7839 0.8374 0.8713
1.0 0.7846 0.8379 0.8717
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Table 5. Variations in −χ′(0) against Pe, Γ, β, Λ1, Lb, Rb, and Nr.

Pe Γ β Λ1 Lb Rb Nr
−χ′(0)

m=−0.5 m = 0 m = 0.5

0.3
1 0.5 0.1 2 0.2 0.2

0.5502 0.6417 0.6981
0.5 0.6270 0.7235 0.7831
0.7 0.7039 0.8635 0.9632

0.5
1.2

0.5 0.1 2 0.2 0.2
0.4321 0.5000 0.5367

1.6 0.4060 0.4631 0.4915
2.0 0.3879 0.4379 0.4613

0.5 1 0.5 0.2 2 0.2 0.2
0.4389 0.5105 0.5534
0.4160 0.4778 0.5131
0.3898 0.4363 0.4620

0.5 1 0.5
0.2

2 0.2 0.2
0.4781 0.5635 0.6155

0.3 0.4903 0.5729 0.6215
0.4 0.4974 0.5784 0.6247

0.5 1 0.5 0.2
1.0

0.2 0.2
0.3846 0.4403 0.4741

1.4 0.4297 0.5013 0.5452
1.8 0.4737 0.5602 0.6133

0.5 1 0.5 0.2 2
0.1

0.2
0.4568 0.5447 0.6003

0.5 0.4787 0.5649 0.6173
1.0 0.4966 0.5819 0.6322

0.5 1 0.5 0.2 2 0.2
0.1 0.4726 0.5594 0.6127
0.5 0.4740 0.5604 0.6135
1.0 0.4753 0.5615 0.6142

5. Conclusions

In this article, we have developed the numerical investigation of the non-linear radiation and the
activation energy effects on the bioconvection of generalized second-grade nanofluid flow across a
stretching surface with convective condition, zero nanoparticles mass flux condition, and Wu’s slip
(second-order slip) on the boundary. One of the most prominent features of generalized second-grade
fluid is that it depicts the effects of shear thinning and shear thickening as well as stress effects.
For m > 0, the fluid is shear thickening, while for m < 0, the fluid is shear thinning, and when m = 0,
it becomes a second-grade fluid. The tables and graphs depict the sensitivity of heat transfer and flow
characteristics of nanofluids. Some major remarks are listed below:

The first-order and second-order slip parameters reduced the velocity profile for both shear
thinning and shear thickening, but the opposite behavior is observed for larger values of the mixed
convection parameter.

The temperature distribution exhibits an improvement when the values of the temperature ratio
parameter and the Lewis number are hosted.

The increment in stretching parameter discloses interesting effects. It is noticed that for shear
thickening (m > 0), the associated thermal boundary layer become thicker, and for the shear thinning
cases (m < 0), this boundary layer becomes thinner. However, the momentum boundary layer is
reduced for both the cases.

The nanoparticles concentration profile declines as the Lewis number and Brownian motion
parameter values increase.

As the buoyancy ratio parameter, the bioconvection Rayleigh number, and thermophoresis
parameter values intensify, the temperature function is boosted up as well.

Mounting Prandtl number values reduce the thermal distribution, but the radiation parameter
enhances the temperature distribution.

The volumetric nanoparticles concentration profile retards as the Prandtl number rises, but it can
be more effectively boosted up in the presence of activation energy.
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The gyrotactic microorganism concentration profile retards by enlarging the Peclet number and
bioconvection Lewis number.
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