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Abstract: Fluid and solute transport in poroelastic media is studied. Mathematical modeling of
such transport is a complicated problem because of the volume change of the specimen due to
swelling or shrinking and the transport processes are nonlinearly linked. The tensorial character of
the variables adds also substantial complication in both theoretical and experimental investigations.
The one-dimensional version of the theory is less complex and may serve as an approximation in
some problems, and therefore, a one-dimensional (in space) model of fluid and solute transport
through a poroelastic medium with variable volume is developed and analyzed. In order to obtain
analytical results, the Lie symmetry method is applied. It is shown that the governing equations of
the model admit a non-trivial Lie symmetry, which is used for construction of exact solutions. Some
examples of the solutions are discussed in detail.

Keywords: poroelastic material; continuity equations; nonlinear PDE; Lie symmetry; exact solution;
steady-state solution
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1. Introduction

The mathematical description of transport processes in biological tissue and artificial
permselective membranes is crucial for understanding the physiology and pathology of biological
systems and the effectiveness of artificial life supporting systems [1,2]. In particular, such problems
involve transport through the biological tissue as in peritoneal dialysis, handling of transport through
the pathological tissue as solid tumors, transport across polymer permselective membranes used
in hemodialysis, or other membrane separation processes [1–4]. Another frequent application is
the transport across soil and rock [5]. The investigated systems may involve transport across the
permselective layer or penetration from one side to the impermeable layer on the other side. Transport
of fluid and solutes is strongly related to the local properties of such a permselective membrane that
might not be constant, but also altered by the transport processes itself [1,3,6–8]. In particular, the
transport of fluid may result under some circumstances in the change of hydration of the material
and subsequently in the change of its shape and volume. Such changes in the size of the specimen are
typically not taken into account, and the theory is derived for a fixed size of the transport medium, even
if the change of hydration is included the model [1,3,7,8]. Therefore, such models can be effective for
small alterations in the meta-hydration only. The changes in the hydration of size of the specimen might
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affect the selective properties of the medium, and therefore, the understanding of the relation between
hydration-related structural changes and membrane transport properties is crucial for the effectiveness
of its application. Some examples of such systems are the tissue or artificial membrane exposed to an
external fluid if the external hydrostatic and/or osmotic pressure is subject to changes [9,10] or the
tissue if its internal fluid homeostasis is disturbed by changes in hydrostatic and/or osmotic pressure
of blood and/or interstitial fluid [1,3–5,7,8,11].

It should be stressed that we consider elasticity and transport processes at the macroscale level.
Of course, there are also many studies (see, e.g., [12–16]) devoted to the phenomena at the meso- and
micro-scale (as a single protein channel in a cellular membrane [12], for example).

The first attempt to investigate transport processes through such a porous, elastic medium that
might be deformed is to consider one-dimensional transport, i.e., along one axis or as in the case of
spherical symmetry. An approach that is typically applied for the description of (bio)mechanical
characteristics of the poroelastic material combined with its transport parameters is the theory
of poroelasticity [5,11–19]. The theory in general involves higher order tensors, includes many
parameters, and is difficult for mathematical, numerical, and experimental investigations [5,17–19].
The one-dimensional version (in space) of the theory is less complex and yields a simplified tensor
structure. Nevertheless, the obtained model of the one-dimensional changes of the specimen caused
by the alteration of membrane hydration (due to its swelling or shrinking) evokes the problem known
as the “moving boundary”, which together with the nonlinearity of the theory and several variables
involved, makes the task of finding the analytical solution very difficult.

We attempted to analyze a one-dimensional model of fluid and solute transport through a
poroelastic medium with variable volume. Because the model in question is nonlinear and involves
several nonlinear partial differential equations (PDEs), we do not expect its full integrability without
essential simplifications. Thus, in order to obtain particular analytical results, we apply the Lie
symmetry method [20–22], which is one of the most powerful methods to construct particular solutions
of nonlinear PDEs at the present time.

The paper is organized as follows. In Section 2, the basic model for the poroelastic materials
with the variable volume is developed in the 1D space approximation. In Section 3, the method of
Lie symmetries is applied to the system of governing equations of the model. It is shown that this
system admits a non-trivial Lie symmetry, and this allowed us to construct a variety of exact solutions.
In Section 4, the solutions obtained are used to present some examples highlighting the volume change
of poroelastic materials. Finally, we briefly discuss the result obtained in the last section.

2. Derivation of the Mathematical Model in 1D Approximation

The mathematical model for the poroelastic materials (PEM) with the variable volume is
developed under the following assumptions:

1. 1D approximation in space;
2. no internal sources/sinks (however, they may be added);
3. incompressible fluid;
4. isothermal conditions for tissue transport.

The governing equations of the model consist of continuity equations.The first one expresses the
volume balance for an infinitesimal volume element dV of PEM as:

1
dV

∂dV
∂t

=
∂e
∂t

=
∂

∂t

(∂u
∂x

)
= − ∂

∂x
j̄V (1)

where the deformation vector u is defined as:

u (x, t; X) = x(t)− X, X = x (0) , (2)
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and the function e = ∂u
∂x is called dilatation, j̄V the volumetric flux across the PEM, X the initial position

within PEM, and x (t) the position at time t, i.e., after displacement. For the derivation of this equation
and subsequent to those, we used the theory described in [17–19]. It comes from continuity law for the
mass ρdV of the infinitesimal element dV and the mass density ρ that:

1
dV

∂ (ρdV)

∂t
=

∂ρ

∂t
+ ρ

∂e
∂t

= − ∂

∂x
j̄ρ

i.e.,
∂ρ

∂t
= − ∂

∂x
j̄ρ + ρ

∂

∂x
j̄V , (3)

where jρ is the flux of mass with density ρ through the PEM.
Let us consider PEM with two phases distinguished: the fluid phase, F, with the fractional volume

θF, and the solid phase, i.e., the matrix phase, M, with the fractional volume θM, then the volume
balance for each phase separately is:

1
dV

∂ (θFdV)

∂t
=

∂θF
∂t

+ θF
∂e
∂t

= − ∂

∂x
j̄VF (4)

1
dV

∂ (θMdV)

∂t
=

∂θM
∂t

+ θM
∂e
∂t

= − ∂

∂x
j̄VM (5)

so that:
∂θF
∂t

= − ∂

∂x
j̄VF + θF

∂

∂x
j̄V (6)

∂θM
∂t

= − ∂

∂x
j̄VM + θM

∂

∂x
j̄V , (7)

where j̄VF and j̄VM correspond to the volumetric fluxes in the fluid and matrix phases, respectively.
Similarly for the densities, the equations:

1
dV

∂ (ρFθFdV)

∂t
=

∂ (ρFθF)

∂t
+ ρFθF

∂e
∂t

= − ∂

∂x
(
ρF j̄VF

)
(8)

1
dV

∂ (ρMθMdV)

∂t
=

∂ (ρMθM)

∂t
+ ρMθM

∂e
∂t

= − ∂

∂x
(
ρM j̄VM

)
(9)

take place, with densities ρF and ρM in the fluid and matrix phases, respectively. Note that the relation:

ρ = ρFθF + ρMθM (10)

holds for the two phase PEM. Moreover, since the fluid is incompressible, ρF is constant.
Since the solute with the concentration c(t, x) is in fact dissolved in the fluid phase, we might

write the corresponding equation for the volume balance:

1
dV

∂ (cθFdV)

∂t
=

∂ (cθF)

∂t
+ cθF

∂e
∂t

= − ∂

∂x
j̄S, (11)

where j̄S is the solute flux across the PEM. Finally, the dynamics of the PEM element of the mass ρdV
with the velocity ∂x

∂t = ∂u
∂t is described by the Newton law:

1
dV

∂
(

ρ ∂u
∂t dV

)
∂t

= ρ
∂2u
∂t2 +

∂u
∂t

(
∂ρ

∂t
+ ρ

∂e
∂t

)
=

∂

∂x
τ̃t (12)
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where τ̃t is the Terzaghi effective stress tensor [23]. This tensor in the linear poroelastic theory for
isotropic materials in 1D approximation is defined as:

τ̃t = − (p− σRTc) + (λ + 2µ)e,

i.e.,

τ̃t = − (p− σRTc) + (λ + 2µ)
∂u
∂x

, (13)

where λ + 2µ is the elastic modulus with Lame constants λ and µ, and the effective pressure is given by
the difference between hydrostatic pressure p and osmotic pressure σRTc with the reflection coefficient
of PEM for the solute, σ, and constant RT (gas constant times temperature). Note, that this tensor is
also used in mathematical modeling of solid tumor growth [24,25].

Now, one needs to specify the fluxes across the PEM. In the fluid phase, we have:

j̄VF = j̄rel
V + θF

∂u
∂t

(14)

j̄rel
V = −k

(
∂p
∂x
− σRT

∂c
∂x

,
)

(15)

where j̄rel
V is the volumetric fluid flux relative to the matrix calculated according to the extended Darcy’s

law with hydraulic conductivity k. Volumetric matrix flux is given by the equation:

j̄VM = θM
∂u
∂t

(16)

In contrast to the fluxes defined above, the solute flux through the PEM includes diffusive and
convective terms as follows:

j̄S = j̄rel
S + θFc

∂u
∂t

, (17)

and j̄rel
S is the solute flux relative to the matrix defined as:

j̄rel
S = −D

∂cS
∂x

+ Scj̄rel
VF, (18)

where D stands for solute diffusivity in PEM and S is the sieving coefficient of the solute in the
PEM. The fluxes arising in Equations (1) and (3) must be related to the above defined fluxes.
Therefore, the relations:

j̄V = j̄VF + j̄VM = −k
(

∂p
∂x
− σRT

∂c
∂x

)
+

∂u
∂t

(19)

j̄ρ = ρF j̄VF + ρM j̄VM = −k
(

∂p
∂x
− σRT

∂c
∂x

)
ρF + ρ

∂u
∂t

(20)

should take place.
Thus, Equations (6)–(9) and (11)– (12) form a system of six partial differential equations for seven

variables θF, θM, ρF, ρM, u, c and p; however, there is the known relation for the two phase PEM:

θF + θM = 1,

so that the number of governing equations is correct. Notably, Equation (1) is the sum of
Equations (4) and (5) and therefore cannot be considered as independent from the other equations.
Similarly, Equation (3) is a linear combination of Equations (8) and (9). Moreover, assuming that we
are dealing with an incompressible fluid, we may set ρF = ρ0

F = const; therefore, Equation (8) can be
skipped because one coincides with Equation (4).

All the notations arising in the above formulae are explained in Table 1.



Symmetry 2020, 12, 396 5 of 15

Table 1. Description of the symbols used in the formulae above.

Symbol Description

dV an infinitesimal volume element of PEM
u deformation vector
e dilatation
j̄V volumetric flow across PEM
ρ mass density
jρ mass flux across PEM
θF fractional volume of fluid phase F
θM fractional volume of matrix phase M
j̄VF fluid flux in phase F
j̄VM fluid flux in phase M
ρF mass density of fluid phase F
ρM mass density of matrix phase M
c solute concentration in PEM
j̄S solute flux across the PEM
τ̃t Terzaghi effective stress tensor
p mechanical pressure in PEM
σ reflection coefficient of PEM

RT gas constant times temperature
λ + 2µ elastic modulus with Lame constants λ and µ

j̄rel
V volumetric flux relative to the matrix

j̄rel
S solute flux relative to the matrix
k hydraulic conductivity
D solute diffusivity in PEM

S = 1− σ sieving coefficient of solute in PEM

In order to write the governing equations in the explicit form, one needs to substitute the
expressions for flows from (14)–(18) into Equations (6)–(9), and (11) and the Terzaghi effective stress
tensor into (12). Taking into account the equalities (10) and θM = 1− θF, we prefer to exclude the
unknown functions ρM and θM for the solid phase (matrix) in order to have a simpler equation
corresponding to (1), instead of (7). Making the relevant calculations, we arrive at the nonlinear system
consisting of five PDEs for unknown functions θF, ρ, u, c, and p:

2utx = k(pxx − σ1cxx), (21)

ρutt + ρtut + ρututx = (λ + 2µ)uxx − (px − σ1cx), (22)

ρt + ρxut = k(ρ0
F − ρ)(pxx − σ1cxx), (23)

θFt + θFxut = k (1− θF) (pxx − σ1cxx), (24)

(cθF)t + (cθF)x ut + 2cθFutx = kS
(

c(px − σ1cx)
)

x
+ Dcxx, (25)

where σ1 = σRT and ρF = ρ0
F are positive constant and the lower subscripts t and x denote

differentiation with respect to these variables.
In order to complete the mathematical model for PEM with variable volume, one needs to add

the corresponding boundary conditions and initial profiles. Examples of such conditions are given in
Section 3.

3. Lie Symmetry and Some Exact Solutions

Let us introduce the function that corresponds to the effective pressure:

p∗x = px − σ1cx ≡ px − σRTcx (26)

in order to simplify the PDE system (21)–(25). Then, the governing equations take the form:
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2utx = kp∗xx,

ρutt + ρtut + ρututx = λ∗uxx − p∗x,

ρt + ρxut = k(ρ0
F − ρ)p∗xx,

θFt + θFxut = k (1− θF) p∗xx,

(cθF)t + (cθF)x ut + 2cθFutx = kS (cp∗x)x + Dcxx,

(27)

where u(t, x), ρ(t, x), p∗(t, x), θF(t, x), and c(t, x) are unknown functions, while k > 0, λ∗ = λ+ 2µ >

0, 0 ≤ S ≤ 1, and D ≥ 0 are some known constants.
Firstly, we find steady-state solutions of the system (27) using the well-known ansatz:

u = u(x), ρ = ρ(x), p∗ = p∗(x), θF = θF(x), c = c(x). (28)

Substituting the ansatz (28) into system (27), one obtains the reduced system of ODEs:

λ∗u′′ − p∗′ = 0, p∗′′ = 0, Dc′′ + kSp∗′c′ = 0. (29)

(two equations in (27) simply vanish because p∗′′ = 0). The general solution of this system can be
easily derived, and one has the form:

u = ax2 + bx + u0, ρ = ρ(x), p∗ = p∗0 + 2λ∗ax, θF = θF(x),

c =


c0 + c1e−κx, κ = 2λ∗akS

D , SD 6= 0,
c0 + c1x, S = 0, D 6= 0,
c(x), S = D = 0,

(30)

where a, b, u0, p∗0 , c0, and c1 are arbitrary constants, while θF(x) and ρ(x) are arbitrary smooth functions.
Note that the subcase S 6= 0, D = 0 leads to the constant pressure p∗ or/and concentration c what is
rather inrealistic, hence one is skipped hereafter.

Now, we want to find the exact solutions of the system (27) with a more complicated mathematical
structure with respect to the space and time variables. It should be stressed that the system (27) is
essentially nonlinear (only the first equation is linear). At the present time, there is no existing general
theory for the integration of nonlinear PDEs; hence, the construction of particular exact solutions
for these equations remains an important mathematical problem. To the best of our knowledge,
this problem was highlighted for the first time in the well-known book [26] (see also the discussion
in the recent monograph [22]). Finding exact solutions that have a clear interpretation for the given
process is of fundamental importance. Modern group-theoretical methods, which are based on the
classical Lie method, are the most powerful methods to construct exact solutions of nonlinear PDEs.
Here, we apply the Lie method, which is described in many excellent textbooks and monographs (see
the most recent of those [20–22]). Therefore, applying Lie’s algorithm for finding Lie symmetries of the
PDE system (27), we obtain the following statement.

Theorem 1. System (27) with non-zero parameters k, λ∗, S, and D is invariant under a infinity-dimensional
Lie algebra generated by the Lie symmetries:

∂t, ∂x, ∂u, x∂u, c∂c, g(t)∂p∗ , (31)

where g(t) is an arbitrary smooth function (hereafter, the notations ∂z ≡ ∂
∂z , (z = t, x, u, c, p∗) are used).

Proof of Theorem 1. It is based on the infinitesimal criteria of invariance, which was formulated by
S. Lie in his pioneering works. In the case of a system of PDEs of arbitrary order, this criteria can be
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found, e.g., in [20] (see Section 1.2.5 therein). Note that the system (27) consists of five PDEs of the
second order.

Therefore, a linear first-order operator of the form:

Y = ξ0∂t + ξ1∂x + η1∂u + η2∂ρ + η3∂p∗ + η4∂θF + η5∂c (32)

(here, the coefficients ξ0, ξ1, and ηi, i = 1, . . . , 5 are to-be-determined functions of independent and
dependent variables) is a Lie symmetry (operator of Lie’s invariance, point symmetry) of the system
(27), provided the following five equalities take place:

Y(2)
(

2utx − kp∗xx

)
= 0,

Y(2)
(

ρutt + ρtut + ρututx − λ∗uxx + p∗x
)
= 0,

Y(2)
(

ρt + ρxut − k(ρ0
F − ρ)p∗xx

)
= 0,

Y(2)
(

θFt + θFxut − k (1− θF) p∗xx

)
= 0,

Y(2)
(
(cθF)t + (cθF)x ut + 2cθFutx − kS (cp∗x)x − Dcxx

)
= 0,

(33)

for each solution
(

u(t, x), ρ(t, x), p∗(t, x), θF(t, x), c(t, x)
)

of the PDE system (27). Here, Y(2) is
the second-order prolongation of the operator Y, which is again the linear first-order operator with
coefficients defined by the well-known formulae via the first- and second-order derivatives of unknown
coefficients ξ0, ξ1, and ηi (see, e.g., [20], Section 1.2.1).

Substituting the expression for Y(2) into (33) and having done long calculations (see many
examples in the books cited above), one arrives at a linear system of PDEs (the so-called system
of determining equations) to find the functions ξ0, ξ1, and ηi. Because the system of determining
equations is always linear and overdetermined (the number of PDEs is larger than that of unknown
functions) and all the coefficients of the system (27) are some constants (no variable coefficients),
the functions ξ0, ξ1, and ηi can be derived by straightforward calculations. Moreover, one may use the
computer algebra packages such as Maple and Mathematica for such purposes. We used Maple 18,
and the result is presented in (31).

Having such a wide Lie algebra of invariance (31), one has several possibilities to reduce the
system (27) to systems of ODEs in order to find exact solutions with different structures. For example,
using the Lie symmetry ∂t, one immediately identifies the ansatz (28) leading to steady-state solutions.

Now, we are looking for exact solutions with more complicated structures. First of all, we remind
the reader that any linear combination of Lie symmetry operators from (31) is also a Lie symmetry
of (27) [20–22]. The most general combination involves all the operators (31) and reads as:

Y = α0∂t + α1∂x + (α2 + α3x)∂u + α4g(t)∂p∗ + α5c∂c (34)

where αi, i = 0 . . . 5 are arbitrary parameters.
The operator Y (34) contains six arbitrary parameters αi, i = 0 . . . 5 and the function g(t); hence, a

non-trivial problem arises regarding how to classify inequivalent linear combinations of these operators
leading to inequivalent exact solutions of the system (27). Solving this problem lies beyond this paper,
but here, we consider some important particular cases, which allow finding non-trivial exact solutions
of the system (27).

Let us take the following particular case of (34):

Y = ∂t + α∂x + βx∂u + g(t)∂p∗
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where α = α1 6= 0 and β = α3 are arbitrary, while other αi are equal to zero or one. According to the
standard procedure, we construct the so-called invariance surface conditions for unknown functions
u, p∗, c, ρ, and θF by acting the operator Y on these functions (see, e.g., pages 13–14 in [22] for details).
For example, one easily obtains the equation:

ut + αux = βx

in the case of the function u(t, x). Obviously, it is the linear first-order PDE with the general solution:

u =
βx2

2α
+ f1(x− αt), (35)

where f1 is an arbitrary function. In the case of the pressure p∗, one arrives at the equation:

p∗t + αp∗x = g(t),

which is also integrable and has the general solution:

p∗ = p0(t) + f3(x− αt), (36)

where f3 is again an arbitrary function, while p0(t) =
∫

g(t)dt. Making analogous calculations for the
function c, ρ, and θF and using (35) and (36), we obtain:

u = βx2

2α + f1(ω), ρ = f2(ω), p∗ = p0(t) + f3(ω),
θF = f4(ω), c = f5(ω),

(37)

where ω = x− αt and fi, i = 1, . . . , 6 are arbitrary functions.
Now, we consider (37) as an ansatz (a special kind of substitution) for the system (27), which

involves six unknown functions fi, i = 1, . . . , 6.

Remark 1. In the case β = p0(t) = 0, this ansatz reduces to the well-known substitution for finding plane
wave solutions (in particular, traveling fronts).

Substituting the ansatz (37) into each equation of (27) and making the relevant calculations, we
arrive at the ODE system:

2α f ′′1 = −k f ′′3 ,(
f2 f ′1

)′
+ 1

2 f2
(

f ′21
)′

= λ∗β

α3 + λ∗

α2 f ′′1 −
f ′3
α2 ,(

1 + f ′1
)

f ′2 = − kρ
α f ′′3 + k

α f2 f ′′3 ,(
1 + f ′1

)
f ′4 = k

α ( f4 − 1) f ′′3 ,(
1 + f ′1

)
( f4 f5)

′ + 2 f4 f5 f ′′1 = − 1
α

(
kS ( f5 f ′3)

′ + D f ′′5
)

,

(38)

which is called the reduced system (for the system (27)).
Now, we obtain from the first and fourth equations of the system (38)”

f3 = −2α

k
f1 + γ31ω + γ30, f4 = 1 +

γ41(
1 + f ′1

)2 (39)

(hereafter, γij are arbitrary constants).
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There is a special case f ′1 = −1, when the system (38) is integrable with the general solution:

f1 = −ω + γ10, f2 = 1
α3 (αγ31 − λ∗β)ω + γ20,

f3 = γ31ω + γ30, f4 = f (ω),

f5 =


γ50 + γ51 exp

(
− kSγ31

D ω
)

, SD 6= 0,

γ50 + γ51ω, S = 0, D 6= 0,
f5(ω), S = D = 0.

(40)

Thus, substituting the functions from (40) into (37), we obtain the multiparameter family of exact
solutions of the system (27) with SD 6= 0:

u = βx2

2α − x + αt + γ10,
ρ = 1

α3 (αγ31 − λ∗β) (x− αt) + γ20,
p∗ = p0(t) + γ31(x− αt) + γ30,
θF = f (x− αt),

c = γ51 exp
(
− kSγ31

D (x− αt)
)
+ γ50,

(41)

Remark 2. The parameters γ10 and γ30 can be skipped in the formulae (41) without losing generality.

Now, we return to the general case f ′1 6= −1. Integrating the third equation of the system (38),
we obtain:

f2 = ρ0
F +

γ20(
1 + f ′1

)2 . (42)

To complete the integrating of the system (38), one needs to solve the nonlinear second-order
ODE: (

f2 f ′1
)′
+

1
2

f2

(
f ′21

)′
=

λ∗β

α3 +
λ∗

α2 f ′′1 −
f ′3
α2 , (43)

i.e.,

− λ∗

α2 f ′′1 +

((
ρ0

F +
γ20(

1 + f ′1
)2

)
f ′1

)′
+

1
2

(
ρ0

F +
γ20(

1 + f ′1
)2

)(
f ′21

)′
=

λ∗β

α3 −
γ31

α2 (44)

with respect to the function f1. The nonlinear ODE (43) is integrable; however, its general solution
essentially depends on the parameters arising in the equation. In the most general case, its general
solution cannot be identified explicitly. However, setting γ20 = 0, we easily obtain:

f1 (ω) = u0 +
ν0 − 1

ν0
ω± 1

3γν2
0

(
2ν0γ(ω0 −ω)

)3/2

(45)

if γ = β
α −

γ31
λ∗ 6= 0 and ν0 = ρ0

F
α2

λ∗ 6= 0. Here, u0 and ω0 are arbitrary constants. The special case γ = 0
is examined below.

Finally, the linear second-order ODE:

(
1 + f ′1

)
( f4 f5)

′ + 2 f4 f5 f ′′1 = − 1
α

(
kS
(

f5 f ′3
)′
+ D f ′′5

)
(46)

with respect to the function f5, where the functions f3 and f4 have the form (39), should be solved.
Because ODE (46) is an equation with variable coefficients (see (45)) and cannot be solved in terms of
elementary functions, we consider here only a particular solution.
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It can be noted that the linear function:

f1 = ν1ω + ν0,

(here, ν1 6= 0 and ν0 are arbitrary constants) is a particular solution of ODE (44) with γ31 = λ∗β
α . In this

case, ODE (46) can be solved; hence, we obtain

f5 =


γ50 + γ51 exp

(
− κ

Dα ω
)

, κD 6= 0,
γ50 + γ51ω, κ = 0, D 6= 0,
f5(ω), κ = D = 0,

(47)

where κ = kλ∗βS + γ50α2(1 + ν1).
Thus, substituting the functions fi, i = 1, ..., 5 obtained above into the ansatz (37), we arrive at the

exact solution:
u = βx2

2α + ν1(x− αt) + ν0,
ρ = γ20,
p∗ = p0(t) +

λ∗β
α (x− αt) + γ30,

θF = γ40,

c = γ51 exp
(
− κ

Dα (x− αt)
)
+ γ50,

(48)

of the nonlinear system in question in the case of κD 6= 0.

4. Some Examples and Their Interpretation

Here, we present non-trivial examples in order to show the applicability of the exact
solutions obtained.

Let us consider the transport of fluid induced by mechanical and osmotic pressure with the given
pressures at the surfaces: at x = x0, mechanical pressure p(x0) = p0, and the concentration that
induces osmotic pressure is c(x0) = c0. At x = (LS + x0), let us assume that p(LS + x0) = pex and
concentration c(LS + x0) = cex. Let as denote by p∗ effective pressure acting at the PEM layer such
that p∗(x) = p(x)− σRTc(x), p∗(x0) = p∗0 = p0 − σRTc0, and p∗(LS) = p∗ex = pex − σRTcex. Let us
look for steady-state solutions. These solutions are found in Section 3 and presented in (29)).

Obviously, the steady-state solution (30) for u, p∗, and c can be rewritten as:

u(x) =
a1

2λ∗
(x− x0)

2 + a2 (x− x0) + u0, (49)

p∗(x) = a1(x− x0) + p∗0 , (50)

c(x) = c0 + a3

(
exp

[
− kSa1

D
(x− x0)

]
− 1
)

, (51)

where x0 is a reference point of the surface and a1, a2, and a3 are some constants, and we assume that
DS 6= 0.

We may set x0 = 0 without losing generality. Let us consider a layer of PEM in the steady-state
with the surface at x = 0 fixed in space and the other side at x = L > 0 being in equilibrium with
the same values of hydrostatic and osmotic pressures at both sides. Let us consider the steady-state
obtained after a change of the pressure and concentration at one side of the PEM layer. This results
in the deformation of the PEM layer and a displacement of its surfaces to a new positions x = 0
and x = LS > 0 at the new steady-state. Let us assume that outside of both permeable boundaries,
there are fluids with constant pressure and concentration. The exemplary arrangement of the forces
considered in this example is presented in Figure 1 with X denoting the initial position in the PEM
layer i.e., before displacement, and x denotes the position in PEM after displacement.
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Figure 1. Exemplary arrangement of forces that are described in the model.

Therefore, in this case, the boundary conditions are as follows:

p(0) = p0, p(LS) = pex, c(0) = c0, c(LS) = cex, u(0) = u0 = 0

We assume the following natural physical conditions:
(i) continuity of fluid pressure at both boundaries;
(ii) continuity of total stress across the free boundary at x = LS; hence, the boundary condition

(see Equation (13)) takes place:

− p∗ex + λ∗
∂u
∂x

(Ls) = P, (52)

where P is a given constant.
Obviously, Formula (50) and the boundary condition p∗(LS) = p∗ex give:

a1 =
∆p∗

LS
, (53)

where ∆p∗ = p∗ex − p∗0 = ∆p − σRT∆c and ∆p = pex − p0, ∆c = cex − c0 To find a2, we use the
boundary condition (52) and the above expression for a1; thus:

a2 = −∆p∗

λ∗
+

P + p∗ex
λ∗

=
P + p∗0

λ∗
. (54)

Moreover, it comes from (51) and the boundary condition for x = LS that:

a3 =
∆c

exp
[
− kS∆p∗

D

]
− 1

, (55)

To express the constant LS by the width of PEM L in the initial state when the pressure at both
sides of the layer was equal to p0, let us use Formula (49). Taking into account that the displacement
u = LS − L (this follows from the definition of the displacement; see Formula (2)) and Formulas (53)
and (54), we arrive at the expression:

LS − L =
1

2LS

∆p∗

λ∗
LS

2 +
P + p∗0

λ∗
LS =

P + p∗av
λ∗

LS.
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Thus, we find:

LS = L/
(

1− P + p∗av
λ∗

)
, p∗av =

p∗ex + p∗0
2

. (56)

It should be noted that LS should be positive and within the range LDRY ≤ LS < ∞, where LDRY

corresponds to a dry length of the PEM. Note, that if P + p∗av > 0, then P+p∗av
λ∗ < 1, and therefore,

p∗av < λ∗ − P. If P + p∗av ≤ 0, we get that 1− P+p∗av
λ∗ < L

LDRY
, which gives that p∗av > λ∗(1− L

LDRY
)− P.

Therefore, the presented example in the case of a linear and constant stress tensor is valid for relatively
small p∗av if compared to λ∗.

Finally, one may present the displacement as:

u(x) =
∆p∗

2LSλ∗
x2 +

P + p∗0
λ∗

x (57)

the pressure as:

p∗(x) =
∆p∗

LS
x + p∗0 . (58)

and concentration as:

c(x) = c0 + a3

(
exp

[
− kS∆p∗

DLS
x
]
− 1
)

, (59)

with LS and a3 given by (56) and (55), respectively, and p(x) = p∗(x) + σRTc(x).
Note, that Formulas (57)–(59) are expressed as a function of x, which describes the position within the
PEM layer after displacement. In order to express the above formulas as a function of initial position
X, one has to substitute u(x) = x− X into Equation (57). This would lead to the following expression:

x =
−2(1−

√
1 + αX)

α(1− p∗0
λ∗ )

, (60)

where α = −2∆p∗(λ∗−p∗av)
L(λ∗−p∗0)

2 . Formulas for the functions p∗(X) and c(X) can be calculated by substituting

(60) into formulae (58), (59), and p(X) = p∗(X) + σRTc(X).
Now, one may consider the further particular subcases.
(1) For example, set the boundary condition P = p∗ex as was used in [27]. Such a condition

means that the total stress on the boundary surface is the same from both its sides, but in the opposite
directions, and the fluid outside the material is at rest. Another option is to set P = 0, which means
that the poroelastic medium is fully relaxed, i.e., the effective stress disappears.

(2) If both boundaries can move freely and the pressure and concentration at both boundaries
are equal to pex and cex, then it is convenient to consider PEM of the initial width 2L and the middle
point at x = 0; this point is fixed in space by the symmetry of the problem, and there is no fluid flow
across this surface. The steady-state of the system is described for each part of the membrane (to
the left and right side of the middle point) separately by the above equations for a1 = 0 and a3 = 0,
i.e., the effective pressure p∗(x) = p∗ex (as well as p(x) = pex and c(x) = cex) is constant across PEM,
and there is no flow across the tissue. Then, Formula (57) reduces to the form:

u(x) =
P + p∗ex

λ∗
x

and the width of PEM compared to the width for pex = 0 changes according to Formula (56) with
p∗av = p∗ex = p∗0 .

(3) The boundary at x = 0 is impermeable for the fluid. Then, the boundary condition at x = 0 is
∂p
∂x = 0 and ∂c

∂x = 0, i.e., a1 = 0 and a3 = 0. Therefore, the effective pressure is again constant and equal
to p∗ex, and the dilatation u and the size of the tissue are described as above in (2).
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In Figure 2, we present the profiles of the layer position, x, effective pressure, p∗, solute
concentration, c, and hydrostatic pressure, p, at the new steady-state as functions of the initial state
position, X, for the two values of the elastic modulus that corresponds to the healthy tissue (interstitium)
and the tumor tissue with λ∗ = 100 and λ∗ = 700, respectively, and u(x) = x− X. Let us assume that
the initial steady-state was obtained for p∗0 = 0, c0 = 0, p0 = 0, p∗ex = 0, cex = 0, pex = 0 and consider
two cases that lead to the new steady-state: change in the hydrostatic pressure, i.e., pex = 30, that
results in p∗ex = 30 mmHg and a change in the osmotic pressure, caused by the increase of solute
concentration cex = 30/σ/RT mmol/L, that results in p∗ex = −30 mmHg.
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Figure 2. The profiles of the layer position, x, effective pressure, p∗, solute concentration, c,
and hydrostatic pressure, p, at the new steady-state as functions of the initial state position, X, for
elastic modulus λ∗ = 100 and λ∗ = 700 and p∗ex = 30 and p∗ex = −30 mmHg.

5. Conclusions

In this paper, a mathematical model for the poroelastic materials (especially for biological tissue)
with variable volume was developed under some assumptions. The model was built using the known
conservation laws applied to poroelastic material, consisting of liquid and solid phases. As a result, a
nonlinear system of governing equations was derived, which together with the relevant initial and
boundary conditions formed the mathematical model.

The governing equations of the model were examined using the classical Lie method. It was shown
that these equations admit a nontrivial Lie symmetry. Using the symmetries derived, some families of
exact solutions, in particular steady-state (stationary) and plane wave solutions, were constructed.

Finally, steady-state solutions with correctly specified coefficients were studied in order to show
that such solutions describe the volume change, i.e., displacement, in 1D space. Moreover, the relevant
plots for some realistic data were constructed in order to show how the effective pressure p∗, hydrostatic
pressure p, and the solute concentration, c, depend on the displacement, X.

Work is in progress to generalize the model on the case of higher dimensionality and to find exact
solutions describing the volume change in time.
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