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Abstract: This paper is concerned with the problem of finite-time control for nonlinear systems with
time-varying delay and exogenous disturbance, which can be represented by a Takagi–Sugeno (T-S)
fuzzy model. First, by constructing a novel augmented Lyapunov–Krasovskii functional involving
several symmetric positive definite matrices, a new delay-dependent finite-time boundedness
criterion is established for the considered T-S fuzzy time-delay system by employing an improved
reciprocally convex combination inequality. Then, a memory state feedback controller is designed to
guarantee the finite-time boundness of the closed-loop T-S fuzzy time-delay system, which is in the
framework of linear matrix inequalities (LMIs). Finally, the effectiveness and merits of the proposed
results are shown by a numerical example.

Keywords: finite-time boundedness; T-S fuzzy systems; time-varying delay; Lyapunov–Krasovskii
functional (LKF)

1. Introduction

During the past several decades, the control problem of nonlinear systems has attracted
considerable attention [1–6] as various practical systems are essentially nonlinear and cannot be
easily simplified into a linear model. Up to now, many fuzzy logic control approaches have been
proposed for the control problem of nonlinear systems. In particular, the Takagi–Sugeno (T-S) fuzzy
model, developed in [7], is an important tool to approximate complex nonlinear systems by combining
the fruitful linear system theory and the flexible fuzzy logic approach. Additionally, time-delay is
unavoidably encountered in many dynamic systems, such as power systems, network control systems,
neural networks, etc., which often results in chaos, oscillation, and even instability. Therefore, the study
of T-S fuzzy time-delay systems has become more and more popular in recent years. In particular,
many significant and interesting results on stability analysis and the control synthesis of T-S fuzzy
time-delay systems have been developed in the literature [8–15].

Much attention has been paid to obtain the delay-dependent stability criteria for T-S fuzzy
time-delay systems over the last few decades. It is well-known that the conservativeness of the stability
criteria mainly has two sources: the choice of the Lyapunov–Krasovskii functional (LKF) and the
estimation of its derivative. It is of great importance to construct an appropriate Lyapunov–Krasovskii
functional for deriving less conservative stability conditions. In recent years, delay-partitioning
Lyapunov–Krasovskii functionals and augmented Lyapunov–Krasovskii functionals have been
developed to reduce the conservativeness of simple LKFs and have attracted growing attention.
A delay-partitioning approach was applied to study the Lyapunov asymptotic stability of T-S fuzzy
time-delay systems and some less conservative stability conditions were obtained in [16–18].
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In [19], the authors introduced the triple-integral terms into the LKFs to derive the stability
conditions for T-S fuzzy time-delay systems. In addition, various approaches have been proposed
to estimate the derivatives of LKFs when dealing with stability analysis and control synthesis
of time-delay systems, such as the free weighting matrix approach [20], Jensen inequality
approach [21], Wirtinger-based integral inequality approach [10], reciprocally convex combination
approach [22], auxiliary function-based inequality approach [23], and free-matrix-based integral
inequality approach [24].

By applying the Wirtinger-based integral inequality approach and reciprocally convex
combination approach, Zeng et al. [18] derived some less conservative stability criteria for uncertain
T-S fuzzy systems with time-varying delays. An improved free weighting matrix approach was
employed to obtain several new delay-dependent stability conditions in terms of the linear matrix
inequalities for T-S fuzzy systems with time-varying delays in [25]. In [26], the authors investigated
Lyapunov asymptotic stability analysis problems for T-S fuzzy time-delay systems by constructing
a new augmented Lyapunov–Krasovskii functional and employing the free-matrix-based integral
inequality approach.

The aforementioned results regarding the stability analysis of T-S fuzzy systems mainly focus on
Lyapunov asymptotic stability, in which the states of systems converge asymptotically to equilibrium
in an infinite time interval. However, in many practical engineering applications, the main concern
may be the transient performances of the system trajectory during a specified finite-time interval.
Unlike Lyapunov asymptotic stability, finite-time stability, introduced in [27], is another stability
concept, which requires that the states of dynamical systems do not exceed a certain threshold in
a fixed finite-time interval with a given bound for the initial condition. Up to now, the problem of
finite-time stability, finite-time boundedness, and finite-time stabilization of dynamical systems has
attracted growing attention, and many significant results have been reported in [28–32].

Several results on finite-time stability and stabilization of T-S fuzzy systems can also be found.
The problem of finite-time stability and finite-time stabilization for T-S fuzzy time-delay systems was
investigated in [28]. Sakthivel et al. [31] studied finite-time dissipative based fault-tolerant control
problem for a class of T-S fuzzy systems with a constant delay. However, to the best of our knowledge,
until now there have been few results on finite-time boundedness and finite-time stabilization of
T-S fuzzy systems with time-varying delay and exogenous disturbance. Furthermore, it should be
mentioned that most of the existing works on finite-time control for T-S fuzzy time-delay systems are
fairly conservative. Motivated by the above discussions, in this paper, we deal with the problem of
finite-time control for a class of nonlinear systems with time-varying delay and exogenous disturbance,
which can be described by a T-S fuzzy model.

The main contributions of this paper are summarized as follows. First, a new augmented
Lyapunov–Krasovskii functional is constructed, which makes full use of the information about
time-varying delay. Based on the proposed Lyapunov–Krasovskii functional, a less conservative
finite-time boundedness condition is obtained for T-S fuzzy time-delay systems by utilizing an
improved reciprocally convex combination technique. Second, based on parallel distributed
compensation schemes, a memory state feedback controller is designed to finite-time stabilize the T-S
fuzzy time-delay system, which can be derived by solving a series of linear matrix inequalities (LMIs).
Finally, a numerical example is given to illustrate the advantages and validity of the developed results.

The rest of this paper is organized as follows: the problem statement is given in Section 2.
The main results on the finite-time boundedness and finite-time stabilization of nonlinear systems with
time-varying delay and exogenous disturbance are presented in Section 3. In Section 4, a numerical
example is proposed to show the effectiveness of the developed results. Finally, our conclusions are
drawn in Section 5.

Notations: Throughout this paper, Rn denotes the n-dimensional Euclidean space; Rn×m stands
for the set of all n×m real matrices; the superscripts T and −1 denote the transpose and inverse of a
matrix, respectively; I and 0 represent the identity matrix and zero matrix, respectively, with compatible
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dimensions; diag{· · · } denotes a block-diagonal matrix; the notation P > 0(≥ 0) means that the matrix
P is real symmetric and positive definite (semi-positive definite); ∗ stands for the symmetric terms in a
symmetric matrix; for any matrix X ∈ Rn×n, Sym{X} is defined as X + XT .

2. Problem Formulation

Consider a class of nonlinear systems with time-varying delay and exogenous disturbance, which
can be represented by the following T-S fuzzy model:

Plant Rule i:
IF ξ1(t) is Ni1, · · · , and ξp(t) is Nip,
THEN {

ẋ(t) = Aix(t) + Adix(t− d(t)) + Biu(t) + Giω(t)
x(t) = φ(t), t ∈ [−h, 0]

where i ∈ {1, 2, . . . , r}, r is the number of IF-THEN rules, x(t) ∈ Rn is the state vector, u(t) ∈ Rp

is the control input, ω(t) ∈ Rl is the exogenous disturbance, which satisfies
∫ Tf

0 ω(t)Tω(t)dt ≤ δ;
δ ≥ 0 is a given scalar. Ai, Adi, Bi, and Gi are known constant matrices with appropriate dimensions.
ξ1(t), ξ2(t), . . . , ξp(t) are premise variables, Ni1, Ni2, . . . , Nip are fuzzy sets. The time delay d(t) is a
time-varying function that satisfies

0 ≤ d(t) ≤ h and µ1 ≤ ḋ(t) ≤ µ2 (1)

where h > 0 and µ1, µ2 are constants. The initial condition φ(t) is a continuous vector-valued function
for all t ∈ [−h, 0].

Let ξ(t) = [ξ1(t), ξ2(t), . . . , ξp(t)]T , by employing a singleton fuzzifier, product inference, and
center-average defuzzifer, the input–output form of the above T-S fuzzy time-delay system can be
represented by

ẋ(t) =
r

∑
i=1

ρi(ξ(t)){Aix(t) + Adix(t− d(t)) + Biu(t) + Giω(t)} (2)

where ρi(ξ(t)) = θi(ξ(t))
∑r

i=1 θi(ξ(t))
, θi(ξ(t)) = ∏

p
j=1 Nij(ξ j(t)), Nij(ξ j(t)) is the grade of membership of

ξ j(t) in the fuzzy set Nij. We note that θi(ξ(t)) ≥ 0, ∑r
i=1 θi(ξ(t)) > 0 for all t, and we can obtain

ρi(ξ(t)) ≥ 0, ∑r
i=1 ρi(ξ(t)) = 1.

In this paper, for simplicity, we denote S(t) = ∑r
i=1 ρi(ξ(t))Si for any matrix Si. Therefore, the T-S

fuzzy time-delay system (2) can be rewritten as follows:

ẋ(t) = A(t)x(t) + Ad(t)x(t− d(t)) + B(t)u(t) + G(t)ω(t). (3)

Now, the definition of finite-time boundedness (FTB) for the T-S fuzzy time-delay system (3) with
u(t) ≡ 0 is given as follows:

Definition 1 ([31]). The T-S fuzzy time-delay system (3) with u(t) ≡ 0 is said to be finite-time bounded with
respect to (c1, c2, Tf , R, δ, h), where 0 < c1 < c2, Tf > 0, R ∈Rn×n and R > 0, if

sup−h≤θ≤0{xT(θ)Rx(θ), ẋT(θ)Rẋ(θ)} ≤ c1 ⇒ xT(t)Rx(t) < c2,

∀t ∈ [0, Tf ], ∀ω(t) :
∫ Tf

0 ω(t)Tω(t)dt ≤ δ.
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Based on the parallel distributed compensation scheme, we aim to design the following memory
state feedback controller, which can guarantee the corresponding closed-loop T-S fuzzy time-delay
system finite-time bounded:

u(t) = K1(t)x(t) + K2(t)x(t− d(t)), (4)

where K1(t) = ∑r
j=1 ρj(ξ(t))K1j, K2(t) = ∑r

j=1 ρj(ξ(t))K2j, and K1j, K2j, j = 1, 2, . . . , r are the state
feedback gain matrices to be determined.

By substituting (4) into (3), the corresponding closed-loop T-S fuzzy time-delay system can be
represented as follows:

ẋ(t) = [A(t) + B(t)K1(t)]x(t) + [Ad(t) + B(t)K2(t)]x(t− d(t)) + G(t)ω(t). (5)

In order to derive the main results in this paper, the following lemma, i.e., the improved
reciprocally convex combination inequality approach will be utilized in finite-time boundedness
analysis and controller design of T-S fuzzy time-delay systems.

Lemma 1 ([33]). Let R1, R2 ∈ Rm×m be real symmetric positive definite matrices, v1, v2 ∈ Rm and a scalar
α ∈ (0, 1). Then for any matrices Y1, Y2 ∈ Rm×m, the following inequality holds

1
α

vT
1 R1v1 +

1
1− α

vT
2 R2v2

≥vT
1 [R1 + (1− α)(R1 −Y1R−1

2 YT
1 )]v1

+ vT
2 [R2 + α(R2 −YT

2 R−1
1 Y2)]v2

+ 2vT
1 [αY1 + (1− α)Y2]v2.

3. Main Results

3.1. Finite-Time Boundedness Analysis

In this subsection, our aim is to develop a new delay-dependent finite-time boundedness criterion
for T-S fuzzy systems with time-varying delay and norm-bounded disturbance. Before deriving
the main results, the nomenclature simplifying the representations for matrices and vectors is given
as follows:

ε1(t) =


x(t)

x(t− d(t))
x(t− h)

ẋ(t− d(t))
ẋ(t− h)

 , ε2(t) =



1
d(t)

∫ t
t−d(t) x(s)ds

1
h−d(t)

∫ t−d(t)
t−h x(s)ds

1
d2(t)

∫ t
t−d(t)

∫ t
θ x(s)dsdθ

1
(h−d(t))2

∫ t−d(t)
t−h

∫ t−d(t)
θ x(s)dsdθ

1
h

∫ t
t−h x(s)ds

1
h2

∫ t
t−h

∫ t
θ x(s)dsdθ

ω(t)


,

ε(t) =
[
εT

1 (t) εT
2 (t)

]T
, ε̃(t) =

[
εT

1 (t) εT
2 (t) ẋT(t)

]T
,

ei =
[
0n×(i−1)n In 0n×(12−i)n

]
, i = 1, 2, · · · , 12,
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ẽi =
[
0n×(i−1)n In 0n×(13−i)n

]
, i = 1, 2, · · · , 13.

Theorem 1. For given scalars h > 0 and µ1, µ2, the T-S fuzzy system (3) with u(t) = 0 and a time-varying
delay d(t) satisfying (1) is finite-time bounded with respect to (c1, c2, Tf , R, δ, h), if there exists a scalar β > 0,
symmetric positive definite matrices P ∈ R5n×5n, S1, S2 ∈ R2n×2n, Q1, Q2 ∈ R3n×3n, W, Z, U ∈ Rn×n,
and any matrices Y1, Y2 ∈ R3n×3n, such that the following conditions hold:

(
Σ1i(0, µ1) ΛT

1 Y1

YT
1 Λ1 −W0

)
< 0, i = 1, 2, . . . , r (6)

(
Σ1i(0, µ2) ΛT

1 Y1

YT
1 Λ1 −W0

)
< 0, i = 1, 2, . . . , r (7)

(
Σ1i(h, µ1) ΛT

2 YT
2

Y2Λ2 −W0

)
< 0, i = 1, 2, . . . , r (8)

(
Σ1i(h, µ2) ΛT

2 YT
2

Y2Λ2 −W0

)
< 0, i = 1, 2, . . . , r (9)

c1Π + λ37δ < λ36c2e−βTf , (10)

where

P =


P11 P12 P13 P14 P15

∗ P22 P23 P24 P25

∗ ∗ P33 P34 P35

∗ ∗ ∗ P44 P45

∗ ∗ ∗ ∗ P55

 , Q1 =

 Q11 Q12 Q13

∗ Q22 Q23

∗ ∗ Q33

 , Q2 =

 q11 q12 q13

∗ q22 q23

∗ ∗ q33

 ,

S1 =

(
S11 S12

∗ S22

)
, S2 =

(
s11 s12

∗ s22

)
,

Σ1i(d(t), ḋ(t)) =Sym{ΞT
1 PΞ2i}+ ḋ(t)ΞT

3 S1Ξ3 − ḋ(t)ΞT
4 S2Ξ4 + Sym(ΞT

3 S1Ξ5i + ΞT
4 S2Ξ6i)

+ Sym(ΞT
7 Q1Ξ8i) + ΞT

9iQ1Ξ9i − (1− ḋ(t))ΞT
10Q1Ξ10 + Sym(ΞT

11Q2Ξ12)

+ (1− ḋ(t))ΞT
13Q2Ξ13 − ΞT

14Q2Ξ14 + h2eT
siWesi +

h4

4
eT

siZesi − h2ΞT
15ZΞ15

− 2h2ΞT
16ZΞ16 − eT

12Ue12 + (α− 2)ΛT
1 W0Λ1 − (α + 1)ΛT

2 W0Λ2

− Sym{ΛT
1 [αY1 + (1− α)Y2]Λ2},

α =
d(t)

h
, W0 = diag{W, 3W, 5W}, Ξ1 =

[
eT

1 eT
2 eT

3 d(t)eT
6 (h− d(t))eT

7

]T
,

Ξ2i = [eT
si (1− ḋ(t))eT

4 eT
5 eT

1 − (1− ḋ(t))eT
2 (1− ḋ(t))eT

2 − eT
3 ]

T ,

Ξ3 =
[
eT

1 eT
6

]T
, Ξ4 =

[
eT

1 eT
7

]T
, Ξ5i =

[
d(t)eT

si − ḋ(t)eT
6 + eT

1 − (1− ḋ(t))eT
2

]T
,
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Ξ6i =
[
(h− d(t))eT

si ḋ(t)eT
7 + (1− ḋ(t))eT

2 − eT
3

]T
, Ξ7 =

[
d(t)eT

6 eT
1 − eT

2 d(t)(eT
1 − eT

6 )
]T

,

Ξ8i =
[
0 0 eT

si

]T
, Ξ9i =

[
eT

1 eT
si 0

]T
, Ξ10 =

[
eT

2 eT
4 eT

1 − eT
2

]T
,

Ξ11 = [(h− d(t))eT
7 eT

2 − eT
3 (h− d(t))(eT

2 − eT
7 )]

T , Ξ12 =
[
0 0 (1− ḋ(t))eT

4

]T
,

Ξ13 =
[
eT

2 eT
4 0

]T
, Ξ14 =

[
eT

3 eT
5 eT

2 − eT
3

]T
, Ξ15 = e1 − e10, Ξ16 = e1 + 2e10 − 6e11,

Λ1 = [eT
1 − eT

2 eT
1 + eT

2 − 2eT
6 eT

1 − eT
2 + 6eT

6 − 12eT
8 ]

T ,

Λ2 = [eT
2 − eT

3 eT
2 + eT

3 − 2eT
7 eT

2 − eT
3 + 6eT

7 − 12eT
9 ]

T ,

esi = Aie1 + Adie2 + Gie12,

Π = λ1 + λ2 + λ3 + h2(λ4 + λ5 + λ26 + λ27 + λ32 + λ33) + 2(λ6 + λ7 + λ10)

+2h(λ8 + λ9 + λ11 + λ12 + λ13 + λ14 + λ18 + λ21 + λ25 + λ31) + 2h2λ15

+h(λ16 + λ17 + λ19 + λ20 + λ22 + λ23 + λ28 + λ29) +
h3

3
(λ24 + λ30)

+
h3

2
λ34 +

h5

12
λ35,

λ1 = λmax(P̄11), λ2 = λmax(P̄22), λ3 = λmax(P̄33), λ4 = λmax(P̄44), λ5 = λmax(P̄55),

λ6 = λmax(P̄12), λ7 = λmax(P̄13), λ8 = λmax(P̄14), λ9 = λmax(P̄15), λ10 = λmax(P̄23),

λ11 = λmax(P̄24), λ12 = λmax(P̄25), λ13 = λmax(P̄34), λ14 = λmax(P̄35), λ15 = λmax(P̄45),

λ16 = λmax(S̄11), λ17 = λmax(S̄22), λ18 = λmax(S̄12), λ19 = λmax(s̄11), λ20 = λmax(s̄22),

λ21 = λmax(s̄12), λ22 = λmax(Q̄11), λ23 = λmax(Q̄22), λ24 = λmax(Q̄33), λ25 = λmax(Q̄12),

λ26 = λmax(Q̄13), λ27 = λmax(Q̄23), λ28 = λmax(q̄11), λ29 = λmax(q̄22), λ30 = λmax(q̄33),

λ31 = λmax(q̄12), λ32 = λmax(q̄13), λ33 = λmax(q̄23), λ34 = λmax(W̄), λ35 = λmax(Z̄),

λ36 = λmin(P̄11), λ37 = λmax(U),

P̄1j = R−
1
2 P1jR−

1
2 , j = 1, 2, 3, 4, 5, P̄2j = R−

1
2 P2jR−

1
2 , j = 2, 3, 4, 5,

P̄3j = R−
1
2 P3jR−

1
2 , j = 3, 4, 5, P̄4j = R−

1
2 P4jR−

1
2 , j = 4, 5, P̄55 = R−

1
2 P55R−

1
2 ,

S̄1j = R−
1
2 S1jR−

1
2 , j = 1, 2, S̄22 = R−

1
2 S22R−

1
2 , s̄1j = R−

1
2 s1jR−

1
2 , j = 1, 2, s̄22 = R−

1
2 s22R−

1
2 ,

Q̄1j = R−
1
2 Q1jR−

1
2 , j = 1, 2, 3, Q̄2j = R−

1
2 Q2jR−

1
2 , j = 2, 3, Q̄33 = R−

1
2 Q33R−

1
2 ,

q̄1j = R−
1
2 q1jR−

1
2 , j = 1, 2, 3, q̄2j = R−

1
2 q2jR−

1
2 , j = 2, 3, q̄33 = R−

1
2 q33R−

1
2 ,

W̄ = R−
1
2 WR−

1
2 , Z̄ = R−

1
2 ZR−

1
2 .

Proof. We construct the following Lyapunov–Krasovskii functional candidate for the T-S fuzzy
time-delay system (3):

V(x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t)) + V5(x(t)) + V6(x(t)), (11)

where

V1(x(t)) = ηT
1 (t)Pη1(t),

V2(x(t)) = d(t)ηT
2 (t)S1η2(t) + (h− d(t))ηT

3 (t)S2η3(t),

V3(x(t)) =
∫ t

t−d(t) ηT
4 (s)Q1η4(s)ds,

V4(x(t)) =
∫ t−d(t)

t−h ηT
5 (s)Q2η5(s)ds,
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V5(x(t)) = h
∫ t

t−h

∫ t
θ ẋT(s)Wẋ(s)dsdθ,

V6(x(t)) = h2

2

∫ t
t−h

∫ t
σ

∫ t
θ ẋT(s)Zẋ(s)dsdθdσ,

and
η1(t) = [xT(t) xT(t− d(t)) xT(t− h)

∫ t
t−d(t) xT(s)ds

∫ t−d(t)
t−h xT(s)ds]T ,

η2(t) = [xT(t) 1
d(t)

∫ t
t−d(t) xT(s)ds]T ,

η3(t) = [xT(t) 1
h−d(t)

∫ t−d(t)
t−h xT(s)ds]T ,

η4(s) = [xT(s) ẋT(s)
∫ t

s ẋT(θ)dθ]T ,

η5(s) = [xT(s) ẋT(s)
∫ t−d(t)

s ẋT(θ)dθ]T .

Then, the time derivatives of Vi(x(t))(i = 1, 2, 3, 4, 5, 6) along the trajectory of the T-S fuzzy system (3)
are obtained as follows:

V̇1(x(t)) = 2


x(t)

x(t− d(t))
x(t− h)∫ t

t−d(t) x(s)ds∫ t−d(t)
t−h x(s)ds



T

P


ẋ(t)

(1− ḋ(t))ẋ(t− d(t))
ẋ(t− h)

x(t)− (1− ḋ(t))x(t− d(t))
(1− ḋ(t))x(t− d(t))− x(t− h)


=

r

∑
i=1

ρi(ξ(t))εT(t)[Sym(ΞT
1 PΞ2i)]ε(t).

(12)

Similarly, we can also obtain

V̇2(x(t)) =
r

∑
i=1

ρi(ξ(t))εT(t)[ḋ(t)ΞT
3 S1Ξ3 − ḋ(t)ΞT

4 S2Ξ4 + Sym(ΞT
3 S1Ξ5i + ΞT

4 S2Ξ6i)]ε(t), (13)

V̇3(x(t)) =
r

∑
i=1

ρi(ξ(t))εT(t)[Sym(ΞT
7 Q1Ξ8i) + ΞT

9iQ1Ξ9i − (1− ḋ(t))ΞT
10Q1Ξ10]ε(t), (14)

V̇4(x(t)) =
r

∑
i=1

ρi(ξ(t))εT(t)[Sym(ΞT
11Q2Ξ12) + (1− ḋ(t))ΞT

13Q2Ξ13 − ΞT
14Q2Ξ14]ε(t), (15)

V̇5(x(t)) = h2 ẋT(t)Wẋ(t)− h
∫ t

t−h
ẋT(s)Wẋ(s)ds

=
r

∑
i=1

ρi(ξ(t))εT(t)(h2eT
siWesi)ε(t)

− h
∫ t

t−h
ẋT(s)Wẋ(s)ds,

(16)

V̇6(x(t)) =
h4

4
ẋT(t)Zẋ(t)− h2

2

∫ t

t−h

∫ t

θ
ẋT(s)Zẋ(s)dsdθ

=
r

∑
i=1

ρi(ξ(t))εT(t)(
h4

4
eT

siZesi)ε(t)

− h2

2

∫ t

t−h

∫ t

θ
ẋT(s)Zẋ(s)dsdθ.

(17)

Now, we split−h
∫ t

t−h ẋT(s)Wẋ(s)ds into two integrals, i.e.,−h
∫ t

t−h ẋT(s)Wẋ(s)ds =−h
∫ t

t−d(t) ẋT(s)Wẋ(s)ds
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−h
∫ t−d(t)

t−h ẋT(s)Wẋ(s)ds. Then, utilizing the integral inequality (24) in Lemma 5.1 of [23] for each of
them yields

−h
∫ t

t−d(t)
ẋT(s)Wẋ(s)ds ≤ − h

d(t)
εT(t)ΛT

1 W0Λ1ε(t) (18)

and

−h
∫ t−d(t)

t−h
ẋT(s)Wẋ(s)ds ≤ − h

h− d(t)
εT(t)ΛT

2 W0Λ2ε(t), (19)

where W0 = diag{W, 3W, 5W}, Λ1 =

 e1 − e2

e1 + e2 − 2e6

e1 − e2 + 6e6 − 12e8

 and Λ2 =

 e2 − e3

e2 + e3 − 2e7

e2 − e3 + 6e7 − 12e9

.

According to Lemma 1, let α = d(t)
h , R1 = R2 = W0, v1 = Λ1ε(t), v2 = Λ2ε(t), from

inequalities (18) and (19), then we can obtain

− h
∫ t

t−d(t)
ẋT(s)Wẋ(s)ds− h

∫ t−d(t)

t−h
ẋT(s)Wẋ(s)ds

≤εT(t)[(α− 2)ΛT
1 W0Λ1 − (α + 1)ΛT

2 W0Λ2 − Sym{ΛT
1 [αY1 + (1− α)Y2]Λ2}

+ (1− α)ΛT
1 Y1W−1

0 YT
1 Λ1 + αΛT

2 YT
2 W−1

0 Y2Λ2]ε(t).

(20)

Applying the integral inequality (25) in Lemma 5.1 of [23] to the double integral
− h2

2

∫ t
t−h

∫ t
θ ẋT(s)Zẋ(s)dsdθ in inequality (17) leads to

−h2

2

∫ t

t−h

∫ t

θ
ẋT(s)Zẋ(s)dsdθ ≤ ε(t)T(−h2ΞT

15ZΞ15 − 2h2ΞT
16ZΞ16)ε(t), (21)

where Ξ15 = e1 − e10, Ξ16 = e1 + 2e10 − 6e11.
Notice that ∑r

i=1 ρi(ξ(t)) = 1, and we can derive the following result from (12)–(17), (20) and (21):

V̇(x(t)) ≤
r

∑
i=1

ρi(ξ(t))εT(t)Σi(d(t), ḋ(t))ε(t) + ωT(t)Uω(t), (22)

where Σi(d(t), ḋ(t)) = Σ1i(d(t), ḋ(t)) + Σ2(d(t)),

Σ1i(d(t), ḋ(t)) =Sym{ΞT
1 PΞ2i}+ ḋ(t)ΞT

3 S1Ξ3 − ḋ(t)ΞT
4 S2Ξ4 + Sym(ΞT

3 S1Ξ5i + ΞT
4 S2Ξ6i)

+ Sym(ΞT
7 Q1Ξ8i) + ΞT

9iQ1Ξ9i − (1− ḋ(t))ΞT
10Q1Ξ10 + Sym(ΞT

11Q2Ξ12)

+ (1− ḋ(t))ΞT
13Q2Ξ13 − ΞT

14Q2Ξ14 + h2eT
siWesi +

h4

4
eT

siZesi − h2ΞT
15ZΞ15

− 2h2ΞT
16ZΞ16 − eT

12Ue12 + (α− 2)ΛT
1 W0Λ1 − (α + 1)ΛT

2 W0Λ2

− Sym{ΛT
1 [αY1 + (1− α)Y2]Λ2},

Σ2(d(t)) = (1− α)ΛT
1 Y1W−1

0 YT
1 Λ1 + αΛT

2 YT
2 W−1

0 Y2Λ2.

Assuming Σi(d(t), ḋ(t)) < 0 for i = 1, 2, · · · , r, we have

V̇(x(t)) < βV(x(t)) + ωT(t)Uω(t), (23)

where β > 0 is a constant.
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However, Σi(d(t), ḋ(t)) depends on the time-varying delay d(t) and its derivative ḋ(t). Therefore,
Σi(d(t), ḋ(t)) < 0 cannot be solved directly by applying an LMI tool. Noting that Σi(d(t), ḋ(t)) is a
linear function of d(t) and ḋ(t), it is obvious that Σi(d(t), ḋ(t)) < 0 can be satisfied if the following
inequalities (24)–(27) hold,

Σi(0, µ1) < 0, (24)

Σi(0, µ2) < 0, (25)

Σi(h, µ1) < 0, (26)

Σi(h, µ2) < 0. (27)

According to Schur complement lemma, the inequalities (24)–(27) are equivalent to inequalities (6)–(9),
respectively. Thus, the inequalities (6)–(9) can ensure Σi(d(t), ḋ(t)) < 0 holds. Furthermore, the
inequalities (6)–(9) can also guarantee that the inequality (23) holds.

Multiplying (23) by e−βt, we can obtain

e−βtV̇(x(t))− βe−βtV(x(t)) < e−βtωT(t)Uω(t),

i.e.,

d
dt
(e−βtV(x(t))) < e−βtωT(t)Uω(t). (28)

Integrating (28) from 0 to t with t ∈ [0, Tf ], we have

e−βtV(x(t))−V(x(0)) <
∫ t

0
e−βsωT(s)Uω(s)ds.

Noting that β > 0, we can derive

V(x(t)) < eβtV(x(0)) + eβt
∫ t

0
e−βsωT(s)Uω(s)ds

≤ eβtV(x(0)) + eβtλmax(U)
∫ t

0
ωT(s)ω(s)ds.

Therefore, we have

V(x(t)) < eβTf [V(x(0)) + λmax(U)δ] . (29)

In addition, it can be easily obtained that

V(x(t)) ≥ xT(t)P11x(t) = xT(t)R
1
2 P̄11R

1
2 x(t) ≥ λmin(P̄11)xT(t)Rx(t) = λ36xT(t)Rx(t),

V(x(0)) = ηT
1 (0)Pη1(0) + d(0)ηT

2 (0)S1η2(0) + (h− d(0))ηT
3 (0)S2η3(0) +

∫ 0

−d(0)
ηT

4 (s)Q1η4(s)ds

+
∫ −d(0)

−h
ηT

5 (s)Q2η5(s)ds + h
∫ 0

−h

∫ 0

θ
ẋT(s)Wẋ(s)dsdθ +

h2

2

∫ 0

−h

∫ 0

σ

∫ 0

θ
ẋT(s)Zẋ(s)dsdθdσ

≤ [λmax(P̄11) + λmax(P̄22) + λmax(P̄33) + h2λmax(P̄44) + h2λmax(P̄55) + 2λmax(P̄12)

+ 2λmax(P̄13) + 2hλmax(P̄14) + 2hλmax(P̄15) + 2λmax(P̄23) + 2hλmax(P̄24) + 2hλmax(P̄25)
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+ 2hλmax(P̄34) + 2hλmax(P̄35) + 2h2λmax(P̄45) + hλmax(S̄11) + hλmax(S̄22) + 2hλmax(S̄12)

+ hλmax(s̄11) + hλmax(s̄22) + 2hλmax(s̄12) + hλmax(Q̄11) + hλmax(Q̄22) +
h3

3
λmax(Q̄33)

+ 2hλmax(Q̄12) + h2λmax(Q̄13) + h2λmax(Q̄23) + hλmax(q̄11) + hλmax(q̄22) +
h3

3
λmax(q̄33)

+ 2hλmax(q̄12) + h2λmax(q̄13) + h2λmax(q̄23) +
h3

2
λmax(W̄) +

h5

12
λmax(Z̄)]

× sup−h≤θ≤0{xT(θ)Rx(θ), ẋT(θ)Rẋ(θ)}

≤[λ1 + λ2 + λ3 + h2(λ4 + λ5 + λ26 + λ27 + λ32 + λ33) + 2(λ6 + λ7 + λ10) + 2h(λ8 + λ9

+ λ11 + λ12 + λ13 + λ14 + λ18 + λ21 + λ25 + λ31) + 2h2λ15 + h(λ16 + λ17 + λ19 + λ20

+ λ22 + λ23 + λ28 + λ29) +
h3

3
(λ24 + λ30) +

h3

2
λ34 +

h5

12
λ35]c1.

We substitute the above two inequalities into (29) and assume the inequality (10) holds, we can
easily derive that xT(t)Rx(t) ≤ c2 for all t ∈ [0, Tf ]. Thus, the proof is completed.

Remark 1. The novel augmented Lyapunov–Krasovskii functional constructed in (11) takes advantage of
information regarding the time-varying delay, which can make the obtained new finite-time boundedness
condition less conservative. In addition, the Lyapunov–Krasovskii functional (11) is more general due
to the introduction of several augmented vectors and two delay-product-type terms, such as η1(t),
η4(s), η5(s), d(t)ηT

2 (t)S1η2(t) and (h − d(t))ηT
3 (t)S2η3(t). When several subblocks of the partitioned

matrices P, S1, S2, Q1, Q2 are zero matrices with appropriate dimensions and W = 0, Z = 0,
the augmented Lyapunov–Krasovskii functional V(x(t)) reduces to the simpler Lyapunov functions in some
literature [24,26,34]. Additionally, to the best of our knowledge, the chosen Lyapunov–Krasovskii functional
is a simple LKF instead of an augmented LKF in most existing studies regarding finite-time boundedness
of dynamical systems, which is because the augmented LKF increases the difficulty of deriving finite-time
boundedness criteria in terms of LMIs. However, this problem has been successfully solved in Theorem 1.

Remark 2. In Theorem 1, the improved reciprocally convex combination inequality and the auxiliary
function-based integral inequalities are utilized to estimate the bound of the derivative of the constructed
LKF. The auxiliary function-based integral inequalities are more general, as they can reduce to some other
integral inequalities by appropriately choosing the auxiliary functions [23], such as the Jensen inequality,
Bessel–Legendre inequality and Wirtinger-based integral inequality. In addition, the improved reciprocally
convex combination inequality can provide a maximum lower bound with less slack matrix variables for several
reciprocally convex combinations, which plays a critical role in reducing the conservativeness and the calculation
complexity of the delay-dependent finite-time boundedness conditions for T-S fuzzy systems with time-varying
delay and norm-bounded disturbance.

3.2. Controller Design

Based on the delay-dependent finite-time boundedness criterion proposed in Theorem 1,
we develop a memory state feedback controller to ensure the finite-time boundness of the resulting
closed-loop T-S fuzzy time-delay system in the following theorem, which can be derived by solving a
feasibility problem in terms of the linear matrix inequalities.

Theorem 2. For the given scalars h > 0, µ1, and µ2, the T-S fuzzy system (5) with a time-varying delay d(t)
satisfying (1) is finite-time bounded with respect to (c1, c2, Tf , R, δ, h), if there exist scalars β > 0, γ, symmetric
positive definite matrices P̃ ∈ R5n×5n, S̃1, S̃2 ∈ R2n×2n, Q̃1, Q̃2 ∈ R3n×3n, W̃, Z̃, Ũ ∈ Rn×n, any matrices
Ỹ1, Ỹ2 ∈ R3n×3n, X ∈ Rn×n and L1j, L2j ∈ Rp×n(j = 1, 2, . . . , r), such that the following conditions hold:
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(
Σ̃ii(0, µ1) Λ̃T

1 Ỹ1

ỸT
1 Λ̃1 −W̃0

)
< 0, i = 1, 2, . . . , r (30)

(
Σ̃ii(0, µ2) Λ̃T

1 Ỹ1

ỸT
1 Λ̃1 −W̃0

)
< 0, i = 1, 2, . . . , r (31)

(
Σ̃ii(h, µ1) Λ̃T

2 ỸT
2

Ỹ2Λ̃2 −W̃0

)
< 0, i = 1, 2, . . . , r (32)

(
Σ̃ii(h, µ2) Λ̃T

2 ỸT
2

Ỹ2Λ̃2 −W̃0

)
< 0, i = 1, 2, . . . , r (33)

(
Ψ̃ij(0, µ1) Λ̃T

1 Ỹ1

ỸT
1 Λ̃1

1−r
r W̃0

)
< 0, i, j = 1, 2, . . . , r, i 6= j (34)

(
Ψ̃ij(0, µ2) Λ̃T

1 Ỹ1

ỸT
1 Λ̃1

1−r
r W̃0

)
< 0, i, j = 1, 2, . . . , r, i 6= j (35)

(
Ψ̃ij(h, µ1) Λ̃T

2 ỸT
2

Ỹ2Λ̃2
1−r

r W̃0

)
< 0, i, j = 1, 2, . . . , r, i 6= j (36)

(
Ψ̃ij(h, µ2) Λ̃T

2 ỸT
2

Ỹ2Λ̃2
1−r

r W̃0

)
< 0, i, j = 1, 2, . . . , r, i 6= j (37)

c1Π̃ + λ̃37δ < λ̃36c2e−βTf , (38)

where

P̃ =


P̃11 P̃12 P̃13 P̃14 P̃15

∗ P̃22 P̃23 P̃24 P̃25

∗ ∗ P̃33 P̃34 P̃35

∗ ∗ ∗ P̃44 P̃45

∗ ∗ ∗ ∗ P̃55

 , Q̃1 =

 Q̃11 Q̃12 Q̃13

∗ Q̃22 Q̃23

∗ ∗ Q̃33

 , Q̃2 =

 q̃11 q̃12 q̃13

∗ q̃22 q̃23

∗ ∗ q̃33

 ,

S̃1 =

(
S̃11 S̃12

∗ S̃22

)
, S̃2 =

(
s̃11 s̃12

∗ s̃22

)
,

Σ̃ij(d(t), ḋ(t)) =Sym{Ξ̃T
1 P̃Ξ̃2}+ ḋ(t)Ξ̃T

3 S̃1Ξ̃3 − ḋ(t)Ξ̃T
4 S̃2Ξ̃4 + Sym(Ξ̃T

3 S̃1Ξ̃5 + Ξ̃T
4 S̃2Ξ̃6)

+ Sym(Ξ̃T
7 Q̃1Ξ̃8) + Ξ̃T

9 Q̃1Ξ̃9 − (1− ḋ(t))Ξ̃T
10Q̃1Ξ̃10 + Sym(Ξ̃T

11Q̃2Ξ̃12)
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+ (1− ḋ(t))Ξ̃T
13Q̃2Ξ̃13 − Ξ̃T

14Q̃2Ξ̃14 + h2 ẽT
13W̃ẽ13 +

h4

4
ẽT

13Z̃ẽ13 − h2Ξ̃T
15Z̃Ξ̃15

− 2h2Ξ̃T
16Z̃Ξ̃16 − ẽT

12Ũẽ12 + (α− 2)Λ̃T
1 W̃0Λ̃1 − (α + 1)Λ̃T

2 W̃0Λ̃2

− Sym{Λ̃T
1 [αỸ1 + (1− α)Ỹ2]Λ̃2}+ Sym{(ẽT

1 + γẽT
13)[AiXẽ1 + BiL1j ẽ1

+ AdiXẽ2 + BiL2j ẽ2 + GiXẽ12 − Xẽ13]},

Ψ̃ij(d(t), ḋ(t)) =
1

r− 1
Σ̃ii(d(t), ḋ(t)) +

1
2

Σ̃ij(d(t), ḋ(t)) +
1
2

Σ̃ji(d(t), ḋ(t)),

α =
d(t)

h
, W̃0 = diag{W̃, 3W̃, 5W̃}, Ξ̃1 =

[
ẽT

1 ẽT
2 ẽT

3 d(t)ẽT
6 (h− d(t))ẽT

7

]T
,

Ξ̃2 = [ẽT
13 (1− ḋ(t))ẽT

4 ẽT
5 ẽT

1 − (1− ḋ(t))ẽT
2 (1− ḋ(t))ẽT

2 − ẽT
3 ]

T ,

Ξ̃3 =
[
ẽT

1 ẽT
6

]T
, Ξ̃4 =

[
ẽT

1 ẽT
7

]T
, Ξ̃5 =

[
d(t)ẽT

13 − ḋ(t)ẽT
6 + ẽT

1 − (1− ḋ(t))ẽT
2

]T
,

Ξ̃6 =
[
(h− d(t))ẽT

13 ḋ(t)ẽT
7 + (1− ḋ(t))ẽT

2 − ẽT
3

]T
, Ξ̃7 =

[
d(t)ẽT

6 ẽT
1 − ẽT

2 d(t)(ẽT
1 − ẽT

6 )
]T

,

Ξ̃8 =
[
0 0 ẽT

13

]T
, Ξ̃9 =

[
ẽT

1 ẽT
13 0

]T
, Ξ̃10 =

[
ẽT

2 ẽT
4 ẽT

1 − ẽT
2

]T
,

Ξ̃11 = [(h− d(t))ẽT
7 ẽT

2 − ẽT
3 (h− d(t))(ẽT

2 − ẽT
7 )]

T , Ξ̃12 =
[
0 0 (1− ḋ(t))ẽT

4

]T
,

Ξ̃13 =
[
ẽT

2 ẽT
4 0

]T
, Ξ̃14 =

[
ẽT

3 ẽT
5 ẽT

2 − ẽT
3

]T
, Ξ̃15 = ẽ1 − ẽ10, Ξ̃16 = ẽ1 + 2ẽ10 − 6ẽ11,

Λ̃1 = [ẽT
1 − ẽT

2 ẽT
1 + ẽT

2 − 2ẽT
6 ẽT

1 − ẽT
2 + 6ẽT

6 − 12ẽT
8 ]

T ,

Λ̃2 = [ẽT
2 − ẽT

3 ẽT
2 + ẽT

3 − 2ẽT
7 ẽT

2 − ẽT
3 + 6ẽT

7 − 12ẽT
9 ]

T ,

Π̃ = λ̃1 + λ̃2 + λ̃3 + h2(λ̃4 + λ̃5 + λ̃26 + λ̃27 + λ̃32 + λ̃33) + 2(λ̃6 + λ̃7 + λ̃10)

+2h(λ̃8 + λ̃9 + λ̃11 + λ̃12 + λ̃13 + λ̃14 + λ̃18 + λ̃21 + λ̃25 + λ̃31) + 2h2λ̃15

+h(λ̃16 + λ̃17 + λ̃19 + λ̃20 + λ̃22 + λ̃23 + λ̃28 + λ̃29) +
h3

3
(λ̃24 + λ̃30)

+
h3

2
λ̃34 +

h5

12
λ̃35,

λ̃1 = λmax(P̂11), λ̃2 = λmax(P̂22), λ̃3 = λmax(P̂33), λ̃4 = λmax(P̂44), λ̃5 = λmax(P̂55),

λ̃6 = λmax(P̂12), λ̃7 = λmax(P̂13), λ̃8 = λmax(P̂14), λ̃9 = λmax(P̂15), λ̃10 = λmax(P̂23),

λ̃11 = λmax(P̂24), λ̃12 = λmax(P̂25), λ̃13 = λmax(P̂34), λ̃14 = λmax(P̂35), λ̃15 = λmax(P̂45),

λ̃16 = λmax(Ŝ11), λ̃17 = λmax(Ŝ22), λ̃18 = λmax(Ŝ12), λ̃19 = λmax(ŝ11), λ̃20 = λmax(ŝ22),

λ̃21 = λmax(ŝ12), λ̃22 = λmax(Q̂11), λ̃23 = λmax(Q̂22), λ̃24 = λmax(Q̂33), λ̃25 = λmax(Q̂12),

λ̃26 = λmax(Q̂13), λ̃27 = λmax(Q̂23), λ̃28 = λmax(q̂11), λ̃29 = λmax(q̂22), λ̃30 = λmax(q̂33),

λ̃31 = λmax(q̂12), λ̃32 = λmax(q̂13), λ̃33 = λmax(q̂23), λ̃34 = λmax(Ŵ), λ̃35 = λmax(Ẑ),

λ̃36 = λmin(P̂11), λ̃37 = λmax(Û),

P̂1j = R−
1
2 XP̃1jX−1R−

1
2 , j = 1, 2, 3, 4, 5, P̂2j = R−

1
2 XP̃2jX−1R−

1
2 , j = 2, 3, 4, 5,

P̂3j = R−
1
2 XP̃3jX−1R−

1
2 , j = 3, 4, 5, P̂4j = R−

1
2 XP̃4jX−1R−

1
2 , j = 4, 5, P̂55 = R−

1
2 XP̃55X−1R−

1
2 ,

Ŝ1j = R−
1
2 XS̃1jX−1R−

1
2 , j = 1, 2, Ŝ22 = R−

1
2 XS̃22X−1R−

1
2 , ŝ1j = R−

1
2 Xs̃1jX−1R−

1
2 , j = 1, 2,

ŝ22 = R−
1
2 Xs̃22X−1R−

1
2 , Q̂1j = R−

1
2 XQ̃1jX−1R−

1
2 , j = 1, 2, 3, Q̂2j = R−

1
2 XQ̃2jX−1R−

1
2 , j = 2, 3,

Q̂33 = R−
1
2 XQ̃33X−1R−

1
2 , q̂1j = R−

1
2 Xq̃1jX−1R−

1
2 , j = 1, 2, 3, q̂2j = R−

1
2 Xq̃2jX−1R−

1
2 , j = 2, 3,

q̂33 = R−
1
2 Xq̃33X−1R−

1
2 , Ŵ = R−

1
2 XW̃X−1R−

1
2 , Ẑ = R−

1
2 XZ̃X−1R−

1
2 , Û = XŨX−1.
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In this case, the memory state feedback controller gains are given by K1j = L1jX−1, K2j = L2jX−1, j =

1, 2, . . . , r.

Proof. Choose the Lyapunov–Krasovskii functional candidate (11) again for the resulting closed-loop
T-S fuzzy time-delay system (5).

From the proof of Theorem 1, we obtain the inequality (22):

V̇(x(t)) ≤
r

∑
i=1

ρi(ξ(t))εT(t)Σi(d(t), ḋ(t))ε(t) + ωT(t)Uω(t).

Furthermore, it can be easily obtained that

V̇(x(t)) ≤ ε̃T(t)Σ̂(d(t), ḋ(t))ε̃(t) + ωT(t)Uω(t), (39)

where Σ̂(d(t), ḋ(t)) = Σ̂1(d(t), ḋ(t)) + Σ̂2(d(t)),

Σ̂1(d(t), ḋ(t)) =Sym{Ξ̃T
1 PΞ̃2}+ ḋ(t)Ξ̃T

3 S1Ξ̃3 − ḋ(t)Ξ̃T
4 S2Ξ̃4 + Sym(Ξ̃T

3 S1Ξ̃5 + Ξ̃T
4 S2Ξ̃6)

+ Sym(Ξ̃T
7 Q1Ξ̃8) + Ξ̃T

9 Q1Ξ̃9 − (1− ḋ(t))Ξ̃T
10Q1Ξ̃10 + Sym(Ξ̃T

11Q2Ξ̃12)

+ (1− ḋ(t))Ξ̃T
13Q2Ξ̃13 − Ξ̃T

14Q2Ξ̃14 + h2 ẽT
13Wẽ13 +

h4

4
ẽT

13Zẽ13 − h2Ξ̃T
15ZΞ̃15

− 2h2Ξ̃T
16ZΞ̃16 − ẽT

12Uẽ12 + (α− 2)Λ̃T
1 W0Λ̃1 − (α + 1)Λ̃T

2 W0Λ̃2

− Sym{Λ̃T
1 [αY1 + (1− α)Y2]Λ̃2},

Σ̂2(d(t)) = (1− α)Λ̃T
1 Y1W−1

0 YT
1 Λ̃1 + αΛ̃T

2 YT
2 W−1

0 Y2Λ̃2.

According to the inequality (39), we have V̇(x(t)) < βV(x(t)) + ωT(t)Uω(t), if the following
inequality holds,

ε̃T(t)Σ̂(d(t), ḋ(t))ε̃(t) < 0. (40)

Then, similar to Theorem 1, if the inequalities (10) and (40) hold, we can easily obtain that the
closed-loop T-S fuzzy time-delay system (5) is finite-time bounded with respect to (c1, c2, Tf , R, δ, h).

Now, the closed-loop T-S fuzzy time-delay system (5) can be rewritten as:

Θ(t)ε̃(t) = 0, (41)

where Θ(t) = [A(t) + B(t)K1(t) Ad(t) + B(t)K2(t) 0 0 0 0 0 0 0 0 0 G(t) − I].
According to Finsler lemma, from (40) and (41), it can be obtained that the closed-loop T-S fuzzy

time-delay system (5) is finite-time bounded with respect to (c1, c2, Tf , R, δ, h) if there exists a matrix
Φ ∈ R13n×n, such that:

Σ̂(d(t), ḋ(t)) + Sym{ΦΘ(t)} < 0. (42)

Let Φ = [X−1 0 0 0 0 0 0 0 0 0 0 0 γX−1]T , where γ is an arbitrary scalar. Then, we
have the inequality (42) is equivalent to

Σ̂(d(t), ḋ(t)) + Sym{(ẽT
1 X−T + γẽT

13X−T)[A(t)ẽ1 + B(t)K1(t)ẽ1

+ Ad(t)ẽ2 + B(t)K2(t)ẽ2 + G(t)ẽ12 − ẽ13]} < 0.
(43)

Let Γ1 = diag(X, X, X, X, X, X, X, X, X, X, X, X, X). Multiplying (43) left by ΓT
1 and right by Γ1, we can

obtain the equivalent condition of (43) as follows:
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ΓT
1 Σ̂(d(t), ḋ(t))Γ1 + Sym{(ẽT

1 + γẽT
13)[A(t)Xẽ1 + B(t)K1(t)Xẽ1

+ Ad(t)Xẽ2 + B(t)K2(t)Xẽ2 + G(t)Xẽ12 − Xẽ13]} < 0.

Let Γ2 = diag(X, X, X, X, X), Γ3 = diag(X, X), Γ4 = diag(X, X, X), P̃ = ΓT
2 PΓ2, S̃1 = ΓT

3 S1Γ3, S̃2 =

ΓT
3 S2Γ3, Q̃1 = ΓT

4 Q1Γ4, Q̃2 = ΓT
4 Q2Γ4, W̃ = XTWX, Z̃ = XTZX, Ũ = XTUX, W̃0 = ΓT

4 W0Γ4,
Ỹ1 = ΓT

4 Y1Γ4, Ỹ2 = ΓT
4 Y2Γ4. It can be easily derived that ΓT

1 Σ̂(d(t), ḋ(t))Γ1 = Σ̃1(d(t), ḋ(t)) + Σ̃2(d(t)),
where

Σ̃1(d(t), ḋ(t)) =Sym{Ξ̃T
1 P̃Ξ̃2}+ ḋ(t)Ξ̃T

3 S̃1Ξ̃3 − ḋ(t)Ξ̃T
4 S̃2Ξ̃4 + Sym(Ξ̃T

3 S̃1Ξ̃5 + Ξ̃T
4 S̃2Ξ̃6)

+ Sym(Ξ̃T
7 Q̃1Ξ̃8) + Ξ̃T

9 Q̃1Ξ̃9 − (1− ḋ(t))Ξ̃T
10Q̃1Ξ̃10 + Sym(Ξ̃T

11Q̃2Ξ̃12)

+ (1− ḋ(t))Ξ̃T
13Q̃2Ξ̃13 − Ξ̃T

14Q̃2Ξ̃14 + h2 ẽT
13W̃ẽ13 +

h4

4
ẽT

13Z̃ẽ13 − h2Ξ̃T
15Z̃Ξ̃15

− 2h2Ξ̃T
16Z̃Ξ̃16 − ẽT

12Ũẽ12 + (α− 2)Λ̃T
1 W̃0Λ̃1 − (α + 1)Λ̃T

2 W̃0Λ̃2

− Sym{Λ̃T
1 [αỸ1 + (1− α)Ỹ2]Λ̃2},

Σ̃2(d(t)) = (1− α)Λ̃T
1 Ỹ1W̃−1

0 ỸT
1 Λ̃1 + αΛ̃T

2 ỸT
2 W̃−1

0 Ỹ2Λ̃2.

Now, let L1j = K1jX, L2j = K2jX, j = 1, 2, . . . , r, then we can easily derive that (42) is equivalent
to Σ̃ij(d(t), ḋ(t)) + Σ̃2(d(t)) < 0, where Σ̃ij(d(t), ḋ(t)) = Σ̃1(d(t), ḋ(t)) + Sym{(ẽT

1 + γẽT
13)[AiXẽ1 +

BiL1j ẽ1 + AdiXẽ2 + BiL2j ẽ2 + GiXẽ12 − Xẽ13]}, i, j = 1, 2, . . . , r. Additionally, it is clear that the
condition (38) is the equivalent condition of (10).

According to the Schur complement lemma and Lemma 2 in [35], similar to the proof of Theorem 1,
the conditions (30)–(38) can ensure the closed-loop T-S fuzzy time-delay system (5) finite-time bounded
with respect to (c1, c2, Tf , R, δ, h), and we can obtain the memory state feedback controller gains
K1j = L1jX−1, K2j = L2jX−1, j = 1, 2, . . . , r. Thus, this completes the proof of the theorem.

Remark 3. It is well known that the concept of finite-time boundedness reduces to the concept of finite-time
stability when ω(t) = 0. Thus, finite-time stability is a special case of finite-time boundedness. The authors
in [28] discuss the problem of finite-time stability and stabilization for a class of T-S fuzzy systems with
time-varying delay. However, this paper is concerned with finite-time boundness analysis and the finite-time
stabilization problem for T-S fuzzy systems with a time-varying delay and norm-bounded disturbance. Therefore,
the developed results in this paper are more general.

Remark 4. The Finsler lemma is employed to design the memory state feedback controller for a T-S fuzzy
time-delay system in the proof of Theorem 2. In order to derive a finite-time stabilization condition in the
form of LMIs, the matrix Φ = [X−1 0 0 0 0 0 0 0 0 0 0 0 γX−1]T is defined, which may
introduce some conservativeness. However, it should be mentioned that this is indeed an effective approach
to obtain a finite-time stabilization criterion. To reduce the aforementioned conservativeness, an appropriate
parameter γ can be obtained by applying several powerful optimization algorithms.

Remark 5. Based on the parallel distributed compensation scheme, the memory state feedback controller is
designed to ensure finite-time boundness of the corresponding closed-loop T-S fuzzy time-delay system in
Theorem 2. For fixed (c1, c2, Tf , R, δ, h), the optimal minimum values of c2 for guaranteeing the closed-loop T-S
fuzzy system finite-time bounded can be obtained by solving a series of LMIs, namely,

min
(30)−(38)

c2.

The memory state feedback controller gains are given by K1j = L1jX−1, K2j = L2jX−1, j = 1, 2, . . . , r.
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4. Numerical Example

In this section, a numerical example is given to illustrate the effectiveness of the proposed results.
This example deals with a truck-trailer system with time-varying delay. The dynamic model is

described as follows:
ẋ1(t) = −a vt̄

Lt0
x1(t)− (1− a) vt̄

Lt0
x1(t− d(t)) + vt̄

lt0
u(t) + ω1(t)

ẋ2(t) = a vt̄
Lt0

x1(t) + (1− a) vt̄
Lt0

x1(t− d(t))
ẋ3(t) = vt̄

t0
sin[x2(t) + a vt̄

L x1(t) + (1− a) vt̄
2L x1(t− d(t))]

where x1(t) is the angle difference between the truck and the trailer, x2(t) is the angle of the trailer,
x3(t) represents the vertical position of the rear end of the trailer, u(t) denotes the steering angle,
ω(t) =

(
ωT

1 (t) ωT
2 (t) ωT

3 (t)
)T is the exogenous disturbance.

Let σ(t) = x2(t) + a vt̄
L x1(t) + (1 − a) vt̄

2L x1(t − d(t)), the T-S fuzzy time-delay system that
represents the above truck-tailer model is as follows:
Plant Rule 1: If σ(t) is about 0, then

ẋ(t) = A1x(t) + Ad1x(t− d(t)) + B1u(t) + Bω1ω(t);

Plant Rule 2: If σ(t) is about ±π, then

ẋ(t) = A2x(t) + Ad2x(t− d(t)) + B2u(t) + Bω2ω(t),

where

A1 =

 −a vt̄
Lt0

0 0
a vt̄

Lt0
0 0

a v2 t̄2

2Lt0
vt̄
t0

0

 , Ad1 =

 −b vt̄
Lt0

0 0
b vt̄

Lt0
0 0

b v2 t̄2

2Lt0
0 0

 ,

A2 =

 −a vt̄
Lt0

0 0
a vt̄

Lt0
0 0

a dv2 t̄2

2Lt0
dvt̄
t0

0

 , Ad2 =

 −b vt̄
Lt0

0 0
b vt̄

Lt0
0 0

b dv2 t̄2

2Lt0
0 0

 ,

B1 = B2 =

 vt̄
lt0

0
0

 , Bω1 = Bω2 =

 1 0 0
0 0 0
0 0 0

 ,

with a + b = 1.
In order to illustrate the developed results, we borrow the model parameters from [36], such as

a = 0.7, v = −1.0, L = 5.5, l = 2.8, t̄ = 2.0, t0 = 0.5, and d = 10t0/π. The membership functions
are defined as ρ1(x(t)) = 1/ (1 + exp(x1(t) + 0.5)), ρ2(x(t)) = 1− ρ1(x(t)). Additionally, the other
parameters involved in the simulation are chosen as c1 = 1, δ = 0.3, β = 0.01, γ = 0.8, Tf = 10, R = I,
µ1 = −0.1, µ2 = 0.1, and h = 0.6. We aim to design a memory state feedback controller such that the
resulting closed-loop T-S fuzzy time-delay system is finite-time bounded. By solving the LMI-based
finite-time stabilization criterion proposed in Theorem 2 using the Matlab LMI toolbox, we can derive
the feasible solutions for the optimal minimum value of c2 = 2.8830. Furthermore, all the control gain
matrices are obtained as follows:

K11 = L11X−1 =
(

6.9875 −13.5452 1.4041
)

, K12 = L12X−1 =
(

6.9871 −13.7540 1.3966
)

,



Symmetry 2020, 12, 447 16 of 18

K21 = L21X−1 =
(

0.3679 0.0085 −0.0010
)

, K22 = L22X−1 =
(

0.3861 −0.0013 0.0001
)

.

For the simulation framework, the exogenous disturbance is selected as ω(t) = (0.06 sin t 0 0)T ,
and the time-varying delay is assumed to be d(t) = 0.25 + 0.25 sin(0.3t). For the initial condition
x(0) = (0.8 − 0.5 0.2)T , the state response of the corresponding closed-loop T-S fuzzy time-delay
system is depicted in Figure 1, and the evolution of xT(t)Rx(t) is shown in Figure 2. From the
simulation results, it is obvious that the closed-loop T-S fuzzy time-delay system is finite-time bounded
with respect to (1, 2.8830, 10, I, 0.3, 0.6) via the above memory state feedback controller. In addition,
for different h, the optimal minimum values of c2 for ensuring the closed-loop T-S fuzzy system
finite-time bounded are summarized in Table 1. This proves the effectiveness of our developed results
in Theorem 2.
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Figure 1. The state response of the closed-loop Takagi–Sugeno fuzzy system.
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Figure 2. The time history of xT(t)Rx(t).

Table 1. The optimum bound values of c2 for different h.

h 0.6 0.8 1.0 1.2 1.4

c2 2.8830 3.6111 4.5002 5.7103 6.7601

5. Conclusions

In this paper, the problem of finite-time boundedness and finite-time stabilization for a class
of T-S fuzzy time-delay systems was discussed. First, based on a new augmented LKF and by
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applying an improved reciprocally convex combination technique, a novel delay-dependent finite-time
boundedness sufficient condition has been derived for an open-loop T-S fuzzy time-delay system.
Secondly, a memory state feedback controller has been developed to ensure the finite-time boundedness
of the corresponding closed-loop T-S fuzzy time-delay system. Finally, the effectiveness and advantages
of the presented methods were demonstrated by a numerical example. Our future research work will
focus on the problem of robust finite-time control for uncertain T-S fuzzy systems with time-varying
delay and exogenous disturbance.
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