
symmetryS S

Article

Failure Prediction Model Using Iterative Feature
Selection for Industrial Internet of Things

Jung-Hyok Kwon 1 and Eui-Jik Kim 2,*
1 Smart Computing Laboratory, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252,

Korea; jhkwon@hallym.ac.kr
2 School of Software, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea
* Correspondence: ejkim32@hallym.ac.kr; Tel.: +82-33-248-2333; Fax: +82-33-242-2524

Received: 30 January 2020; Accepted: 8 March 2020; Published: 12 March 2020
����������
�������

Abstract: This paper presents a failure prediction model using iterative feature selection, which aims
to accurately predict the failure occurrences in industrial Internet of Things (IIoT) environments.
In general, vast amounts of data are collected from various sensors in an IIoT environment, and they
are analyzed to prevent failures by predicting their occurrence. However, the collected data may
include data irrelevant to failures and thereby decrease the prediction accuracy. To address this
problem, we propose a failure prediction model using iterative feature selection. To build the model,
the relevancy between each feature (i.e., each sensor) and the failure was analyzed using the random
forest algorithm, to obtain the importance of the features. Then, feature selection and model building
were conducted iteratively. In each iteration, a new feature was selected considering the importance
and added to the selected feature set. The failure prediction model was built for each iteration via the
support vector machine (SVM). Finally, the failure prediction model having the highest prediction
accuracy was selected. The experimental implementation was conducted using open-source R.
The results showed that the proposed failure prediction model achieved high prediction accuracy.

Keywords: failure prediction model; industrial Internet of Things; iterative feature selection; machine
learning; manufacturing

1. Introduction

Recently, the industrial Internet of Things (IIoT) has been widely adopted by various companies,
as it provides connectivity and analysis capabilities, which are the key technologies for advanced
manufacturing [1–4]. In IIoT, a large number of sensors are used to periodically detect changes in
machine health, manufacturing process, industrial environment, etc. [5–10]. Hence, a huge amount of
data is collected from the sensors used in IIoT. In general, the collected data are analyzed to provide
useful information for productivity improvement [11]. In particular, failure prediction through data
analysis is considered one of the most important issues in IIoT [12]. The failure, such as execution
error, long delay, and defective product, leads to a fatal system malfunction and huge maintenance
cost, resulting in productivity degradation of enterprises in industrial fields [13]. Therefore, many
enterprises have endeavored to predict when and why failures occur for improving their capabilities
of failure prevention and recovery, also known as resilience capacity [14]. Especially, the accuracy of
failure prediction is an important factor that determines the resilience capacity of enterprises; thus,
its improvement is crucial in the IIoT.

To predict failures, we need to build a failure prediction model that determines whether or not a
failure occurs [15–17]. In order to build such a failure prediction model, most of the existing studies
have used machine learning techniques. Abu-Samah et al. built the failure prediction model on the
basis of a Bayesian network, and Kwon and Kim (i.e., our previous work) used the nearest centroid
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classification to predict machine failures [18,19]. The results of both the studies showed that the built
failure prediction model achieved approximately 80% prediction accuracy. However, they did not
conduct the feature selection. In other words, they used all the data in the dataset when building the
model. Accordingly, in a real IIoT context where a very large number of sensors are used, the prediction
accuracy might be significantly degraded because of the impact of the data irrelevant to the failures.

Therefore, feature selection has been considered one of the most important steps in building
a failure prediction model. There have been many studies to build the failure prediction model
using feature selection, most of which have selected features considering the importance of each
feature [20–22]. Moldovan et al. built a failure prediction model using the selected features to
improve prediction accuracy and performed feature selection using three algorithms (i.e., random
forest, regression analysis, and orthogonal linear transformation) to compare the prediction accuracy
of each for the comparative study [20]. Mahadevan and Shah used a support vector machine recursive
feature elimination (SVM-RFE) algorithm to rank the features by their importance [21]. The SVM-RFE
algorithm was used to compute the norm of the weights of each feature (i.e., the importance of each
feature). For feature selection, the authors determined a threshold value specified by the limit of the
number of selected features, and then selected the features considering their importance until the
number of selected features reached the threshold. The selected features were used for failure detection
and diagnosis. Hasan et al. focused on a two-step approach of random forest based-feature selection,
which consists of the feature importance measurement and feature selection [22]. In the first step,
the importance of each feature was measured using average permutation importance (APIM) score.
APIM score is obtained by calculating the mean decreases in the forest’s classification accuracy when a
specific feature is not available. In the second step, the features with an APIM score greater than a
threshold were selected. However, in the existing feature selection methods, the optimal prediction
accuracy cannot be obtained because the number of selected features is fixed or all the features in
which the importance is greater than a predefined threshold are selected. Specifically, the number of
selected features might be too large to obtain optimal prediction accuracy or vice versa.

In this paper, we propose a novel failure prediction model using iterative feature selection, which
aims to accurately predict the occurrence of failures. To build the model, the collected data are
processed and analyzed using the following steps: (1) preprocessing, (2) importance measurement,
(3) feature selection, (4) model building, and (5) model selection. The preprocessing step includes
feature elimination, missing data imputation, normalization, and data division. In the importance
measurement step, to measure the importance of each feature, the relevancy between each feature
and the failure is analyzed using the random forest algorithm [23–26]. Then, the feature selection
and model building steps are conducted iteratively. In particular, in the feature selection step, a new
feature is selected considering its importance in each iteration and is added to the selected feature
set. In the model building step, the failure prediction model is built via the SVM on the basis of the
selected feature set updated in each iteration [27–30]. Finally, one of the failure prediction models is
selected considering the prediction accuracy in the model selection step. To evaluate the performance
of the proposed model, we conducted an experimental implementation using open-source R. We used
the semiconductor manufacturing (SECOM) dataset provided by the University of California Irvine
(UCI) repository [31]. The results showed that the proposed failure prediction model achieved high
prediction accuracy.

The rest of this paper is organized as follows. Section 2 describes the proposed failure prediction
model in detail. In Section 3, the results of the implementation and performance evaluation are
presented. Finally, Section 4 concludes this paper.

2. Failure Prediction Model Using Iterative Feature Selection

In this section, we present the design of the failure prediction model using iterative feature
selection in detail. It is assumed that sensors with unique identification (ID) employed in an IIoT
environment periodically generate data, and the data is collected by a data analysis server. In this paper,
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the sensor device is represented as a feature, and its ID is represented by a feature index. The data
analysis server collects data from sensor devices and builds and evaluates the failure prediction model.
The data is represented in the form of a matrix format (i.e., dataset) in which each column and row
means the feature and data collection time, respectively.

We built the failure prediction model on the basis of the features selected to maximize the
prediction accuracy. To this end, feature selection was iteratively conducted, and multiple failure
prediction models were built on the basis of the features selected in each iteration. Then, the failure
prediction model with the highest prediction accuracy was selected. To build the failure prediction
model, we considered five steps, namely preprocessing, importance measurement, feature selection,
model building, and model selection. In this section, each step for building the failure prediction
model is described in detail.

Figure 1 shows the overall procedure for building the failure prediction model. In the figure,
the white square indicates each step, and the grey square indicates the input or output of each step.
In the preprocessing step, feature elimination, missing data imputation, normalization, and data
division are sequentially conducted. To eliminate invalid features from the input dataset (i.e., collected
data), the not applicable (NA) data of each feature are searched, and the variance of each feature is
calculated. If the ratio of the NA data of a specific feature is greater than the predefined validity
factor determined in the range [0, 1], the corresponding feature is eliminated from the input dataset.
Moreover, if the variance of a certain feature is close to zero, the corresponding feature is eliminated
from the input dataset. This is because the closer the variance of a certain feature is to zero, the more
similar is the value of all the data. In particular, if the variance of a certain feature is zero, all the data
of this feature have the same value, which means that the feature is meaningless for the data analysis.
To replace the remaining missing data with the appropriate data, an average of the non-missing data of
each feature is calculated and imputed. Then, normalization is conducted to match the data scale of
each feature. To this end, the standard score is used, which calculates the normalized data of each
feature according to Equation (1):

x′i = (xi − µ)/σ, (1)

where x′i is the (i + 1)-th normalized data of the feature, xi is the (i + 1)-th data of the feature, µ is
the average of the feature, and σ is the standard deviation of the feature [32]. The µ and σ values are
calculated using Equations (2) and (3), respectively [33].

µ =
1
m

m−1∑
i=0

xi (2)

σ =

√√√
1
m

m−1∑
i=0

(xi − µ)
2 (3)

where m is the amount of data of the feature. Finally, the normalized dataset is divided into training
and test datasets, which are used to build the failure prediction model and to evaluate the performance
of the prediction model, respectively.
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Figure 1. Overall procedure for building failure prediction model.

To measure the importance of each feature, the training dataset (i.e., a part of the preprocessed
dataset) is analyzed using the random forest algorithm, which is one of the machine learning techniques
for importance measurement. In particular, via the random forest, multiple decision trees are built,
and the relevancy between each feature and the failure is analyzed considering the built decision trees
comprehensively. In the random forest, multiple subsets of the training dataset are created to build
each decision tree differently. Note that each subset consists of different data and features. For this,
n data (i.e., n rows) and mtry features (i.e., mtry columns) are randomly selected from the training
dataset. This operation repeats until the number of created subsets reaches the number of decision
trees predefined as ntree. Then, each decision tree is built separately using one of the created subsets.
After building ntree decision trees, the importance of each feature is measured through the mean
decrease Gini, which indicates the extent to which each feature affects the correct prediction results.
More specifically, in each decision tree, the sum of the difference for Gini impurities between the parent
nodes using a particular feature and their child nodes is calculated. Then, the average of the results of
all the decision trees is calculated. Note that the decision tree consists of multiple nodes that make
decisions using the threshold of a specific feature. In addition, each node has a Gini impurity that is a
measurement of the likelihood of an incorrect decision.

Then, the feature selection and model building steps are conducted iteratively. Algorithm 1 shows
the overall operation of both the steps. In the algorithm, the set of the importance of features and the
set of features are represented by Equations (4) and (5), respectively.

IMP = [imp0, · · · , imp j, · · · , impn f−1] (4)

F = [ f0, · · · , f j, · · · , fn f−1] (5)

where n f is the number of features and imp j is the importance of the ( j + 1)-th feature. The index of
each element in IMP and F (i.e., index of each importance and feature) denotes the sequence number
of each feature. At the beginning of the algorithm, the variables are initialized: the selected feature
at the (cnt + 1)-th iteration (s fcnt), the prediction accuracy for the built model at the (cnt + 1)-th
iteration (pacnt), and the iteration counter (cnt). Then, the feature selection and model building
steps are repeated until the importance of a newly selected feature is smaller than the importance
threshold. In the algorithm, the maximum number of iterations (max) is equal to the number of features
whose importance is greater than the importance threshold. Therefore, the iteration terminates when
cnt reaches max. In each iteration, the feature selection step selects a new feature with the highest
importance and adds it to the selected feature set represented by Equation (6).

SF = [s f0, s f1, · · · , s fcnt], cnt ∈ [0, max− 1] (6)
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Consequently, the number of features included in is incremented by one as the number of iteration
increases. Once SF is updated, the model building step builds the failure prediction model through
SVM on the basis of SF. Then, it evaluates the prediction accuracy to update the prediction accuracy
set that is expressed by Equation (7).

PA = [pa0, pa1, · · · , pacnt], cnt ∈ [0, max− 1] (7)

Note that the index of each element in SF and PA (i.e., index of each selected feature and prediction
accuracy) refers to the number of iterations. In the algorithm, modelBuildEvalFunction() is a function to
build and evaluate the prediction model. It derives the prediction accuracy by taking SF he prediction
model. It derives the prediction accuracy by taking SF as the input. For example, if cnt = 2 (i.e., the
third iteration) and the selected feature set is equal to the SF = [ f39, f12, f19] (i.e., s f0 = f39, s f1 = f12,
and s f2 = f19), modelBuildEvalFunction() first builds the failure prediction model using the training
data of the features in the SF. Then, it derives pa2 by evaluating the built model using the test data
of the features and updates the prediction accuracy set from PA = [pa0, pa1] to PA = [pa0, pa1, pa2].
In the example, the number of elements in PA increases from two to three. When cnt reaches max, the
operation is terminated. The outputs of this operation are shown in Equations (8) and (9).

SF = [s f0, s f1, · · · , s fmax−1] (8)

PA = [pa0, pa1, · · · , pamax−1] (9)

Algorithm 1: Operation of feature selection and model building steps.

1: INITIALIZE s fcnt to NULL, pacnt to 0, and cnt to 0 //Initialize variables
2: REPEAT //Start iteration
3: /* ========== Feature Selection Step ========== */
4: maxImp←max(IMP) //Find the highest importance from IMP
5: FOR each feature index, j, j ∈ [0, n f − 1]
6: IF IMP[ j] == maxImp //Find feature index with the highest importance
7: s fcnt ← F[ j] //Select a new feature
8: F[ j], IMP[ j]← 0 //Remove the selected feature from IMP and F
9: ENDIF
10: ENDFOR
11: SF[cnt]← s fcnt //Update the selected feature set
12: /* ========== Model Building Step ========== */
13: pacnt ←modelBuildEvalFunction(SF) //Build and evaluate model
14: PA[cnt]← pacnt //Update the prediction accuracy set
15: cnt← cnt + 1 //Increment iteration counter by one
16: UNTIL cnt ≥ max //Terminate iteration if condition becomes TRUE
17: RETURN SF and PA //Return selected feature set and prediction accuracy set

The model selection step selects the failure prediction model having the highest prediction
accuracy, referring to PA and SF. In particular, this step first searches for the highest prediction
accuracy in PA by using max(PA), where max() is the function that searches the element having the
maximum value in a given set. Then, it derives the index of max(PA) from PA. For this, each element
in PA is compared with max(PA), and the index of the element that is equal to max(PA) is derived
from PA. Finally, a failure prediction model is selected, taking into account the index of max(PA) and
SF. More specifically, the elements (i.e., selected features) in which the index is less than or equal to the
index of max(PA) are extracted from SF. Then, one of the failure prediction models built in the model
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building step is selected by comparing the features used in the model building step and the extracted
features from SF.

3. Implementation and Performance Evaluation

An experimental implementation was conducted to verify the feasibility of the proposed failure
prediction model by using the open-source R version 3.4.3. For this, the SECOM dataset provided by
the UCI repository was used. This dataset consists of 1567 data elements and 591 features, and the
data were collected from a semiconductor manufacturing process by monitoring the sensors and the
process measurement point. The data of 590 features were measured from different sensors, and the
data of the remaining feature were the results of the house line test represented by Pass and Fail.

For feature elimination, we set the validity factor to 0.1, which was empirically determined to
maximize the prediction accuracy. Thus, features with more than 10% NA data and features having
zero variance were eliminated from the dataset. Through feature elimination, the number of features
reduced from 591 to 393. The ratio of the training dataset and the test dataset was set to 7:3. To measure
the importance of each feature, we used the randomForest and caret packages. We set n, mtry, and ntree
to 1000, 19, and 500, respectively. Through this setting, 500 decision trees were built using the randomly
created 1000 × 19 matrix. The importance of each feature was measured through the mean decrease
Gini. Figure 2 shows the importance of the top 30 features. The x-axis and the y-axis denote the mean
decrease Gini and the feature, respectively. In the figure, F60 has the highest mean decrease Gini (i.e.,
1.52) among all the features.
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For iterative feature selection, we set the importance threshold to 0.7, which was chosen in
the range of [0.1, 1], taking into account the feature selection results of the existing research for the
comparative study. Therefore, max was determined as 24. This implied that the number of iterations
was 24. The training dataset contained 70 fails and 1038 passes. This imbalance of the training
dataset made it difficult for the failure prediction model to predict a fail case. To address this problem,
the sampling was conducted before building the failure prediction model. In particular, some of the
pass data were removed to have less effect on the model building. With the results of feature selection
and the sampled training dataset, the failure prediction model was built using the SVM. To this end,
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we used the e1071 package in R. Table 1 lists the obtained SF and PA. In the table, max(PA) is 0.72,
and its index is 7. As a result, the failure prediction model that was built using eight features (i.e., F60,
F349, F41, F289, F427, F65, F66, and F154) was selected.

Table 1. Selected feature set and prediction accuracy set.

Index 0 1 2 3 4 5 6 7 8 9 10 11

SF F60 F349 F41 F289 F427 F65 F66 F154 F39 F104 F461 F461
PA 0.69 0.64 0.66 0.7 0.7 0.69 0.71 0.72 0.71 0.7 0.67 0.71

Index 12 11 13 14 15 16 17 18 19 20 21 22

SF F211 F26 F495 F442 F351 F268 F578 F540 F223 F27 F213 F64
PA 0.66 0.7 0.69 0.64 0.68 0.65 0.64 0.6 0.56 0.64 0.65 0.63

For the performance evaluation, the prediction accuracy of the proposed model was compared
to that of the existing models. We considered three existing models, which were built on the basis
of a fixed number of features (i.e., 12 and 24 features) and all the features, respectively. Figures 3–6
show the receiver operating characteristic (ROC) curve for the three failure prediction models that
used different numbers of features. The ROC curve is a performance measure of the prediction model
and presents the relationship between the true positive rate (TPR) and the false positive rate (FPR) [34].
The TPR and FPR values were calculated using Equations (10) and (11), respectively.

TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

where TP, FN, FP, and TN are the true positive, false negative, false positive, and true negative,
respectively. With the ROC curve, the area under the curve (AUC) was used to evaluate the prediction
accuracy of the model. In particular, the greater the AUC was, the higher was the prediction accuracy.
In Figure 3, the failure prediction model that was built on the basis of iterative feature selection has the
greatest AUC among the considered models. This was because the model was iteratively built using a
different number of features; one of the models, i.e., the one with the highest prediction accuracy, was
selected. As shown in Figures 4 and 5, if a fixed number of features are used for building the model,
the prediction accuracy might be relatively degraded. The reason was that irrelevant features made it
difficult to build accurate prediction models. If more features irrelevant to the failure were used to
build the model, the prediction accuracy of the model decreased. Therefore, in the case that all the
features in the dataset were used as shown in Figure 6, the AUC decreased significantly. Quantitatively,
the proposed model achieved 14.3% and 22.0% higher AUC than in the fixed number of features and
the all features cases, respectively.
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4. Conclusions

In this paper, we proposed a failure prediction model using iterative feature selection with the
aim of predicting the failure occurrences. The procedure for building the failure prediction model
consisted of the following five steps: (1) preprocessing, (2) importance measurement, (3) feature
selection, (4) model building, and (5) model selection. In the first step, feature elimination, missing data
imputation, normalization, and data division are sequentially conducted. The importance measurement
step is to measure the importance of each feature by using the random forest. The third and the fourth
steps were iteratively performed to build the failure prediction models using the various selected
feature sets and to obtain the prediction accuracy of the built models. In the last step, the failure
prediction model with the highest prediction accuracy was selected. The experimental implementation
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was conducted to evaluate the performance of the proposed model using the open-source R and the
SECOM dataset given by the UCI repository. Through the experimental implementation, we obtained
the importance of features representing the relevancy between each feature and failure. Moreover,
we obtained the selected feature set and prediction accuracy set, each of which contains twenty-four
features and prediction accuracy measurements. In the experiments, the proposed failure prediction
model was built with eight features, and we compared the prediction accuracy of the proposed model
with that of the failure prediction model built based on 12 features, 24 features, and all features.
The results showed that the proposed model achieved 1.4%, 14.3%, and 22.0% higher AUC than that of
other models. Comprehensively, the contributions of this paper are as follows. (1) We presented and
discussed the problems of the existing failure prediction models for IIoT. (2) Through the importance
measurement and iterative feature selection, we derived the feature index and the number of features
that maximize the prediction accuracy of the failure prediction model. (3) We verified the feasibility
of our work by conducting open-source-based implementation and extensive experiments. In our
work, the proposed failure prediction model was implemented using only a limited dataset. Therefore,
future work involves performing additional experiments with extended datasets to assess whether the
proposed model is useful for various IIoT applications.
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