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Abstract: As the Moore’s law era will draw to a close, some domain-specific architectures even
non-Von Neumann systems have been presented to keep the progress. This paper proposes novel
annealing in memory (AIM) architecture to implement Ising calculation, which is based on Ising
model and expected to accelerate solving combinatorial optimization problem. The Ising model has a
symmetrical structure and realizes phase transition by symmetry breaking. AIM draws annealing
calculation into memory to reduce the cost of information transfer between calculation unit and the
memory, improves the ability of parallel processing by enabling each Static Random-Access Memory
(SRAM) array to perform calculations. An approximate probability flipping circuit is proposed to
avoid the system getting trapped in local optimum. Bit-serial design incurs only an estimated 4.24%
area above the SRAM and allows the accuracy to be easily adjusted. Two vision applications are
mapped for acceleration and results show that it can speed up Multi-Object Tracking (MOT) by
780× and Multiple People Head Detection (MPHD) by 161× with only 0.0064% and 0.031% energy
consumption respectively over approximate algorithms.

Keywords: Ising; annealing; memory; vision applications

1. Introduction

Over the last 50 years, Moore’s law has predicted that the performance of integrated circuits
approximately doubled every two years [1]. However, it has become more and more difficult to
maintain it in recent years. Some domain-specific architectures even non-Von Neumann systems
have been presented to keep the progress, such as machine-learning accelerators [2–4], neuromorphic
chips [5–7] and quantum computing [8,9]. These new architectures fundamentally based on different
theoretical models are redefining new era of computing.

The Ising chip [10–15], based on the Ising model [16], is one of the new architectures, which
can efficiently solve combinatorial optimization problem. Combinatorial optimization is a branch
of discrete mathematics that seeks to find the best possible solution from a finite or countably set of
possibilities [17]. An enormous number of key issues in science and engineering can be classified
as combinatorial optimization problems. As many of these problems are known to be NP-hard [18],
lots of time and energy will be consumed to solve them under Von Neumann architecture. The Ising
model, a symmetrical structure for modeling the behavior of magnetic spin [16], can speed up the
ground state search process by enabling each spin to search in parallel. Different from Von Neumann
architecture, the Ising model solves combinatorial optimization problem as the following three steps:
(1) mapping input problem to the interaction coefficients of the Ising model, (2) performing iterative
annealing calculation to approach the ground state, (3) reading final spin state to get the solution of
original problem. The self-convergence property of the Ising model makes it a promising method for
solving combinatorial optimization problem.

Symmetry 2020, 12, 480; doi:10.3390/sym12030480 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/3/480?type=check_update&version=1
http://dx.doi.org/10.3390/sym12030480
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 480 2 of 12

The Ising chip is mainly composed of memory that stores interaction coefficients and calculation
logic for iterative annealing [14]. The mapped coefficients of combinatorial optimization problem are
firstly stored in the memory, and then the iterative annealing calculation is started to search the ground
state. The next state of each spin is determined by its neighboring spin states and their interaction
coefficients. According to the connection relationship between spins, the Ising chip can be divided into
local-interconnect structure and global-interconnect structure. Each spin is connected to only four or
eight spins in local-interconnect structure while connected to (n-1) spins in global-interconnect structure
when there are n spins in the system. The oversimplified connection relationship of local-interconnect
structure limits its application, and more combinatorial optimization problems can only be mapped to
global-interconnect structure. However, the memory capacity for storing coefficients and the iterative
annealing logic will increase exponentially with the number of spins due to its complex connection in
global-interconnect structure. Hardware-complexity for local-interconnect structure is O(n) while O(n2)

for global-interconnect structure. The current Ising chips are mainly local-interconnect structure. The
high hardware cost limits the realization of global-interconnect structure. Based on the characteristics of
global-interconnect structure: (1) large-capacity memory is required to store the interaction coefficients,
(2) iterative annealing calculation is relatively simple, (3) many calculations in the annealing can be
processed in parallel, (4) different calculation accuracy is required for different applications, this paper
proposes novel AIM architecture to implement a global-interconnect Ising chip. The advantage of the
structure is: (1) it draws annealing into memory to reduce the cost of information-transfer between
calculation unit and memory, (2) it improves parallel processing by enabling each SRAM array to
perform calculations since each spin needs to update its local search term (LST) in each annealing step,
(3) to reduce the influence of annealing calculation logic on the area of SRAM array, the bit-serial design
of annealing calculation is adopted in AIM, which incurs only an estimated 4.24% area overhead for
the SRAM array. The disadvantage is that it will affect the calculation time due to bitwise calculation.
However, on the other hand, bit-serial design allows the computation accuracy easy to be adjusted.

Owing to the special computing paradigm, another challenge for the Ising chip is how to map
real-world applications to it for acceleration. Data association, which is a kind of combinatorial
optimization problems, exists widely in vision applications since each object does not exist alone in
the world [19,20]. Better understanding would be got if association relationship is considered in the
algorithm of computer vison. This paper will demonstrate how to map two vision applications to
the annealing in memory architecture for acceleration. The results show that the proposed structure
can speed up MOT by 780× and MPHD by 161× with only 0.0064% and 0.031% energy consumption
respectively over approximate algorithms.

The remainder of this paper is organized as follows. Section 2 reviews the the Ising model.
Annealing in memory architecture is introduced in Section 3. Section 4 demonstrates how to map MOT
and MPHD to the proposed architecture. Final conclusion is presented in Section 5.

2. Overview of the Ising Model

The Ising model was proposed by Wilhelm Lenz in 1920 to study the ferromagnetism of atomic
spins [16]. The model consists of spins that can be one of two-body correlated states to store information.
The spins are arranged in a graph and each of them can interact with its neighbors based on the
coefficients. The topology of the graph can be local-interconnect or global-interconnect, which depends
on the connection relationship between spins. The Hamiltonian of the Ising model is:

H(s) = − ∑
<i,j>

Jij si sj−∑ hi si (1)

where si is the state of spin i, Jij is the coefficient between spin i and spin j, hi is the external magnetic
field for spin i. The Hamiltonian represents the total energy of the Ising model and acts as a cost
function to be optimized. The goal of ground state search is to find a spin configuration that minimizes
the cost function, which corresponds to the ground state of the Ising model.
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Each spin simultaneously performs iterative annealing calculation to search for the ground state.
The annealing calculation is composed of local search and probability flipping. The local search is
defined as follows:

Lsi(t) = ∑
<i,j>

Jij sj(t) + hi (2)

s′i(t) =

{
1 Lsi(t) > 0

0 others
(3)

where Lsi(t) is the LST of spin i, s′i(t) is the neighboring state of spin i at time t, which makes the
local energy lower. To help the system getting out of local optimum, the state transition is defined
as a probability behavior, which means that spin i changes its state probabilistically. The flipping
probability is shown in (4), which is related to the energy change ∆E in (5) when the state of spin i
changes from si(t) to 1− si(t) and the annealing temperature T(t) at time t.

P(s′i(t)| si(t)) =
1

1 + e
∆E

T(t)

(4)

∆E = (2 si(t)− 1) Lsi(t) (5)

The annealing temperature T(t) plays an important influence on the flipping probability, and
changes from high to low along the annealing process. It determines the sensitivity of the flipping
probability to energy changes. By combining (4) and (5), the next state si(t + 1) for spin i can be
determined by (6).

si(t + 1) =


1 with probability P = 1

1+e
− Lsi(t)

T(t)

0 others
(6)

The system’s energy will continue to decrease as the annealing calculation progresses, and the
system finally reaches the ground state or near-ground state when the annealing temperature T(t)
arrives at the end of the search.

The local search of each spin can be realized in parallel according to De Gloria algorithm [21].
Firstly, the states of all spins are initialed and the local search term of each spin is precomputed. When
one spin is randomly selected to update its state, the probability in (6) is calculated and next state of
the spin is determined by comparing probability P with a random r as (7), where r is between 0 and 1.
If the spin changes its state, all other spins will update their local search term as (8), which can be done
in parallel. After that, another spin is randomly selected to repeat the upon iterative annealing process.

si(t + 1) =


1 1

1+e
− Lsi(t)

T(t)

> r

0 others
(7)

Lsj(t + 1) = Lsj(t) + Jij(2 si(t + 1)− 1) (8)

3. Annealing in Memory Architecture

Annealing in memory architecture aims at reducing data movement by performing annealing
calculation directly in memory. Coefficients between spins are stored in SRAM array and the LSTs are
updated in parallel near SRAM. Bit-serial design of annealing calculation incurs little area overhead
to SRAM and allows the accuracy easy to be adjusted. To avoid the system getting trapped in local
optimum, an approximate probability flipping method is presented.
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3.1. Top-Level Architecture

Figure 1 describes top-level architecture of the annealing in memory design. Annealing Control
(Anl_Ctrl) module controls the flow of iterative annealing calculation. It also performs probability
flipping to determine next state of the selected spin based on LST and probability flipping term (PFT).
Compute Static Random-Access Memory (CSRAM) modules store coefficients and LST. The update of
LST is performed in parallel in CSRAM when it receives update command from the Anl_Ctrl module.
Randomly Select (Rdm_Slt) module is a random number generator, which generates a random number
at regular intervals to select a spin to update. The Probability Flipping (Prob_Flip) module generates
the PFT for probability flipping.

Figure 1. Top-level architecture of annealing in memory design. It is mainly composed of four modules,
including Anl_Ctrl, Rdm_Slt, Prob_Flip and CSRAM.

The flow chart of iterative annealing calculation is shown in Figure 2. First of all, the coefficients,
LSTs and spins are initialled in the CSRAM module. Next, Anl_Ctrl module selects a spin to update
according to the random number generated from Rdm_Slt module. Then, it gets the LST of that spin
from the corresponding CSRAM module, and gets PFT from Prob_Flip module at the same time. Next
state of the spin is determined based on its LST and the PFT. After that, the corresponding spin and all
other LSTs will be updated if the spin has changed its state, and the spin unchanged number n will be
reset in the flowing step. Otherwise, the spin unchanged number n will be increased by 1. Another
spin will be selected to repeat the annealing process if the spin unchanged number is less than the
predefined maximum value. The iteration process will stop when there is no spin updates its state for
a certain period and finally the spins are read out to get the solution to the mapped problem.

Figure 2. The flow chart of iterative annealing calculation process. The iteration process will stop when
the spin unchanged number n is equal to the predefined maximum value.
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3.2. Local Search in Memory

Local Search is performed in CSRAM module, which is shown in Figure 3. The CSRAM module
consists of a SRAM array, adjacent annealing calculation logic and two shift registers. Coefficients
between spins and the LST are stored in SRAM array and Lst shift register respectively. The adjacent
annealing calculation logic circuit is used to update the LST in each iterative annealing step. In order
to reduce hardware cost and make calculation accuracy be adapted easily, bit-serial design is adopted
to update the LST.

Figure 3. The structure of the CSRAM module. The coefficients are stored in SRAM array and local search
term is stored in Lst shift register. Local search is performed by the adjacent calculation logic circuit.

When the selected spin changes its state in an iterative annealing step, all spins need to update
their LSTs in the corresponding CSRAM module. The related coefficient is firstly read to the Cof
shift register as the update command arrives, and then the LST is updated by adding the related
coefficient and original LST based on the changed spin. C_reg is a register that stores carry in the
bit-serial calculation.

3.3. Approximate Probability Flipping Method

To avoid the system getting trapped in local optimum, the state transition is defined as a
probability behavior, which means the flipping of spin state occurs probabilistically. The flipping
probability is related to energy change and annealing temperature. The following state of the spin is
determined by comparing the probability P with a random r as (7), which can be transformed into
the following:

si(t + 1) =

{
1 T(t) ∗ ln( 1

r − 1) + Lsi(t) > 0

0 others
(9)

P f (t) = T(t) ∗ ln(
1
r
− 1) (10)

where P f (t) is the PFT, which is the product of annealing temperature T(t) and ln(1/r− 1). Then, the
state of the spin can be determined according to the sign bit of the sum, which is obtained by adding
LST Lsi(t) with PFT P f (t). Due to the complexity of the PFT, a digital hardware circuit is proposed to
implement it approximately.

As it can be seen in Figure 4, the curve of ln(1/r− 1) is approximated by three lines, where r is
a random number between 0 and 1, and two of which have the same slope. The linear interpolation
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of ln(1/r − 1) is explained via (11). (11) can be approximatively replaced by (12) using the similar
technique that was proposed in [22].

ln(
1
r
− 1) ≈


−29.711 ∗ r + 4.718 0 < r < 0.125

−4.74 ∗ r + 2.371 0.125 ≤ r ≤ 0.875

−29.711 ∗ r + 24.892 0.875 < r < 1

(11)

ln(
1
r
− 1) ≈


−32 ∗ r + 4.875 0 < r < 0.125

−4 ∗ r + 2 0.125 ≤ r ≤ 0.875

−32 ∗ r + 27.125 0.875 < r < 1

(12)
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y3=-29.711*r+24.892,0.875<r<1

Figure 4. The curve of ln(1/r − 1), where r is a random number between 0 and 1. The curve is
approximated by three lines.

The fixed constants can be represented by a finite and shorter number of bits and the product of
different constants with r can be realized by shifting, so the approximation in (12) is more convenient
for digital logic hardware implementation. The selection of different fixed constants and different
products, which is based on the value of r, can be achieved by multiplexers. The proposed structure to
approximate ln(1/r− 1) is shown in Figure 5, where the final approximate value is stored in register
R2. The annealing Temperature T is set to some fixed values, which is powers of 2, and will keep a
fixed time for each value along the annealing process. Therefore, the PFT P f (t) can be obtained by
shifting register R2 according to the value of T.

Figure 5. Proposed three-region linear approximation architecture. The multiplication with powers of
2 can be achieved by shifting. The selection of different fixed constants and different products, which is
based on the value of r, can be achieved by multiplexers.
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The energy histories of iterative annealing calculation process by using different probability
flipping methods are depicted in Figure 6. Coefficients of the Ising model are randomly generated.
State of the system will fall into local optimum soon if there is no probability flipping, which means
the next state of the spin is only determined by local search. Although simplified for hardware
implementation, approximate probability flipping method is able to find a state with similar energy to
theoretical method at the end of the annealing process.

0 20% 40% 60% 80% 100%
-15000

-10000

-5000

0

5000

e
n
e
rg

y

no flipping

approximate probability flipping

theoretical  probability flipping

Figure 6. Energy history of iterative annealing calculation process by using different probability flipping
methods. Coefficients of the the Ising model are randomly generated.

3.4. Hardware Performance

The annealing in memory architecture is synthesized using Design Compiler in 28 nm process,
where the SRAM array is obtained using memory compiler with a 28 nm library. The target clock
frequency is 1 GHz, and the size of the SRAM array is 1024*64. The entire chip consists of 4096 SRAM
arrays, so that it can support up to 4096 global interconnect spins if the bit-width of the coefficient is
configured to 16-bits.

We conclude the hardware performance in Table 1. Area of CSRAM and the entire chip are
20.74 µm2 and 85 mm2 respectively. The local search logic circuit incurs only 4.24% area overhead to
CSRAM module. The chip power is 3.26 W.

Table 1. Hardware performance of AIM.

Items Values

Clock frequency 1 GHz
Chip area 85 mm2

Chip power 3.26 W
Number of SRAM array 4096

Area of SRAM array 19.86 µm2

Area of CSRAM 20.74 µm2

4. Application

Vision applications mainly focus on the understanding of useful information from images. Data
association exists widely in vision applications since each object does not exist alone in the world. Better
understanding would be got if association relationship is considered in the algorithm of computer
vison. Data association is a kind of combinatorial optimization problems, which can be accelerated by
the Ising model. In this section, we demonstrate how to map two vision applications to the annealing
in memory architecture for acceleration.
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4.1. Mapping MOT to AIM

MOT is the problem of simultaneously tracking multiple moving objects in a sequence of images
and is a key component of many vision tasks. Tracking-by-detection is widely accepted MOT method.
The core issue is how to effectively associate hypotheses and build complete trajectories.

Figure 7a shows the process of mapping MOT to AIM. Firstly, hypotheses for each frame are
obtained from the detector and the combinations of trackers with hypotheses are regarded as spins.
The unary item in (1) is defined by the affinity between tracker and hypothesis, the pairwise item is
defined by the cost of violating interactions [19]. In the next step, coefficients are passed to AIM and
the annealing process starts. We get spin states at the end of the annealing process and map it to the
solution of MOT problem. The combination of tracker and hypothesis is successful if the spin state is 1,
otherwise the hypothesis does not belong to the tracker.

Figure 7. (a) The process of mapping MOT to AIM, where the unary item is defined by the affinity
between tracker and hypothesis, the pairwise item is defined by the cost of violating interactions.
(b) The process of mapping MPHD to AIM, where the unary item is defined by the response of local
object detector at corresponding locations and the pairwise item depends on the image data.

4.2. Mapping MPHD to AIM

Data association is also considered in MPHD. Since each object does not exist alone in the world,
the model in [20] models spatial association between objects which provide complementary contextual
cues for detection, and can get better result than others.

The process of mapping MPHD to AIM is shown in Figure 7b. At first, objects of the image are
obtained from the detector and each object is regarded as a spin. The unary item in (1) is defined by
the response of local object detector at corresponding locations and the pairwise item depends on the
image data. After that, coefficients are passed to AIM, and then we get spin states at the end of the
annealing process, which corresponds to the solution of the MHPD problem. If the spin state is 1, the
object is a head, otherwise it is not.
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4.3. Evaluation

To evaluate the performance, we develop a cycle-accurate simulator for AIM, and run the
baseline of multi-branch algorithm for MOT [19], Quadratic Pseudo-Boolean Optimization (QPBO)
and sequential tree-reweighted message passing (TRWS) algorithm for MPHD [20] on Core i7-8450
processor. The evaluation for MOT is based on the KITTI Vision Benchmark Suite [23], which is
a widely used benchmark to evaluate MOT, and the CLEAR MOT metrics [24]. Dataset used for
MPHD evaluation is HollywoodHeads dataset [20] and Casablanca dataset [25], which are widely
used datasets to evaluate MPHD.

Table 2 shows the MOT results of evaluating multi-branch algorithm and AIM on KITTI Vision
Benchmark. The upper three rows show the evaluation results for pedestrians and the following
three rows show the evaluation results for cars. The specific metrics include Multiple Object Tracking
Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), ID-switches (ID), Fragmentations
(Frag), Mostly Tracked (MT), Partly Tracked (PT), Mostly Lost (ML). For Pedestrians, AIM outperforms
multi-branch in MOTA and MOTP. However, AIM achieves better MOTA but worse MOTP and Frag
for cars. One of qualitative tracking results by using AIM is shown in Figure 8a. Figure 9 reports
precision-recall (PR) curve for MPHD by using QBPO, TRWS and AIM. All the three methods can get
similar results for multiple people head detection. One of qualitative head detection results by using
AIM is shown in Figure 8b.

Figure 8. Examples of qualitative tracking (a) and detecting (b) results by using AIM, which are
highlighted by rectangular box.
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Figure 9. Precision-recall curve for MPHD on the HollywoodHeads [20] and Casablanca datasets [25]
by using AIM, QPBO and TRWS. All the three methods can get similar results for MPHD.

The run time and energy consumption of all methods are shown in Figure 10. AIM achieves 780×
speedup in latency compared to multi-branch algorithm for MOT, 161× and 195× speedup compared
to QPBO and TRWS for MPHD respectively. The significant speedup can be attributed to the highly
parallel processing for enabling each SRAM array to carry out local search. AIM achieves energy
efficiency that is 0.0064% of the multi-branch algorithm for MOT, 0.031% and 0.025% of QPBO and
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TRWS for MHPD respectively. The energy efficiency improvement can be explained by annealing in
memory architecture that reduces data movement between calculation unit and the memory.

Table 2. Results for MOT, where the upper three rows show the evaluation results for pedestrians and
the following three rows show the evaluation results for cars.

Pedestrians MOTA MOTP ID Frag MT PT ML

Multi-branch 46.76% 75.98% 1 12 60.00% 30.00% 10.00%
AIM 47.12% 76.03% 1 12 60.00% 30.00% 10.00%

Cars MOTA MOTP ID Frag MT PT ML

Multi-branch 69.79% 83.86% 4 19 60.34% 29.31% 10.34%
AIM 70.00% 83.84% 4 21 60.34% 29.31% 10.34%
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Figure 10. (a) The run time and energy consumption comparison of AIM and multi-branch algorithm
for MOT. (b) The run time and energy consumption comparison of AIM, QPBO and TRWS for MOT.

5. Conclusions

This paper presents annealing in memory architecture to realize the Ising calculation, which is
expected to accelerate solving combinatorial optimization problem. Based on the characteristics of the
Ising chip mainly including large-capacity memory and simple iterative calculation, it draws annealing
into memory to reduce the cost of information transfer between calculation unit and the memory,
improves the ability of parallel processing by enabling each SRAM array to perform calculation.
An approximate probability flipping circuit is proposed to avoid getting trapped in local optimum.
This paper also demonstrates how to map two vision applications to the proposed architecture for
acceleration. The results show that it can speed up multi-object tracking by 780× and multiple
people head detection by 161× with only 0.0064% and 0.031% energy consumption respectively over
approximate algorithms.
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