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Abstract: In the present work, a new nonequilibrium four-dimensional chaotic jerk system is
presented. The proposed system includes only one constant term and has coexisting and hidden
attractors. Firstly, the dynamical behavior of the system is investigated using bifurcation diagrams
and Lyapunov exponents. It is illustrated that this system either possesses symmetric equilibrium
points or does not possess an equilibrium. Rich dynamics are found by varying system parameters.
It is shown that the system enters chaos through experiencing a cascade of period doublings, and the
existence of chaos is verified. Then, coexisting and hidden chaotic attractors are observed, and basin
attraction is plotted. Moreover, using the multiscale C0 algorithm, the complexity of the system is
investigated, and a broad area of high complexity is displayed in the parameter planes. In addition,
the chaotic behavior of the system is studied by field-programmable gate array implementation.
A novel methodology to discretize, simulate, and implement the proposed system is presented,
and the successful implementation of the proposed system on FPGA is verified through the simulation
outcome. Finally, a robust sliding mode controller is designed to suppress the chaotic behavior of the
system. To deal with unexpected disturbances and uncertainties, a disturbance observer is developed
along with the designed controller. To show the successful performance of the designed control
scheme, numerical simulations are also presented.

Keywords: four-dimensional chaotic systems; hidden attractors; self-excited attractors; complexity
analysis; FPGA implementation
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1. Introduction

Nowadays, chaotic systems and their applications attract considerable attention [1–4]. Indeed,
a chaotic system is characterized by complex similarity to random behavior, sensitivity to initial
conditions, and continuous broad-band power spectrum [5–7]. These features make chaotic systems
appropriate candidates for presenting various phenomena in nature and engineering processes [8–11].
In fact, extensive research has been completed on the chaotic models that have been transformed from
theory to physical models. These studies have been carried out to determine whether they are feasible
and applicable [12–15]. Chaotic/hyperchaotic systems have been studied in various fields this way,
including data transmission, information security, biological systems, economic systems, cryptography,
secure communication, and so on [16–19].

On the other hand, complexity measure is an effective method of investigating the dynamical
behavior of a chaotic system. To date, a variety of methods have been introduced to measure the
complexity of chaotic systems, including fuzzy entropy [20], statistical complexity measure [21],
spectral entropy (SE) [22], sample entropy [23], and C0 algorithm [24]. Among these metrics, C0 and SE
have gained significant attention for their ability to approximate the complexity of time series without
requiring an over-coarse graining approach [22,24]. The C0 complexity measure was first introduced
by En-hua et al. [24]. This method calculates the mean value and amplitude spectrum of the signal
and keeps the amplitude spectrum components unchanged. The C0 complexity analysis has two
advantages: (1) it can be applied even to continuous signals and no over-coarse graining preprocessing
is required; (2) the ability to work successfully with very short time series. Hence, in previous works
C0 measure has been widely used to estimate complexity of many chaotic systems [25–27].

Regarding stability, diverse chaotic systems such as multistable [28–30], extreme multistable [31,32],
and systems with multi-scroll attractors [33,34] have been introduced in the literature. Furthermore,
based on the existence of equilibrium points, attractors have been categorized as either self-excited or
hidden. In fact, the chaotic attractor is hidden in systems with nonequilibrium. Given that systems
with nonequilibrium can show unexpected responses to perturbations, these systems have attracted
remarkable attention [35–40]. Moreover, in general terms, if a system has multistability, it can generate
multiple coexisting attractors [41], off-set boosting [42] or hidden attractors [43–46]. Numerically,
coexisting dynamics in a system can be observed by means of attractors, basin attraction plots,
and bifurcation diagrams with initial conditions. However, He et al. [47] investigated the complexity
of the multiple coexisting fractional-order chaotic systems, and found that that the C0 complexity
measure can identify the multistability of the system in the initial condition plane. Moreover, coexisting
attractors in different kinds of jerk systems are observed [48,49]. For instance, Kengne et al. [49]
investigated antimonotonicity, crises, and multiple coexisting attractors of a novel jerk system. In the
present study, multistability in a nonlinear jerk system is thoroughly investigated, along with its
complex dynamics.

Chaotic systems have already been implemented using operational amplifiers [50], low-cost
microcontrollers, such as the PIC18F4550 from Microchip [51], and an open-source electronic
prototyping platform, such as Arduino [52]. However, in recent years, Field Programmable Gate
Arrays (FPGAs) have gained a reputation in the field of engineering and science, because they
are quite useful in fast prototyping of complex systems. For instance, FPGAs have recently been
used to implement proportional–integral–derivative (PID) control schemes for synchronization of
different continuous chaotic models [53], fractional-order chaotic systems [54], and systems for
chaotic secure communications [55]. Furthermore, FPGAs have attracted a lot of interest for use
in fast prototyping of different chaotic systems; e.g., for the implementation of memristors [56],
high-dimensional [57], physical unclonable functions [58], multi-scroll [59,60], and other chaotic or
hyperchaotic systems [61]. Moreover, given that high frequencies can be achieved by FPGA-based
chaotic oscillators, FPGA implementation has also been broadly used to simulate chaotic equations [62].
It is demonstrated that the new system, which is investigated in the current study, either possesses
symmetric equilibrium points or does not possess an equilibrium. Symmetry can play a crucial role
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in the behavior of nonlinear systems. Hence, self-excited and hidden attractors of such a system are
precisely studied in this paper, and to observe chaos in real-time, the analyzed four-dimensional chaotic
system is also implemented in a FPGA.

Over the past decades, control of nonlinear and chaotic systems has become the focus of many
researchers [63–70]. In this regard, different techniques have been proposed for the synchronization
and stabilization of chaotic systems [71,72]. Indeed, due to uncertain conditions often affecting many
systems, designing a robust controller can play a pivotal role in the effective performance of the
systems in real applications. Sliding mode controller (SMC) is one of the most popular robust control
techniques, which can be used for a variety of uncertain systems [73]. Hence, in the current study,
a disturbance-observer-based SMC is ultimately proposed for controlling the analyzed chaotic system.

The rest of this paper is organized as follows: In Section 2, the nonlinear dynamics of the proposed
system are studied through bifurcation diagrams and phase portraits. The multiscale C0 complexity
measure used to characterize the systems is described in Section 3. The FPGA-based implementation
of the proposed system is introduced in Section 4. The designed disturbance observer-based SMC is
presented in Section 5, and its performance in stabilizing the system is shown in Section 6. Finally,
the most relevant conclusions of the current work are described in Section 7.

2. System Description

In general terms, a fourth order jerk system has the form of x(4) = j
(
x,

.
x,

..
x,

...
x
)

[74]. In the current

work, a jerk system with the form of x(4) + a
...
x + c

.
x2
− f x

..
x− ex

.
x = bx2 + g is studied. By considering

.
x = y,

..
x = z, and

...
x = w, the chaotic system is denoted as follows:

.
x = y,
.
y = z,
.
z = w,

= −aw + bx2
− cy2 + exy + f xz + g.

(1)

When g = 0, b , 0, the system has only one equilibrium O(0, 0, 0, 0); when bg < 0, there are
two equilibria E±

(
±

√
−g/b, 0, 0, 0

)
. Hence this system could possess symmetric equilibrium points.

Moreover, when bg > 0, the system does not possess an equilibrium. Considering the system parameters
as a = 1.05, b = 0.7, c = 0.19, e = 1.37, f = 1.79, when g = 0, there is a stable critical node O; when
g < 0 there are two saddles E±. Thus, it can be concluded that at g = 0, the saddle-node bifurcation
will occur in the system.

2.1. Dynamical Analysis

Since bg ≤ 0, values of g less than, and equal to zero are chosen. Taking a = 1.05, b =

0.7, c = 0.19, e = 1.37, f = 1.79, setting the initial conditions as [x0, y0, z0, w0] = [−0.1, 2.05,−1,−3.55],
and varying the system parameter g from −4 to 0 with a step size of 0.016, the bifurcation diagrams
and Lyapunov exponents (LEs) of the system with g are as shown in Figure 1. As shown in Figure 1a,
the system enters chaos with “period-doubling bifurcation.” Phase diagrams with b = 0.7 and different
g are shown in Figure 2. When g = −3.5, the attractor is convergent. Of course, this is not a typical
period-doubling bifurcation since “periodic one” is actually convergent. When g = −2.5 and g = −1.5,
the attractor is periodic, and when g = −0.15, the attractor is chaotic. Moreover, Figure 1b shows that
the maximum LEs of the system increase with the increase in g. Thus, the system has rich dynamics
with the variation of the constant g.
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Figure 2. Phase diagrams of the proposed system with b = 0.7 and (a) g = −3.5, (b) g = −2.5, (c) g = −1.5, 

(d) g = −0.15. 

Figure 1. Dynamics of the proposed system with the variation of the parameter g: (a) Bifurcation
diagram; (b) Lyapunov exponents (LEs).
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Figure 2. Phase diagrams of the proposed system with b = 0.7 and (a) g = −3.5, (b) g = −2.5, (c) g = −1.5,
(d) g = −0.15.

Let a = 1.05, c = 0.19, e = 1.37, f = 1.79, g = −0.15, and vary the system parameter g from 0.2
to 1 with a step size of 0.0032. By setting the initial conditions as [x0, y0, z0, w0] = [−0.1, 2.05,−1,−3.55],
the bifurcation diagram and LEs of the system are as illustrated in Figure 3. As can be observed in
Figure 3a, the system enters chaos with period-doubling bifurcation, and the size of the attractors
increases with the parameter b, which is also verified by the phase diagrams shown in Figure 4.
Meanwhile, the maximum LEs increase with parameter b, thus suggesting that the system with a larger
parameter has a relatively higher complexity.
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2.2. Coexisting Attractors

By establishing a = 1.05, b = 0.7, c = 0.19, e = 1.37, and f = 1.79, the coexisting attractors in
the proposed jerk system are investigated in this section. When the system parameter g is set as −1.5
and the initial conditions are set as [x0, y0, z0, w0] = [−0.1, 2.05,−1,−3.55], the yellow chaotic attractor
is as shown in Figure 5a. Meanwhile, the coexisting percircles are also observed, where the red,
blue and magenta color periodic circles have the initial conditions [x0, y0, z0, w0] = [−0.1, 2,−1,−4],
[x0, y0, z0, w0] = [−0.1,−0.2,−1,−0.4], and [x0, y0, z0, w0] = [−0.1, 2.05,−1,−3.55], respectively. On the
other hand, if g = −2, the multiple coexisting periodic attractors are as shown in Figure 5b. In this case,
the initial conditions for the green, red, blue and magenta color periodic circles are [x0, y0, z0, w0] =

[−0.1,−0.9,−1, 3.25], [x0, y0, z0, w0] = [−0.1, 2,−1,−4], [x0, y0, z0, w0] = [−0.1,−0.2,−1,−0.4], and
[x0, y0, z0, w0] = [−0.1, 2.05,−1,−3.55], respectively. To further explore the coexisting dynamics,
the basin attraction of the system with g = −0.15 and g = −2 is as presented in Figure 6, where y0

and w0 vary from −5 to 5 with a step size of 0.05. As can be seen, the proposed jerk system has
coexisting attractors.
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Figure 6. Basin attraction plots of the proposed system in the initial plane y0-w0 with (a) g = −1.5, and
(b) g= −2.

In Equation (1), the coefficient of y2 is considered to have a negative value, and in this condition a
series of period-doubling cascades is detected, as displayed in Figures 7 and 8. To plot the bifurcation
diagrams, the system parameter g is considered within the interval [−4, 0.75]. The forward and
backward results are illustrated in Figures 7 and 8, respectively. As can be observed in these figures,
chaotic, periodic, and period-doubled states exist in the forward bifurcation, while only periodic states
exist in the backward bifurcation, which shows multiple attractors.
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𝑁
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transform as 
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2𝜋

𝑁
𝑛𝑘

, (3) 

being k = 0,1,2, … , N − 1.  In this step, the irregular part of the series is moved. Thus, the first step is 

to calculate the threshold value 𝐺𝑁 =
1

𝑁
∑ |𝑋(𝑘)|2𝑁−1

𝑘=0 .

The second step is to introduce a control parameter r, and to redefine the frequency as 

�̃�(𝑘) = {
𝑋(𝑘) 𝑖𝑓 |𝑋(𝑘)|2 > 𝑟𝐺𝑁

0 𝑖𝑓 |𝑋(𝑘)|2 ≤ 𝑟𝐺𝑁

. 
(4) 

Finally, the inverse Fourier transform of the new frequency �̃�(𝑘) is given by 

�̃�(𝑛) =
1

𝑁
∑ �̃�(𝑘)𝑒

𝑗2𝜋𝑛𝑘

𝑁𝑁−1
𝑘=0 , (5)

Figure 8. A backward bifurcation diagram of the system parameter g, when c = −0.19.

2.3. Hidden Chaotic Attractor

Self-excited and hidden oscillations in which one or both may occur in chaotic flows are defined
by the following definition:

Definition 1. “If basin of attraction in a system intersects with any open neighborhood of equilibrium, then the
attractor of the system is a self-excited attractor; otherwise, it is a hidden attractor [43].”

By considering f (x, y, z, w, t) = 0 in the proposed system as shown in Equation (1), and choosing
b and g nonzero parameters with the same signs, then there are no equilibria. Hence, in this situation
and according to Definition 1, the attractor of the proposed system in Equation (1) is hidden.

3. Complexity Analysis

In this section, the complexity of the analyzed four-dimensional chaotic system is measured by
employing a multiscale C0 (MC0) complexity measure. From a mathematical point of view, with the
given time series

{
x(n), n = 0, 1, 2, . . . , N − 1

}
, its current part must be removed by

x(n) = x(n) − x, (2)

where x = 1
N

∑N−1
n=0 x(n). Then, the spectral content of the time series can be estimated by the Fourier

transform as
X(k) =

∑N−1

n=0
x(n)e− j 2π

N nk, (3)

being k = 0, 1, 2, . . . , N− 1. In this step, the irregular part of the series is moved. Thus, the first step is

to calculate the threshold value GN = 1
N

∑N−1
k=0

∣∣∣X(k)
∣∣∣2.

The second step is to introduce a control parameter r, and to redefine the frequency as

X̃(k) =

X(k) i f
∣∣∣X(k)

∣∣∣2 > rGN

0 i f
∣∣∣X(k)

∣∣∣2 ≤ rGN
. (4)

Finally, the inverse Fourier transform of the new frequency X̃(k) is given by

x̃(n) =
1
N

∑N−1

k=0
X̃(k)e

j2πnk
N , (5)

where n = 0, 1, . . . , N − 1. Clearly, x̃(n) keeps the regular part of x(n). The C0 complexity measure is
then estimated by obtaining the ratio between the summation of the irregular part and that of the
original time series, i.e.,
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C0(x, r, N) =

∑N−1
n=0

∣∣∣x(n) − x̃(n)
∣∣∣2∑N−1

n=0

∣∣∣x(n)∣∣∣2 . (6)

To get a better measure result, the MC0 complexity measure algorithm [25] is employed, which is
given by

ys( j) =
1
s

∑ js

i=( j−1)s+1
x(i), (7)

where 1 ≤ j ≤ N/s,
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is the floor function, and s is the scale factor. As a result, the MC0 measure is
given as

MC0(x, r, s, N) =
1
s

∑s

i=1
C0(ys, r, N). (8)

In the present work, the maximum scale factor is chosen as s = 20. Figures 9 and 10 show
the MC0 complexity analysis results of the proposed system as functions of the parameters g and b.
To obtain these results, the initial condition of the system is [x0, y0, z0, w0] = [−0.1, −0.2, −0.3, −0.4] and
time series of 20,000 points from the variable x(n) is used, where the first 10,000 points are removed.
In Figure 9, the parameter g varies from −4 to 0 with a step size of 0.016. In Figure 10, the parameter b
increases from 0.2 and 1 with an increment of 0.0032. It should be noted in Figures 9 and 10 that the
complexity increases with the parameters g and b and maintains steadiness at the end. In Figure 10,
the parameter g varies from −4 to 0 with a step size of 0.04, while the parameter b varies from 0.2 to 1
with a step size of 0.008. The MC0 and the maximum LEs-based contour plots show that the system has
higher complexity in the right size of the parameter plane, thus suggesting that the system is chaotic or
has higher complexity for the larger values of g. Meanwhile, when g > −3, the system has a wider
complexity region with a larger parameter b. Thus, in real applications, the system can have a higher
complexity with relatively larger parameters g and b.
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4. FPGA Implementation

Following the methodology provided in [54,55], the FPGA implementation of the proposed
system in Equation (1) is completed by applying the forward Euler method, and it is carried out on the
discretization of the chaotic system, such that

xn+1 = xn + h(yn),
yn+1 = yn + (hzn),
zn+1 = zn + h(wn),

wn+1 = wn + h
(
−awn + bxn

2
− cyn

2 + exnyn + f xnzn + g
)
,

(9)

where h is the step size, and the initial condition [x(0), y(0), z(0), w(0)] = [0,−1, 0,−1.5]. Fixed-point
operation is used for the hardware implementation to obtain higher speed and a lower cost [75].
Furthermore, the N-bits 2′s complement representation is used because it is able to represent numbers
over the range

{
−2N−1, 2N−1

− 1
}
. In the present work, 32 bits are used, where the most significant bit

represents the sign, 10 bits are used to express the integer part, and 21 bits to express the fractional part.
From Equation (3), it is possible to identify the algebraic operations and perform the VHDL

design. Figure 11 shows the block connection of the state variables xn+1 and wn+1, where the adder
and multiplier blocks present clock (CLK) and reset (RST) signals to make the system synchronous [55].
By following the same methodology, all blocks connecting the state variables yn+1 and zn+1 are
also designed.
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Figure 12 shows the complete implementation of the system. Briefly, a multiplexer (MUX) is used
to obtain the values of xn, yn, and zn, where at the first iteration, the outputs are equal to the initial
conditions. While only three clock cycles are required to calculate the values of xn+1, yn+1, and zn+1,
it takes seven clock cycles to obtain the value of wn+1. Therefore, to obtain the results of the state
variables at the same instant of time, the Enable signal connected to the register is activated every eight
clock cycles.
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Figure 12. Implementation of the proposed four-dimensional chaotic jerk system.

Finally, it should be noted that this work is based on using the FPGA Cyclone IV GX FPGA
DE2i–150 from Altera and the digital-to-analog converter DAS1612. Figure 13 shows the experimental
results and Table 1 lists the used resources. As can be seen in this table, the latency achieved is equal to
105.9 ns.
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Table 1. FPGA resources used for the real-time implementation of the proposed system.

Resources Used

Total logic elements 1652/149,760 (1%)
Total registers 946

Total pins 25/508 (5%)
Total virtual pins 0
Total memory bits 192/6, 635, 520 (<1%)

Embedded multiplier 9-bit elements 92/720 (13%)
Latency 105.9 ns

5. Controller Design

By defining x1 = x, x2 = y, x3 = z, x4 = w, the state space of the proposed system in the presence
of a disturbance is described as follows:

.
xi = fi(x), i = 1, 2, 3
.
x4 = f4(x) + u + d(t),
y = x1,

(10)

where fi(x) = xi+1 for i = 1, 2, 3, f4(x) = −ax4 + bx2
1 − cx2

2 + ex1x2 + f x1x3 + g, and d(t) consists of an
external disturbance.

Disturbance Observer-Based SMC

A nonlinear disturbance observer is used to monitor external disturbances. The tracking error of
the system is given by

ei = xi − xd_i, (11)

where xd_iis the desired state. The sliding mode function for SMC is considered as

S = c1 e1 + c2
.
e1 + c3

..
e1 + c4

.
e1, (12)

where c1, c2, c3, c4 are design parameters and should be chosen as positive constants. As proposed
in [76], a nonlinear disturbance observer to estimate the disturbance d̂ of the system described in
Equation (10) is considered as

.
z =

.
d̂−

∂p(x)
∂x

.
x = −l(x)z− l(x)(p(x) + f4(x) + u),

d̂ = z + p(x),
(13)
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where p(x) is a function to be designed, and it is related to the observer gain function l(x) as follows:

− l(x) =
∂p(x)
∂x

. (14)

The parameter d̃ is introduced as
d̃ = d− d̂, (15)

and then, according to [76], for the proposed disturbance observer, it can be obtained that

.

d̃ +
∂p(x)
∂x

d̃ = 0, (16)

when the gain l(x) or p(x) is designed such that l(x) > β > 0. In this condition, d̃(t) is globally
exponentially convergent to zero with a rate of e−βt as t→∞ . The control input signal based on SMC
with the disturbance observer is then designed as

u = − 1
c4

(
c1x1 + c2x2 + c3x3 + c4 f4(x) − c1

.
xd1 − c2

.
xd2 − c3

.
xd3 − c4

.
xd4 + c4d̂ + α sign(s) + |c4s|2

β(x)

)
, (17)

whereα, c1, c2, c3 and c4 are design parameters,α > 0 and c1, c2, c3, c4 are chosen such that c1, c2, c3, c4 , 0.
The stability of this controller is proved if the Lyapunov function candidate is given by

V
(
s, d̃

)
=

1
2

s2 +
1
2

d̃2, (18)

and the time derivative of the Lyapunov function candidate is as follows:

.
V
(
s, d̃

)
= s

.
s + d̃

.

d̃. (19)

Considering Equations (10), (12), and (16), Equation (19) expands to

.
V = s(c1 (x1 − xd1) + c2(x2 − xd2) + c3(x3 − xd3) + c4(x4 − xd4)) −

∂p(x)
∂x

d̃2

= s((c1 (x1 − xd1) + c2(x2 − xd2) + c3(x3 − xd3) + c4( f4 (x) + u + d(t) − xd4))+
∂p(x)
∂x

d̃2.
(20)

Substituting Equation (17) into Equation (20), it is obtained that

.
V = sc4

(
d− d̂

)
+

∂p(x)
∂x d̃2

− sα sign(s) − |c4s|2

β(x) = sc2d̃ + ∂p(x)
∂x d̃2

− sα sign(s) − |c4s|2

β(x) . (21)

By considering β(x) = ∂p(x)
∂x > 0 , it can be then obtained that

.
V ≤ |sc4|

∣∣∣∣d̃∣∣∣∣− β(x)∣∣∣∣d̃∣∣∣∣2 − |c4s|2

β(x)
− sα sign(s) = −

√β(x)∣∣∣∣d̃∣∣∣∣− |c4s|√
β(x)

2

−sα sign(s) ≤ −sα sign(s). (22)

This last equation confirms that
.

V < 0 for any s , 0, and this consequently guarantees the
steady-state tracking performance.

6. Numerical Simulations

In the previous section, the robust controller was designed to suppress the chaotic behavior in the
proposed system. The simulation of this control scheme is now presented and discussed. The system
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parameters are chosen as a = 1.05, b = 0.7, c = 0.19, e = 1.37, f = 1.79, and g = 0. The initial
conditions are considered as

IC = [x(0), y(0), z(0), w(0)] = [0.5,−1, 1.5, 0]. (23)

Furthermore, the parameters of the disturbance observer-based sliding mode tracking control are
considered as

c1 = 2, c2 = 1, c3 = 3, c4 = 1, p = x4, l = 15, and β(x) = 10. (24)

The case in which the system is in the presence of unknown external disturbance is as follows:

d(t) = 0.1 sin(t) + 0.1 cos(2t). (25)

Figures 14 and 15 depict the stabilized states of the system. As illustrated in these figures, the states
of the system converge to zero using the disturbance observer-based SMC even when there exist
unknown time-varying disturbances. Furthermore, Figure 16 shows the time history of the sliding
surface. Based on Figures 14 and 16, it could be confirmed that the proposed controller stabilizes
the system in a short period of time. The control input signal is shown in Figure 17. The bound of
the control input has an appropriate value, which could be applied to a real system using common
actuators. Moreover, values of the actual and estimated disturbances are displayed in Figure 18. As can
be observed, the designed disturbance observer accurately estimates nonlinear disturbances in the
system, and this method can dramatically improve the performance of the controller.
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7. Conclusions

A four-dimensional chaotic jerk system with specific features was presented in this work.
The complex dynamical behavior of the system was first investigated by making use of phase diagrams,
bifurcation diagrams, and multiscale C0 complexity. The obtained results show that the system presents
chaotic behavior after a period-doubling bifurcation, as well as that its complexity increases with
the parameters g and b. The existence of coexisting attractors and hidden attractors in the proposed
system was also verified. Moreover, to support the possible application of the system in real-world
engineering processes, a FPGA-based implementation was described and confirmed. Finally, a robust
control technique was designed, and its ability to suppress the chaotic behavior of the system in a
short period of time, even in the presence of unknown time-varying disturbances, was proven through
numerical simulations. As a future suggestion, engineering applications such as voice encryption of
the proposed system could be studied.
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