
symmetryS S

Article

MHD Bioconvection Flow and Heat Transfer of
Nanofluid through an Exponentially Stretchable Sheet

Mohammad Ferdows 1,*, Khairy Zaimi 2, Ahmed M. Rashad 3 and Hossam A. Nabwey 4,5

1 Research Group of Fluid Flow Modeling and Simulation, Department of Applied Mathematics,
University of Dhaka, Dhaka 1000, Bangladesh

2 Institute of Engineering Mathematics, University Malaysia Perlis, Perlis 92600, Malaysia;
khairy@unimap.edu.my

3 Department of Mathematics, Faculty of Science, Aswan University, Aswan 81528, Egypt;
am_rashad@yahoo.com

4 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin
Abdulaziz University, Al-Kharj 11942, Saudi Arabia; eng_hossam21@yahoo.com

5 Department of Basic Engineering Science, Faculty of Engineering, Menoufia University,
Shebin El-Kom 32511, Egypt

* Correspondence: ferdows@du.ac.bd

Received: 2 February 2020; Accepted: 3 April 2020; Published: 1 May 2020
����������
�������

Abstract: Recently, bioconvection phenomenon has gained great importance in research for its
use in many engineering and biological applications. Therefore, this work investigates the
magnetohydrodynamic flow of a dissipative nanofluid, including gyrotactic microorganisms along an
exponentially moving sheet. Since the governing equations that describe the problem are nonlinear
and more complicated, similarity transformations are used to get a reduced mathematical model
in which all the differential equations are ordinary and asymmetric. The computational analysis
for the reduced mathematical model is carried out, employing the spectral relaxation technique
(SRM) via software called MATLAB. Comparison results are also validated by using the boundary
value problem solver (bvp4c) in MATLAB. The obtained results were compared with previously
published researches, and a high degree of compatibility and accuracy were found symmetric. The
implications of pertinent parameters on velocity, temperature, nanoparticles volume fraction, and
density of the microorganism profiles are graphically presented. A decline was seen in the velocity
field with augmentation in the magnetic parameter, but certain enhancement was noticed in the
temperature field for augmented values of the magnetic parameter, thermophoresis, and Brownian
motion parameters. A significant reduction was also noticed in the behavior of the concentration
profile for augmented values of the Brownian motion parameter and Lewis number, while it was
enhanced with the boost in the thermophoresis and magnetic parameters. The results also indicated
that the density of the motile microorganism decreases with bioconvection Lewis number, Prandtl
number, Lewis, and Peclet numbers.

Keywords: bioconvection; magnetohydrodynamics; nanofluid; gyrotactic microorganisms; exponentially
stretchable sheet

1. Introduction

There is significant interest from researchers in recent years towards studying the heat transport
of nanofluid through a stretchable sheet due to its significance in an enormous range of engineering
and industrial implementations. According to the symmetric physical and chemical characteristic
of nanofluids, in addition to their superior thermal performance, nanofluids can effectively be
used in a wide variety of potential applications, such as in heat exchangers, radiators, domestic
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refrigerator-freezers, glass blowing, electronic cooling systems (such as flat plate), crystal growing, solar
water heating, paper production, and improving diesel generator efficiency, etc. The term “nanofluid”
was first investigated by Choi [1] by introducing a comprehensive model to enhance the thermal
properties of the base fluids. Then, many studies were conducted to show the ability of asymmetric
nanoparticles to improve the heat transfer coefficient by increasing the thermal conductivity of the
working fluid. Hadavand et al. [2] introduced a numerical study on the impact of mixed convection
of Ag-water nanofluid inside a sim-circular lid-driven cavity on the temperature of an electronic
silicon chip. Pourfattah et al. [3] investigated the thermal properties of a manifold microchannel heat
sink subjected to nanofluid with the aid of two-phase flow simulation. Bazdar et al. [4] presented
a numerical study of turbulent flow and heat transfer of nanofluid inside a wavy microchannel
considering different wavelengths. Asadi et al. [5] submitted a comprehensive review to explain the
effect of sonication characteristics on stability, symmetry thermophysical properties, and heat transfer of
nanofluids. Asadi et al. [6] investigated the methods of preparation and thermophysical characteristics
of oil-based nanofluids. Alarifi et al. [7] improved the behavior adaptive neuro-fuzzy inference system
for predicting the thermophysical properties of Al2O3-multi-walled carbon nanotubes/thermal oil
hybrid nanofluid by hyperdization of metaheuristic optimization techniques. Asadi et al. [8] conducted
an experimental study on the impact of ultrasonication time on stability and thermal conductivity
of MWCNT-water nanofluid. Nabwey et al. [9] studied mixed convection stagnation-point flow of
non-Newtonian nanofluid over a vertical stretching surface. After that, many scientists and engineers
worked in the same line, and many published papers take the presence of nanofluids and magnetic field
into consideration, as well as linear/nonlinear thermal radiation, chemical reaction, porosity [10–15], etc.

Bioconvection can be defined as the phenomenon of macroscopic convection motion of the
fluid generated by the density gradient, which was developed by directional collective swimming of
microorganisms [16,17]. These motile microorganisms can be classified according to the cause
of implement to gyrotactic, oxytactic, gravitaxis and chemotaxis. These self-propelled motile
microorganisms want to accumulate near the upper portion of the fluid layer so they move there, which
builds up a dense upper surface and becomes unstable/destabilized. Then, the upward swimming
causes a crumbling of microorganisms and the development of macroscopic convection. Bioconvection
can be found in wide range of applications such as biological applications and biomicrosystems,
the pharmaceutical industry, biological polymer synthesis, environmentally-friendly applications,
sustainable fuel cell technologies, microbial enhanced oil recovery, biosensors and biotechnology, and
continuous refinements in mathematical modelling. Laboratory and field testing enhancements are
required to improved design of such systems. Kuznetsov [18] introduced the concept of nanofluid
bioconvection for the first time. Then Alloui et al. [19] investigated the configuration of gravitactic
microorganisms in a cylinder with Navier–Stokes equations. The Stefan blowing effect on bioconvection
nanofluid flow over a moving stretching/shrinking sheet was introduced by Uddin et al. [20]. Dhanai et
al. [21] explained that the hydromagnetic bioconvection slip flow was induced by an inclined sheet, and
identified dual solutions taking into consideration the stability analysis of these solutions. After that,
the free bioconvective flow of a nanofluid containing gyrotactic microorganisms passing a radiating
vertical plate was proposed by Chamkha et al. [22]. Recently, Rashad et al. [23,24] discussed the mixed
bioconvection of a nanofluid flow with gyrotactic microorganisms over a vertical slender cylinder.

Acutely concerning the above highlighted survey, it was observed that the bioconvection influence
in the flow of dissipative magneto-nanofluid in presence of gyrotactic microorganisms along an
exponentially moving surface has not been exhibited yet. Unlike the representative investigation, flow
was induced by an exponentially accelerated surface in this study. It was carefully analyzed that such
features were not examined, and consequently our goal is to fill this gap. Thus, the current work
aims to explain the heat transfer characteristics of the magnetohydrodynamics (MHD) bioconvection
flow and heat transfer of nanofluid over an exponentially stretching sheet. The effects of asymmetric
governing parameters, namely the magnetic parameter, the thermophoresis parameter, Brownian
motion parameter, Prandtl number, Lewis number, Peclet number, bioconvection Lewis number, and
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the bioconvection parameter on the flow, concentration, density of the motile microorganism, and
thermal field are investigated. Fluid flow over exponentially moving configurations have demonstrated
applications, even in recent days, due to physical and industrial applications such as several geophysical
systems, petrochemical industry, polymer processing, glass production, manufacturing processes, hot
rolling etc. The current study was performed by simulating the magnetohydrodynamic flow of a
nanofluid containing gyrotactic microorganisms over an exponentially stretching sheet. Similarity
transformations are used to get a reduced mathematical model, the computational analysis is carried
out using the spectral relaxation method (SRM), the behavior of the pertinent parameters is investigated
graphically, and a comparison with previous literature was done.

2. Mathematical Modeling

Considering 2D steady, laminar boundary layer dissipative nanofluid flow containing gyrotactic
microorganisms through an exponentially stretchable surface, the flow geometry of the investigation is
exhibited in Figure 1. Flow formulation is developed by addressing the effectiveness of magnetic field,
viscous dissipation, thermophoresis, and Brownian motion. The x and y pivots are considered along
the pivotal trend of the exponentially stretchable surface, and perpendicular to y-axis respectively.
The stretching velocity, Uw(x), is presumed to vary as Uw(x) = ax, where a is plus constant. It was
also presumed that the constant of temperature, nanoparticle volume fraction, and density of motile
microorganisms at the stretchable surface were Tw, Cw, and nw, respectively; and they were also
presumed to be constants far from the stretchable surface T∞, C∞, and n∞, respectively. Velocity
components, u and v, were taken through the x and y axes, respectively. A constant magnetic strength,
B0, was acted in the y-trend. Note that the flow encouraged by bioconvection occupies a place in
elevated nanoparticles suspension, with a view to obtain the release of inhibiting bioconvection.
According to these assumptions, the governing equations concerning the present investigation can be
addressed as (see Rashad et al. [23], Babu and Sandeep [25], and Khan and Pop [26]);
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Thermal energy equation:

u
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∂x

+ v
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= α

(
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∂y2

)
−
σeB2

0

ρ
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(
∂u
∂y

)2

+ τ

DB

(
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∂y
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)
+

DT
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(
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∂y

)2 (3)

Nanoparticles equation:

u
∂C
∂x

+ v
∂C
∂y

= DB

(
∂2C
∂y2

)
+

DT

T∞

(
∂2T
∂y2

)
. (4)

Conservation equation for microorganisms:

u
∂n
∂x

+ v
∂n
∂y
−Dn

(
∂2n
∂y2

)
+

dWc

Cw −C∞
∂
∂y

(
n
∂C
∂y

)
= 0. (5)

Subject to:
u = Uw, v = 0, T = Tw = T∞ + T0ex/2L at y = 0
C = Cw = C∞ + C0ex/2L, n = nw = n∞ + n0ex/2L (6)

u→ 0, T→ T∞, C→ C∞, n→ n∞ as y→∞. (7)

where T stands for the nanofluid temperature. C stands for the nanoparticle volume fraction. n stands
for the number density of motile microorganisms. σe stands for the electrical conductivity. υ, µ and
α stand for are the kinematic viscosity, dynamic viscosity and thermal diffusivity of the nanofluid.
ρ stands for the nanofluid density. T0, C0, and n0 stand for the constants which measure the rate of
surface temperature, nanoparticle volume fraction, and density of motile microorganisms, respectively.
DB stands for the Brownian diffusion coefficient. Dn stands for the diffusivity of microorganisms. Wc

stands for the maximum cell swimming speed. DT stands for the thermophoretic diffusion coefficient.
τ = (ρc)p/(ρc) f stands for the ratio between the effective heat capacity of the nanoparticle material
(ρc)p and heat capacity of the fluid (ρc) f . L stands for the sheet length.

The Equations (1) to (7) can be transformed to dimensionless forms by using the following
non-dimensional variables (similarity transformations)

u = Uwex/2L f ′, v = −
√
υUw
2υL ex/2L( f + η f ′),ψ =

√
2υUwLex/2L f

χ(η) = n−n∞
nw−n∞ ,θ(η) = T−T∞

Tw−T∞ ,φ(η) = C−C∞
Cw−C∞ , η = y

√
Uw
2υL ex/2L,

(8)

where ψ stands for the stream function determining the continuity equation (Equation (1)). f (η)
stands for the dimensionless stream function. f ′(η) stands for the dimensionless velocity profile. θ(η)
and φ(η) stand for the dimensionless nanofluid temperature and the nanoparticle volume fraction
in the boundary layer region, respectively. χ(η) stands for the dimensionless density of motile
microorganisms, and η stands for similarity variable or dimensionless coordinate.

By substituting Equation (8) into Equations (1) to (5), the transformed equations are:

f ′′′ + f f ′′ − 2 f ′2 −M f ′ = 0 (9)

θ′′ + NbPrθ′φ′ + Pr fθ′ + PrNtθ′2 + PrEc f ′′ 2 − Pr f ′θ = 0 (10)

φ′′ + Le fφ′ +
( Nt

Nb

)
θ′′ = 0 (11)

χ′′ + 2LbPr fχ′ − Pe(φ′χ′ + χφ′′ + σφ′′ ) = 0 (12)
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The related boundary conditions (6)–(7) become:

f = 0, f ′ = 1,θ = 1,φ = 1,χ = 1 as η = 0,
f ′ → 0,θ→ 0,φ→ 0,χ→ 0 as η→∞,

(13)

where prime symbolizes differentiation with regard to η, the magnetic field parameter M =
σB2

0
ρa ,

thermophoresis parameter Nt =
(
(ρc)pDB(Tw−T∞)

υT∞(ρc) f

)
, Brownian motion parameter Nb =

(
(ρc)pDB(Cw−C∞)

υT∞(ρc) f

)
,

Prandtl number Pr =
µcp
κ , Peclet number Pe = dWc

Dn
, Lewis number Le = υ

DB
, bioconvection Lewis

number Lb = α
Dn

, bioconvection parameter σ = n∞
nw−n∞ , and Eckert number Ec = µa

ρcp(Tw−T∞)
.

3. Spectral Relaxation Method

In this study, SRM is utilized to solve the transformed differential Equations (9)–(12) according
to the boundary conditions (13). Generally, SRM is developed based on modest iteration modes,
established by decreasing the order of the momentum equation by reconfiguring the performing
governing nonlinear ordinary differential equation systems. SRM also did not need any appraisal
of perturbation, derivatives, and linearization, unlike other iterative numerical schemes for solving
nonlinear systems of ordinary differential equations (Motsa, [27]). As discussed by Motsa and
Makukula [28], SRM is designed for solving a set of coupled nonlinear differential equations where the
governing unknown functions have exponentially decaying profiles. For at least one set of related
profiles, for example, when velocity profile and temperature profile decays exponentially, SRM is
identified as one of the best methods for solving boundary layer problems (Motsa & Makukula [28]).
In addition, SRM is preferred in solving the present study due to its great accuracy and for subsequent
solutions and discretization of variable-coefficient linear differential equations, with convenient
solutions through modest ranges (Motsa & Makukula [28]). In order to discretize the transformed
Equations (9)–(12), the following SRM algorithm [27–29] is used:

Algorithm 1: Spectral Relaxation Method

Step 1: Introducing the transformation: f ′(η) = F(η).
Step 2: Depict the original equation in terms of F(η) to decrease the order of the momentum equation for
f (η) F(η).
Step 3: Assume that F(η), θ(η), φ(η), χ(η) are similar to the former iteration (indicated by fr(η), θr(η),
φr(η), and χr(η)).
Step 4: Construct an iteration scheme for F(η), θ(η), φ(η), and χ(η).
Step 5: Assume that only linear terms in F(η), θ(η), φ(η), and χ(η) are to be estimated at the present
iteration scale (indicated by Fr+1(η), θr+1(η), φr+1(η), χr+1(η)), and all other terms are presumed to be
similar to the former iteration.

It is worth noting that the above strategy is similar to the Gauss–Seidel method for decoupling linear
algebraic systems of equations. After applying the previous algorithm, a series of linear differential
equations (DE) with constant coefficients are generated, which can be solved by using Chebyshev
spectral collocation patterns. Spectral patterns are chosen due to their high accuracy and can give smooth
solutions over simple domains. After applying the previous algorithm, Equations (9)–(13) became:

f ′′′ r+1 + fr f ′′ r+1 − 2 f ′r
2
−M f ′r+1 = 0 (14)

θ′′ r+1 + NbPrθ′r+1φ
′

r + Pr fr+1θ
′
r+1 + PrNtθ′r2 + PrEc f ′′ r+1

2
− Pr f ′r+1θr+1 = 0 (15)

φ′′ r+1 + Le fr+1φ
′

r+1 +
( Nt

Nb

)
θ′′ r+1 = 0 (16)

χ′′ r+1 + 2LbPr fr+1χ
′
r+1 − Pe

(
φ′r+1χ

′
r+1 + χr+1φ

′′

r+1 + σφ′′ r+1

)
= 0 (17)
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Fr+1(0) = 1; Fr+1(∞) = 0
θr+1(0) = 1; θr+1(∞) = 0
φr+1(0) = 1; φr+1(∞) = 0
χr+1(0) = 1; χr+1(∞) = 0

Utilizing the Chebychev spectral collocation technique we get:

A1Fr+1 = B1

A2Fr+1 = B2

A3θr+1 = B3

A4φr+1 = B4

A5χr+1 = B5

where,
A1 = D2 + diag[ fr]D−MI

B1 = 2F′r

A2 = D

B2 = Fr+1A3 = D2 + diag
[
NbPrφ′r + Pr fr+1

]
D− Prdiag[F]

B3 = −PrNtθ′r2
− PrEcF′2

A4 = D2 + diag[Le fr]D

B4 = −
Nt
Nb
θ′′ r+1

A5 = D2 + diag
[
2LbPr fr+1 − Peφ′r+1

]
D− Pediag

[
φ′′ r+1

]
B5 = Peσφ′′ r+1

4. Results and Discussion

In this segment, we have converted the governing Equations (2)–(5) with boundary conditions
(6)–(7) employing proper similarity variables, and obtained the converted Equations (9)–(12) with
boundary condition (13). Therefore, the data are revealed in graphical form for various values of
parameters, such as thermophoresis parameter, Nt; Brownian motion parameter, Nb; magnetic field
parameter, M; Peclet number, Pe; Prandtl number, Pr; bioconvection Lewis number, Lb; Lewis number,
Le; and bioconvection constant, σ. To confirm the obtained outcomes, the current outcomes for of
local Nusselt number −θ′(0) were compared with those gained by Bidin and Nazar [30] for the
status of viscous fluid by putting Nt = Nb = Le = Lb = Pe = M = Ec = σ = 0 in Equations
(9)–(12) and neglecting the Eckert number, Ec, and radiation number, K, i.e., by setting Ec = 0
and K = 0 in Equation (10) of that paper. The comparison results are also validated by using the
boundary value problem solver (bvp4c) in MATLAB software. In Table 1, the values of local Nusselt
number −θ′(0) were compared with those performed by Magyari and Keller [31], El-Aziz [32], and
Loganthan and Vimala [33] for the case of magneto-nanofluid flow through a permeable exponentially
radiating stretchable surface in a stratified medium. The comparison was performed by removing the
gyrotactic microorganisms (by removing Equation (12)) and putting the magnetic parameter, M = 0;
the stratification parameter, St = 0; the radiation parameter, Nr = 0; the suction parameter, fw = 0;
and volume fraction, φ = 0, in Equations (12) to (14) of the paper by Loganthan and Vimala [33].
The comparisons, as indicated in Table 1, exhibit an excellent agreement, thus giving certainty to
the outcomes that will be performed for the bioconvection case. We used the SRM technique to
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discretize our converted Equations (13) to (17) and used MATLAB to get our demand data. In this
study, numerical solutions are obtained for the various values of governing parameters used, especially
for Eckert number, Ec = 0.01, and the Brownian motion parameter, Nb > 0, which is calculated and
fixed throughout this problem.

Table 1. Comparison of of local Nusselt number −θ′(0) for various values of Pr for Nt = Nb = Le =
Lb = Pe = M = Ec = σ = 0.

Pr Bidin and
Nazar [30]

Magyari and
Keller [31] El-Aziz [32] Loganthan and

Vimala [33] Present Study

SRM Bvp4c

1 0.9547 0.954782 0.954785 0.954955 0.9548 0.954782

1.5 1.2348 1.234755

2 1.4714 1.4715 1.471460

2.5 1.6802 1.680229

3 1.8691 1.869075 1.869074 1.869074 1.8691 1.869073

5 2.500135 2.500132 2.500184 2.5001 2.500131

7 3.0133 3.013277

10 3.660379 3.660372 3.660379 3.6604 3.660372

20 5.3016 5.301625

Figures 2–5 are designed to scrutinize the effectiveness of magnetic parameter, M, on the nanofluid,
velocity, temperature, nanoparticle volume fraction, and density of the motile microorganism curves.
It is evident from Figure 2 that escalating estimations of magnetic field strength decreases the velocity
profile. This is because the magnetic field is based on Lorentz force theorem. M means more impact
between the fluid atoms, which yields more resistive force to fluid flow. In detail, magnetic field effect
develops a resistance force, also known as Lorentz force, which works obverse to flow range (see
Figure 2) and indirectly promotes the thermal boundary layer thickness, as depicted in Figure 3. As
a result, the greater reversing force decreases the fluid flow, and the velocity field declines. It was
also seen that the magnetic parameter assists in improving the temperature and volume fraction near
the surface, and the thermal and nanoparticle concentration boundary layer thicknesses, as shown in
Figures 3 and 4. These observations may occur because of the manifestation of additional heat to the
flow to increase the magnetic parameter, M. Therefore, the temperature, concentration, and gyrotactic
microorganism boundary layer escalate with larger M, as depicted in Figures 3–5.

Figures 6–8 revealed the effectiveness of Prandtl number, Pr, on the temperature, nanoparticle
fraction, and density of the motile microorganism curves. From Equation (9), it was noted that the
velocity was not affected by Prandtl number. It was seen that the temperature and its thermal boundary
layer thickness declined with the boost in Pr, as illustrated in Figure 6. Physically, as Pr was boosted, the
thermal diffusivity declined, and consequently led to the reduction in the ability of energy that declined
the thermal boundary layer. As elucidated in Figure 7, it was noticed that the concentration boundary
layer thicknesses were increased with the boost in Pr. Figure 8 was sketched to see the influence
of the Pr on the density of motile microorganisms (χ(η)). It was noted that the density of motile
microorganisms increased with the raise in Pr. It was characterized that the motile microorganism
came down for higher Pr because their boundary layer thicknesses scaled down for larger Pr. In other
words, the amount of gyrotactic microorganisms reduced due to the growth in Pr.
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Figure 5. The density of the motile microorganism profile (χ(η)) for different values of M when
Nb = 0.5, Nt = 0.1, Le = 5, Lb = 0.5, Pe = 0.3, σ = 0.2, Pr = 0.71, Ec = 0.01.
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Figure 8. The density of the motile microorganism profile (χ(η)) for different values of Pr when
M = 0.5, Nb = 0.5, Nt = 0.1, Le = 5, Lb = 0.5, Pe = 0.3, σ = 0.2, Ec = 0.01.

Variation in thermophoresis parameter (Nt) on the temperature and nanoparticle fraction curves
are demonstrated in Figures 9 and 10. It was found from Figures 9 and 10, that the thermophoresis
parameter, Nt, strongly enhanced both the temperature and nanoparticle fraction. Physically, this
phenomenon occurs because thermophoresis parameter raises the density of the thermal boundary
layer. Therefore, temperature increases with the increase in thermophoresis parameter, as shown in
Figure 9. In detail, the upsurge in Nt causes an escalation in both the temperature and nanoparticle
volume fraction curves. Physically, in thermophoresis phenomena, the tiny particles of the fluid are
pulled back from the warm to cold area. Then, the particles of the nanofluid move back from the
surface, which is heated, and consequently temperature, thermal boundary layer, and nanoparticle
volume fraction profiles are enhanced. Ultimately, the velocity and density of the motile microorganism
curves are not influenced by Nt.
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Figure 10. The nanoparticle volume fraction profile (φ(η)) for different values of Nt when M =

0.5, Nb = 0.5, Pr = 0.7, Le = 5, Lb = 0.5, Pe = 0.3, σ = 0.2, Ec = 0.01.

Figures 11 and 12 presented the impact of Brownian motion parameter, Nb, on the temperature
and nanoparticle volume fraction curves. It was observed that as Nb upsurges, the temperature
boundary layer was enhanced and the opposite happens with the nanoparticle volume fraction
boundary thickness. From Figure 12, Brownian motion parameter lessens the concentration boundary
layer thickness, which contributes to a decline in concentration. Another physical explanation for this
situation is that the greater Brownian motion results in an arbitrary movement of the particles. Due to
this arbitrary movement, extra heat is produced. Thus, the growth in temperature curves was explored.
Moreover, both velocity and density of the motile microorganism profiles were not influenced by Nb.
In additon, both the Nusselt number and shear stress were not affected by Le, so the velocity and
temperature curves were also not influenced.
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From Figures 13 and 14, it was seen that the upsurge in Le created a depression in the concentration
profile, while the opposite was observed with the microorganism profile at η ≈ 1.2, as manifested in
Figure 14. In the effective area, η < 1.2, the growth in Le produced a decrease in the microorganism
boundary layers. Additionally, for η > 1.2, the opposite took place as Le grew. From Figure 13, it was
clear that the concentration dwindled with the increments of Le. Physically, Le decreased the mass
diffusivity and as a result, minimizes the permeation depth of the boundary layer.
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Figure 14. The density of the motile microorganism profile (χ(η)) for different values of Le when
M = 0.5, Nb = 0.5, Nt = 0.1, Pr = 0.7, Lb = 0.5, Pe = 0.3, σ = 0.2, Ec = 0.01.

Figures 15–17 indicated that the decline in the boundary layer thickness of density motile
microorganisms due to the growth in the bioconvection Lewis number, Lb; bioconvection parameter, σ;
and Peclet number, Pe. Figure 18 exhibits the residual errors of Equations (13)–(17) versus iterations for
several rates of parameters. The residual errors of f (η), θ(η), φ(η), and χ(η) gathers linear forms. The
velocity, temperature, nanoparticles fraction, and motile microorganism profiles shown in Figures 2–17
determine the far field boundary conditions (13) asymptotically, which leads to the confidence of the
present outcomes.
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Figure 15. The density of the motile microorganism profile (χ(η)) for different values of σ when
M = 0.5, Nb = 0.5, Nt = 0.1, Pr = 0.7, Lb = 0.5, Pe = 0.3, Le = 5, Ec = 0.01.
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5. Conclusions

Extensive numerical investigation was performed for two dimensional MHD steady flow, and heat
and mass transfer of dissipative nanofluid containing gyrotactic microorganisms over an exponentially
stretchable surface. The impacts of thermophoresis, Brownian diffusion, and magnetic field were
addressed. In this investigation, the effectiveness of the magnetic strength, the thermophoresis
parameter, and the Brownian motion parameter on the MHD bioconvection of nanofluid through a
stretchable surface was discussed. The following conclusions were drawn from the finding of this
numerical investigation:

• The comparison values of heat rate transfer were in good agreement with the former study, and
hence led to the confidence of the present results to be reported further.

• The resultant velocity diminished with the increments in the magnetic parameter.
• Fluid temperature increased as the magnetic parameter, thermophoresis, and Brownian motion

parameters increased.
• The concentration was reduced with the boost in the Lewis number and Brownian

motion parameter.
• The concentration was increased with the increment in the Prandtl number, thermophoresis, and

magnetic parameters.
• The density of the motile microorganism is a decreasing function of the Prandtl number, Lewis

number, Peclet number, bioconvection Lewis number, and bioconvection parameter.
• The residual errors of f (η), θ(η), φ(η), and χ(η) were iteration dependent.
• For future research, it is suggested for the present study to consider all possible multiple solutions or

dual solutions. This is driven by the fact that the multiple solutions cannot be seen experimentally
and can only be obtained by using numerical simulation.

• It was also proposed for the stability of multiple solutions to be included as one of the main
objective studies for future work. Stability analysis is important for identifying the reliability of
the multiple solutions, which depend on the assumptions of the physical model.
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